牛顿运动定律临界问题第二定律的同向性,同体性,同时性问题

问题1:必须弄清牛顿第二定律的矢量性. 牛顿第二定律F=ma是矢量式.加速度的方向与物体所受合外力的方向相同.在解题时.可以利用正交分解法进行求解. 例1.如图1所示.电梯与水平面夹角为300,当——精英家教网——
暑假天气热?在家里学北京名师课程,
问题1:必须弄清牛顿第二定律的矢量性. 牛顿第二定律F=ma是矢量式.加速度的方向与物体所受合外力的方向相同.在解题时.可以利用正交分解法进行求解. 例1.如图1所示.电梯与水平面夹角为300,当电梯加速向上运动时.人对梯面压力是其重力的6/5.则人与梯面间的摩擦力是其重力的多少倍? 分析与解:对人受力分析.他受到重力mg.支持力FN和摩擦力Ff作用.如图1所示.取水平向右为x轴正向.竖直向上为y轴正向.此时只需分解加速度.据牛顿第二定律可得: Ff=macos300, FN-mg=masin300 因为.解得. 问题2:必须弄清牛顿第二定律的瞬时性. 牛顿第二定律是表示力的瞬时作用规律.描述的是力的瞬时作用效果-产生加速度.物体在某一时刻加速度的大小和方向.是由该物体在这一时刻所受到的合外力的大小和方向来决定的.当物体所受到的合外力发生变化时.它的加速度随即也要发生变化.F=ma对运动过程的每一瞬间成立.加速度与力是同一时刻的对应量.即同时产生.同时变化.同时消失. 例2.如图2(a)所示.一质量为m的物体系于长度分别为L1.L2的两根细线上.L1的一端悬挂在天花板上.与竖直方向夹角为θ.L2水平拉直.物体处于平衡状态.现将L2线剪断.求剪断瞬时物体的加速度. (l)下面是某同学对该题的一种解法: 分析与解:设L1线上拉力为T1.L2线上拉力为T2.重力为mg.物体在三力作用下保持平衡,有 T1cosθ=mg. T1sinθ=T2. T2=mgtanθ 剪断线的瞬间.T2突然消失.物体即在T2反方向获得加速度.因为mg tanθ=ma.所以加速度a=g tanθ.方向在T2反方向. 你认为这个结果正确吗?请对该解法作出评价并说明理由. 中的细线L1改为长度相同.质量不计的轻弹簧.如图2(b)所示.其他条件不变.求解的步骤和结果与(l)完全相同.即 a=g tanθ.你认为这个结果正确吗?请说明理由. 分析与解:(1)错.因为L2被剪断的瞬间.L1上的张力大小发生了变化.剪断瞬时物体的加速度a=gsinθ. (2)对.因为L2被剪断的瞬间.弹簧L1的长度来不及发生变化.其大小和方向都不变. 问题3:必须弄清牛顿第二定律的独立性. 当物体受到几个力的作用时.各力将独立地产生与其对应的加速度.而物体表现出来的实际加速度是物体所受各力产生加速度叠加的结果.那个方向的力就产生那个方向的加速度. 例3.如图3所示.一个劈形物体M放在固定的斜面上.上表面水平.在水平面上放有光滑小球m.劈形物体从静止开始释放.则小球在碰到斜面前的运动轨迹是: A.沿斜面向下的直线 B.抛物线 C.竖直向下的直线 D.无规则的曲线. 分析与解:因小球在水平方向不受外力作用.水平方向的加速度为零.且初速度为零.故小球将沿竖直向下的直线运动.即C选项正确. 问题4:必须弄清牛顿第二定律的同体性. 加速度和合外力是同属一个物体的.所以解题时一定要把研究对象确定好.把研究对象全过程的受力情况都搞清楚. 例4.一人在井下站在吊台上.用如图4所示的定滑轮装置拉绳把吊台和自己提升上来.图中跨过滑轮的两段绳都认为是竖直的且不计摩擦.吊台的质量m=15kg,人的质量为M=55kg,起动时吊台向上的加速度是a=0.2m/s2,求这时人对吊台的压力.(g=9.8m/s2) 分析与解:选人和吊台组成的系统为研究对象.受力如图5所示.F为绳的拉力,由牛顿第二定律有:2F-a 则拉力大小为: 再选人为研究对象.受力情况如图6所示.其中FN是吊台对人的支持力.由牛顿第二定律得:F+FN-Mg=Ma,故FN=M(a+g)-F=200N. 由牛顿第三定律知.人对吊台的压力与吊台对人的支持力大小相等.方向相反.因此人对吊台的压力大小为200N.方向竖直向下. 问题5:必须弄清面接触物体分离的条件及应用. 相互接触的物体间可能存在弹力相互作用.对于面接触的物体.在接触面间弹力变为零时.它们将要分离.抓住相互接触物体分离的这一条件.就可顺利解答相关问题.下面举例说明. 例5.一根劲度系数为k,质量不计的轻弹簧.上端固定,下端系一质量为m的物体,有一水平板将物体托住,并使弹簧处于自然长度.如图7所示.现让木板由静止开始以加速度a(a<g=匀加速向下移动.求经过多长时间木板开始与物体分离. 分析与解:设物体与平板一起向下运动的距离为x时.物体受重力mg.弹簧的弹力F=kx和平板的支持力N作用.据牛顿第二定律有: mg-kx-N=ma得N=mg-kx-ma 当N=0时.物体与平板分离.所以此时 因为.所以. 例6.如图8所示.一个弹簧台秤的秤盘质量和弹簧质量都不计.盘内放一个物体P处于静止.P的质量m=12kg.弹簧的劲度系数k=300N/m.现在给P施加一个竖直向上的力F.使P从静止开始向上做匀加速直线运动.已知在t=0.2s内F是变力.在0.2s以后F是恒力.g=10m/s2,则F的最小值是 .F的最大值是 . 分析与解:因为在t=0.2s内F是变力.在t=0.2s以后F是恒力.所以在t=0.2s时.P离开秤盘.此时P受到盘的支持力为零.由于盘和弹簧的质量都不计.所以此时弹簧处于原长.在0 0.2s这段时间内P向上运动的距离: x=mg/k=0.4m 因为.所以P在这段时间的加速度 当P开始运动时拉力最小.此时对物体P有N-mg+Fmin=ma,又因此时N=mg.所以有Fmin=ma=240N. 当P与盘分离时拉力F最大.Fmax=m(a+g)=360N. 例7.一弹簧秤的秤盘质量m1=1.5kg.盘内放一质量为m2=10.5kg的物体P.弹簧质量不计.其劲度系数为k=800N/m.系统处于静止状态.如图9所示.现给P施加一个竖直向上的力F.使P从静止开始向上做匀加速直线运动.已知在最初0.2s内F是变化的.在0.2s后是恒定的.求F的最大值和最小值各是多少?(g=10m/s2) 分析与解:因为在t=0.2s内F是变力.在t=0.2s以后F是恒力.所以在t=0.2s时.P离开秤盘.此时P受到盘的支持力为零.由于盘的质量m1=1.5kg.所以此时弹簧不能处于原长.这与例2轻盘不同.设在0 0.2s这段时间内P向上运动的距离为x,对物体P据牛顿第二定律可得: F+N-m2g=m2a 对于盘和物体P整体应用牛顿第二定律可得: 令N=0.并由述二式求得.而.所以求得a=6m/s2. 当P开始运动时拉力最小.此时对盘和物体P整体有Fmin=a=72N. 当P与盘分离时拉力F最大.Fmax=m2(a+g)=168N. 问题6:必须会分析临界问题. 例8.如图10.在光滑水平面上放着紧靠在一起的AB两物体.B的质量是A的2倍.B受到向右的恒力FB=2N.A受到的水平力FA=N.(t的单位是s).从t=0开始计时.则: A.A物体在3s末时刻的加速度是初始时刻的5/11倍, B.t>4s后,B物体做匀加速直线运动, C.t=4.5s时,A物体的速度为零, D.t>4.5s后,AB的加速度方向相反. 分析与解:对于A.B整体据牛顿第二定律有:FA+FB=(mA+mB)a,设A.B间的作用为N.则对B据牛顿第二定律可得: N+FB=mBa 解得 当t=4s时N=0.A.B两物体开始分离.此后B做匀加速直线运动.而A做加速度逐渐减小的加速运动.当t=4.5s时A物体的加速度为零而速度不为零.t>4.5s后,A所受合外力反向.即A.B的加速度方向相反.当t&4s时.A.B的加速度均为. 综上所述.选项A.B.D正确. 例9.如图11所示.细线的一端固定于倾角为450的光滑楔形滑块A的顶端P处.细线的另一端拴一质量为m的小球.当滑块至少以加速度a= 向左运动时.小球对滑块的压力等于零.当滑块以a=2g的加速度向左运动时.线中拉力T= . 分析与解:当滑块具有向左的加速度a时.小球受重力mg.绳的拉力T和斜面的支持力N作用.如图12所示. 在水平方向有Tcos450-Ncos450= 在竖直方向有Tsin450-Nsin450-mg=0. 由上述两式可解出: 由此两式可看出.当加速度a增大时.球受支持力N减小.绳拉力T增加.当a=g时.N=0.此时小球虽与斜面有接触但无压力.处于临界状态.这时绳的拉力T=mg/cos450=. 当滑块加速度a&g时.则小球将“飘 离斜面.只受两力作用.如图13所示.此时细线与水平方向间的夹角α&450.由牛顿第二定律得:Tcosα=ma,Tsinα=mg,解得. 问题7:必须会用整体法和隔离法解题. 两个或两个以上物体相互连接参与运动的系统称为连接体.以平衡态或非平衡态下连接体问题拟题屡次呈现于高考卷面中.是考生备考临考的难点之一. 例10.用质量为m.长度为L的绳沿着光滑水平面拉动质量为M的物体.在绳的一端所施加的水平拉力为F. 如图14所示.求: (1)物体与绳的加速度, (2)绳中各处张力的大小(假定绳的质量分布均匀.下垂度可忽略不计.) 分析与解:(1)以物体和绳整体为研究对象.根据牛顿第二定律可得: F=. (2)以物体和靠近物体x长的绳为研究对象.如图15所示.根据牛顿第二定律可得:Fx=a=(M+) . 由此式可以看出:绳中各处张力的大小是不同的.当x=0时.绳施于物体M的力的大小为. 例11.如图16所示.AB为一光滑水平横杆.杆上套一轻环.环上系一长为L质量不计的细绳.绳的另一端拴一质量为m的小球.现将绳拉直.且与AB平行.由静止释放小球.则当细绳与AB成θ角时.小球速度的水平分量和竖直分量的大小各是多少?轻环移动的距离d是多少? 分析与解:本题是“轻环 模型问题.由于轻环是套在光滑水平横杆上的.在小球下落过程中.由于轻环可以无摩擦地向右移动.故小球在落到最低点之前.绳子对小球始终没有力的作用.小球在下落过程中只受到重力作用.因此.小球的运动轨迹是竖直向下的.这样当绳子与横杆成θ角时.小球的水平分速度为Vx=0,小球的竖直分速度.可求得轻环移动的距离是d=L-Lcosθ. 问题8:必须会分析与斜面体有关的问题. 例12.如图17所示.水平粗糙的地面上放置一质量为M.倾角为θ的斜面体.斜面体表面也是粗糙的有一质量为m的小滑块以初速度V0由斜面底端滑上斜面上经过时间t到达某处速度为零.在小滑块上滑过程中斜面体保持不动.求此过程中水平地面对斜面体的摩擦力与支持力各为多大? 分析与解:取小滑块与斜面体组成的系统为研究对象.系统受到的外力有重力(m+M)g/地面对系统的支持力N.静摩擦力f.建立如图17所示的坐标系.对系统在水平方向与竖直方向分别应用牛顿第二定律得: -f=0-mV0cosθ/t, 【】
题目列表(包括答案和解析)
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对答案更方便,扫描上方二维码立刻安装!
请输入姓名
请输入手机号牛顿第二定律: 物体的加速度与所受外力成正比.与物体的质量成反比.方向为合外力的方向. 力与加速度: 同向性:a与F方向相同 瞬时性:a与F同时产生.同时消——精英家教网——
暑假天气热?在家里学北京名师课程,
牛顿第二定律: 物体的加速度与所受外力成正比.与物体的质量成反比.方向为合外力的方向. 力与加速度: 同向性:a与F方向相同 瞬时性:a与F同时产生.同时消失.同时增大.同时减小 同体性:反应同一物体的两个物理量 ③独立性:物体受几个外力作用.在一个外力作用下产生加速度只与此外力有关.而与其它力无关.合加速度与合力有关 例3:在光滑水平面上.某物体在恒力F作用下匀加速直线运动.当速度达到V0后.将作用力逐渐减小至零.则物体的运动速度将:B A. 由V0逐渐减小至零 B. 由V0逐渐增大至最大值 C. 由V0先逐渐减小再逐渐增大至最大值 D. 由V0先逐渐增大再逐渐减小至零 【】
题目列表(包括答案和解析)
牛顿第二定律:物体的加速度a与物体所受合外力F成________,与物体的质量m成________,加速度的方向和合外力的方向________,其数学表达式为________.
从牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度,可是当我们用一个很小的力去推很重的桌子时,却推不动它,这是因为(  )A.推力小于静摩擦力,加速度的方向与推力的方向相反B.桌子的加速度很小,速度增量极小,眼睛观察不到现象C.牛顿第二定律不适用于静止的物体,只对变速运动的物体适用D.桌子所受的合力为零
对牛顿第二定律的理解,正确的是(  )A、如果一个物体同时受到两个力的作用,则这两个力各自产生的加速度互不影响B、如果一个物体同时受到几个力的作用,则这个物体的加速度等于所受各力单独作用在物体上时产生加速度的矢量和C、平抛运动中竖直方向的重力不影响水平方向的匀速运动D、物体的质量与物体所受的合力成正比,与物体的加速度成反比
由牛顿第二定律的变形公式m=可知物体的质量(&&& )A.跟合外力成正比B.跟物体加速度成反比C.跟物体所受合外力与加速度无关D.可通过测量它的合外力和加速度求得
由牛顿第二定律表达式F=ma可知(  )??&&& A.质量m与合外力F成正比,与加速度a成反比??&&& B.合外力F与质量m和加速度a都成正比 ??&&& C.物体的加速度的方向总是跟它所受合外力的方向一致??&&& D.物体的加速度a跟所受的合外力F成正比,跟物体的质量m成反比?&&&&&&
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对答案更方便,扫描上方二维码立刻安装!
请输入姓名
请输入手机号3.对牛顿第二定律的理解 ⑴矢量性:加速度的方向始终与合外力的方向相同. ⑵瞬时性:力的作用和加速度的产生是瞬时对应的关系.力变加速度就变. ⑶独立性:作用在物体上的每个力都能独立地对物体产生加——精英家教网——
暑假天气热?在家里学北京名师课程,
3.对牛顿第二定律的理解 ⑴矢量性:加速度的方向始终与合外力的方向相同. ⑵瞬时性:力的作用和加速度的产生是瞬时对应的关系.力变加速度就变. ⑶独立性:作用在物体上的每个力都能独立地对物体产生加速度.而物体实际的加速度则是每个力产生加速度的矢量和. ⑷同体性:式中F合.a.m必须对应同一个物体或系统.a相对于同一个参考系. 牛顿第二定律的正交分解形式为: Fx=max.Fy=may. 【】
题目列表(包括答案和解析)
为了加深对基因分离定律的理解,某同学在2个小桶内各装入20个等大的方形积木(红色、蓝色各10个,分别代表“配子”D、d)。分别从两桶内随机抓取1个积木并记录,直至抓完桶内积木。结果,DD:Dd:dd=10:5:5,该同学感到失望。你应该给他的建议和理由是①.把方形积木改换为质地、大小相同的小球;以便于充分混合,避免人为误差②.将某桶内的2种配子各减少到1个;因为卵细胞的数量比精子少得多③.改变桶内两种配子的比例,继续重复抓取;保证基因的随机分配和足够大的样本数④.每次抓取后,应将抓取的配子放回原桶;保证每种配子被抓取的概率相等A.②③&&&&&B.①④&&&&&& C.①③&&&&& D.②④&
为了加深对基因分离定律的理解,某同学在2个小桶内各装入20个等大的方形积木(红色、蓝色各10个,分别代表“配子”D、d)。分别从两桶内随机抓取1个积木并记录,直至抓完桶内积木。结果,DD:Dd:dd=10:5:5,该同学感到失望。你应该给他的建议和理由是(&)①把方形积木改换为质地、大小相同的小球;以便充分混合,避免人为误差②将某桶内的2种配子各减少到1个;因为卵细胞的数量比精子少得多③改变桶内配子的比例,继续重复抓取;保证基因的随机分配和足够大的样本数④每次抓取后,应将抓取的配子放回原桶;保证每种配子被抓取的概率相等A. ①④&&&&&& B.②③&&&&&&& C.①③&&&&&& D. ②④&
为了加深对基因分离定律的理解,某同学在2个小桶内各装入20个等大的方形积木(红色、蓝色各10个,分别代表“配子”D、d)。分别从两桶内随机抓取1个积木并记录,直至抓完桶内积木。结果,DD:Dd:dd=10:5:5,该同学感到失望。你应该给他的建议和理由是①.把方形积木改换为质地、大小相同的小球;以便于充分混合,避免人为误差②.将某桶内的2种配子各减少到1个;因为卵细胞的数量比精子少得多③.改变桶内两种配子的比例,继续重复抓取;保证基因的随机分配和足够大的样本数④.每次抓取后,应将抓取的配子放回原桶;保证每种配子被抓取的概率相等A.②③&&&&&B.①④&&&&&& C.①③&&&&& D.②④&
为了加深对基因分离定律的理解,某同学在2个小桶内各装入20个等大的方形积木(红色、蓝色各10个,分别代表配子D、d)。分别从两桶内随机抓取1个积木,记录组合后,将积木放入另外的容器中,这样直至抓完桶内积木。统计结果是,DD∶Dd∶dd=10∶5∶5,该比例不符合正常结果。对上述做法你认为应该改变的做法和理由是(& )A.把方形积木改换为质地、大小相同的小球;以便充分混合,避免人为误差B.每次抓取后,应将抓取的积木放回原桶;保证每种配子被抓取的概率相等C.抓取时应闭上眼睛,并充分摇匀;保证基因的随机分配和配子的随机结合D.将一桶内的2种配子各减少一半,另一桶数量不变;因为卵细胞数比精子数少
为了加深对基因分离定律的理解,某同学在2个小桶内各装入20个等大的方形积木(红色、蓝色各10个,分别代表“配子”D、d)。分别从两桶内随机抓取1个积木并记录,直至抓完桶内积木。结果,DD:Dd:dd=10:5:5,该同学感到失望。你应该给他的建议和理由是①.把方形积木改换为质地、大小相同的小球;以便于充分混合,避免人为误差②.将某桶内的2种配子各减少到1个;因为卵细胞的数量比精子少得多③.改变桶内两种配子的比例,继续重复抓取;保证基因的随机分配和足够大的样本数④.每次抓取后,应将抓取的配子放回原桶;保证每种配子被抓取的概率相等A.②③&&&&&B.①④&&&&&& C.①③&&&&& D.②④&
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对答案更方便,扫描上方二维码立刻安装!
请输入姓名
请输入手机号

我要回帖

更多关于 牛顿运动定律瞬时问题 的文章

 

随机推荐