有谁能详细谢谢你的解释 英文怎么算BA和BC的张力?谢谢

用细绳AC和BC吊起一个重为10N的物体,请用作图法求出两条细线上的张力F的大小.我知道答案但是我有疑问.
用平行四边形法则没有错,但并不是绳长的平行四边形,而是力的平行四边形AC的张力,要大于BC的张力,所以,用平行四边形法则后垂直向上,与G大小相等.
张力就是拉力吗?AC的张力为什么要大于BC啊,
绳子的结点,受三个力,一个重力G向下,两个绳子拉力
结点静止,所以,两根绳子的张力必然与重力方向相反,合力就是F垂直向上
那么F的分力,就是沿着两根绳子方向的张力,显然,AC的张力大于BC
貌似懂了,是不是因为静止,所以二力平衡,所以AC和BC的合力与重力等大反向,所以根据平行四边形定则得知AC大于BC。谢谢啦
和二力平衡的平衡是一个意思,但实际上是三个力平衡
为您推荐:
其他类似问题
扫描下载二维码用两根轻质的绳子AB和BC吊一个0.5kg的灯。如果BC绳处于水平,AB绳与水平夹角为60°,求绳AB和BC的张力拉力。(g=10N/kg)(10分)
分析:对结点B受力分析并作出受力分析图,根据力的合成与共点力的平衡条件利用几何关系可解.
对灯分析可知灯对结点B的拉力等于灯的重力;即F G =G=5N;分析B点受力:?绳A拉力F A 、绳C拉力F C 和灯拉力F G 如图所示由几何关系可知三力关系:F A cosθ=F C ; F A sinθ=F G ;解得:F A =
绳AB的拉力为
;BC的拉力为
为您推荐:
扫描下载二维码6.如图所示,把一个质量m=1kg的物体通过两根等长的细绳与竖直杆上A、B两个固定点相连接,C为两绳交点.绳a、b长都是1m,AB长度是1.6m,直杆和球旋转的角速度等于多少时,b绳上才有张力?ω>3.5rad/s)
jcPN16MS90
分析 :当直杆和球旋转的角速度较小时,只有a绳有张力,当角速度增大到一定程度时,ab绳都有张力.以b绳刚要有张力的瞬间为研究对象 :a绳张力水平方向的分力提供物体旋转的向心力.令∠BAC的夹角为a.根据受力分析知 mgtana=mrω^2 根据题意知 r=0.6m.tana=3/4 解得 ω=3.5rad/s
为您推荐:
其他类似问题
设角速度为ω时,b绳拉力恰好为0.此时对小球受力分析,应该是重力G,绳a的拉力T两个力。两力的合力应该指向圆心,得方程:F合=mω^2r其中F合可有三角形定则求出,角度可由三角函数求得;r也要根据三角函数求。不方便作图,自己多思考下!...
临界问题,设角速度大于w时,b绳上才有张力,即角速度等于w时,b绳伸直了但还没有力。对物体受力分析,重力mg和a绳的拉力F,且此时a绳与水平方向夹角45度。Fsin45=mgFcos45=mw^rr=1*cos45(物体做圆周运动的半径是1m乘cos45度)自己计算即可...
物体是指球吗?c点处是指球吗?当b上有张力前一瞬,两根绳恰好都绷直,对球受力分析(如图,蓝线是a拉力的两个分力):mg=Ta*(0.8/1)&&&Ta*(0.6/1)/m=ω^2*Rm=1,R=0.6代入得ω
扫描下载二维码这是个机器人猖狂的时代,请输一下验证码,证明咱是正常人~第八部分 静电场第一讲 基本知识介绍在奥赛考纲中,静电学知识点数目不算多,总数和高考考纲基本相同,但在个别知识点上,奥赛的要求显然更加深化了:如非匀强电场中电势的计算、电容器的连接和静电能计算、电介质的极化等。在处理物理问题的方法上,对无限分割和叠加原理提出了更高的要求。如果把静电场的问题分为两部分,那就是电场本身的问题、和对场中带电体的研究,高考考纲比较注重第二部分中带电粒子的运动问题,而奥赛考纲更注重第一部分和第二部分中的静态问题。也就是说,奥赛关注的是电场中更本质的内容,关注的是纵向的深化和而非横向的综合。一、电场强度1、实验定律a、库仑定律内容;条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k′= k /εr)。只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。b、电荷守恒定律c、叠加原理2、电场强度a、电场强度的定义电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。b、不同电场中场强的计算决定电场强弱的因素有两个:场源(带电量和带电体的形状)和空间位置。这可以从不同电场的场强决定式看出——⑴点电荷:E = k结合点电荷的场强和叠加原理,我们可以求出任何电场的场强,如——⑵均匀带电环,垂直环面轴线上的某点P:E =&,其中r和R的意义见图7-1。⑶均匀带电球壳内部:E内&= 0外部:E外&= k&,其中r指考察点到球心的距离如果球壳是有厚度的的(内径R1&、外径R2),在壳体中(R1<r<R2):E =&&,其中ρ为电荷体密度。这个式子的物理意义可以参照万有引力定律当中(条件部分)的“剥皮法则”理解〔即为图7-2中虚线以内部分的总电量…〕。⑷无限长均匀带电直线(电荷线密度为λ):E =&⑸无限大均匀带电平面(电荷面密度为σ):E = 2πkσ二、电势1、电势:把一电荷从P点移到参考点P0时电场力所做的功W与该电荷电量q的比值,即U =&参考点即电势为零的点,通常取无穷远或大地为参考点。和场强一样,电势是属于场本身的物理量。W则为电荷的电势能。2、典型电场的电势a、点电荷以无穷远为参考点,U = kb、均匀带电球壳以无穷远为参考点,U外&= k&,U内&= k3、电势的叠加由于电势的是标量,所以电势的叠加服从代数加法。很显然,有了点电荷电势的表达式和叠加原理,我们可以求出任何电场的电势分布。4、电场力对电荷做功WAB&= q(UA&-&UB)= qUAB&三、静电场中的导体静电感应→静电平衡(狭义和广义)→静电屏蔽1、静电平衡的特征可以总结为以下三层含义——a、导体内部的合场强为零;表面的合场强不为零且一般各处不等,表面的合场强方向总是垂直导体表面。b、导体是等势体,表面是等势面。c、导体内部没有净电荷;孤立导体的净电荷在表面的分布情况取决于导体表面的曲率。2、静电屏蔽导体壳(网罩)不接地时,可以实现外部对内部的屏蔽,但不能实现内部对外部的屏蔽;导体壳(网罩)接地后,既可实现外部对内部的屏蔽,也可实现内部对外部的屏蔽。四、电容1、电容器孤立导体电容器→一般电容器2、电容a、定义式&C =&b、决定式。决定电容器电容的因素是:导体的形状和位置关系、绝缘介质的种类,所以不同电容器有不同的电容⑴平行板电容器&C =&&=&&,其中ε为绝对介电常数(真空中ε0&=&&,其它介质中ε=&),εr则为相对介电常数,εr&=&&。⑵柱形电容器:C =&⑶球形电容器:C =&3、电容器的连接a、串联&&=&+++&…&+b、并联&C = C1&+ C2&+ C3&+&…&+ Cn&4、电容器的能量用图7-3表征电容器的充电过程,“搬运”电荷做功W就是图中阴影的面积,这也就是电容器的储能E&,所以E =&q0U0&=&C&=&电场的能量。电容器储存的能量究竟是属于电荷还是属于电场?正确答案是后者,因此,我们可以将电容器的能量用场强E表示。对平行板电容器&E总&=&E2&认为电场能均匀分布在电场中,则单位体积的电场储能&w =&E2&。而且,这以结论适用于非匀强电场。五、电介质的极化1、电介质的极化a、电介质分为两类:无极分子和有极分子,前者是指在没有外电场时每个分子的正、负电荷“重心”彼此重合(如气态的H2&、O2&、N2和CO2),后者则反之(如气态的H2O&、SO2和液态的水硝基笨)b、电介质的极化:当介质中存在外电场时,无极分子会变为有极分子,有极分子会由原来的杂乱排列变成规则排列,如图7-4所示。2、束缚电荷、自由电荷、极化电荷与宏观过剩电荷a、束缚电荷与自由电荷:在图7-4中,电介质左右两端分别显现负电和正电,但这些电荷并不能自由移动,因此称为束缚电荷,除了电介质,导体中的原子核和内层电子也是束缚电荷;反之,能够自由移动的电荷称为自由电荷。事实上,导体中存在束缚电荷与自由电荷,绝缘体中也存在束缚电荷和自由电荷,只是它们的比例差异较大而已。b、极化电荷是更严格意义上的束缚电荷,就是指图7-4中电介质两端显现的电荷。而宏观过剩电荷是相对极化电荷来说的,它是指可以自由移动的净电荷。宏观过剩电荷与极化电荷的重要区别是:前者能够用来冲放电,也能用仪表测量,但后者却不能。第二讲 重要模型与专题一、场强和电场力【物理情形1】试证明:均匀带电球壳内部任意一点的场强均为零。【模型分析】这是一个叠加原理应用的基本事例。如图7-5所示,在球壳内取一点P&,以P为顶点做两个对顶的、顶角很小的锥体,锥体与球面相交得到球面上的两个面元ΔS1和ΔS2&,设球面的电荷面密度为σ,则这两个面元在P点激发的场强分别为ΔE1&= kΔE2&= k为了弄清ΔE1和ΔE2的大小关系,引进锥体顶部的立体角ΔΩ&,显然&=&ΔΩ&=&所以&ΔE1&= k&,ΔE2&= k&,即:ΔE1&=&ΔE2&,而它们的方向是相反的,故在P点激发的合场强为零。同理,其它各个相对的面元ΔS3和ΔS4&、ΔS5和ΔS6&…&激发的合场强均为零。原命题得证。【模型变换】半径为R的均匀带电球面,电荷的面密度为σ,试求球心处的电场强度。【解析】如图7-6所示,在球面上的P处取一极小的面元ΔS&,它在球心O点激发的场强大小为ΔE = k&,方向由P指向O点。无穷多个这样的面元激发的场强大小和ΔS激发的完全相同,但方向各不相同,它们矢量合成的效果怎样呢?这里我们要大胆地预见——由于由于在x方向、y方向上的对称性,Σ&=&Σ&= 0&,最后的ΣE =&ΣEz&,所以先求ΔEz&=&ΔEcosθ= k&,而且ΔScosθ为面元在xoy平面的投影,设为ΔS′所以&ΣEz&=&ΣΔS′而&ΣΔS′=&πR2&【答案】E = kπσ&,方向垂直边界线所在的平面。〖学员思考〗如果这个半球面在yoz平面的两边均匀带有异种电荷,面密度仍为σ,那么,球心处的场强又是多少?〖推荐解法〗将半球面看成4个球面,每个球面在x、y、z三个方向上分量均为&kπσ,能够对称抵消的将是y、z两个方向上的分量,因此ΣE = ΣEx&…〖答案〗大小为kπσ,方向沿x轴方向(由带正电的一方指向带负电的一方)。【物理情形2】有一个均匀的带电球体,球心在O点,半径为R ,电荷体密度为ρ ,球体内有一个球形空腔,空腔球心在O′点,半径为R′,= a ,如图7-7所示,试求空腔中各点的场强。【模型分析】这里涉及两个知识的应用:一是均匀带电球体的场强定式(它也是来自叠加原理,这里具体用到的是球体内部的结论,即“剥皮法则”),二是填补法。将球体和空腔看成完整的带正电的大球和带负电(电荷体密度相等)的小球的集合,对于空腔中任意一点P ,设&= r1&,&= r2&,则大球激发的场强为E1&= k&=&kρπr1&,方向由O指向P“小球”激发的场强为E2&= k&=&kρπr2&,方向由P指向O′E1和E2的矢量合成遵从平行四边形法则,ΣE的方向如图。又由于矢量三角形PE1ΣE和空间位置三角形OP O′是相似的,ΣE的大小和方向就不难确定了。【答案】恒为kρπa ,方向均沿O → O′,空腔里的电场是匀强电场。〖学员思考〗如果在模型2中的OO′连线上O′一侧距离O为b(b>R)的地方放一个电量为q的点电荷,它受到的电场力将为多大?〖解说〗上面解法的按部就班应用…〖答〗πkρq〔?〕。二、电势、电量与电场力的功【物理情形1】如图7-8所示,半径为R的圆环均匀带电,电荷线密度为λ,圆心在O点,过圆心跟环面垂直的轴线上有P点,&= r&,以无穷远为参考点,试求P点的电势UP&。【模型分析】这是一个电势标量叠加的简单模型。先在圆环上取一个元段ΔL&,它在P点形成的电势ΔU = k环共有段,各段在P点形成的电势相同,而且它们是标量叠加。【答案】UP&=&〖思考〗如果上题中知道的是环的总电量Q ,则UP的结论为多少?如果这个总电量的分布不是均匀的,结论会改变吗?〖答〗UP&=&&;结论不会改变。〖再思考〗将环换成半径为R的薄球壳,总电量仍为Q ,试问:(1)当电量均匀分布时,球心电势为多少?球内(包括表面)各点电势为多少?(2)当电量不均匀分布时,球心电势为多少?球内(包括表面)各点电势为多少?〖解说〗(1)球心电势的求解从略;球内任一点的求解参看图7-5ΔU1&= k= k·= kσΔΩΔU2&= kσΔΩ它们代数叠加成 ΔU = ΔU1&+ ΔU2&= kσΔΩ而 r1&+ r2&= 2Rcosα所以 ΔU = 2RkσΔΩ所有面元形成电势的叠加&ΣU =&2RkσΣΔΩ注意:一个完整球面的ΣΔΩ = 4π(单位:球面度sr),但作为对顶的锥角,ΣΔΩ只能是2π ,所以——ΣU =&4πRkσ= k(2)球心电势的求解和〖思考〗相同;球内任一点的电势求解可以从(1)问的求解过程得到结论的反证。〖答〗(1)球心、球内任一点的电势均为k&;(2)球心电势仍为k&,但其它各点的电势将随电量的分布情况的不同而不同(内部不再是等势体,球面不再是等势面)。【相关应用】如图7-9所示,球形导体空腔内、外壁的半径分别为R1和R2&,带有净电量+q&,现在其内部距球心为r的地方放一个电量为+Q的点电荷,试求球心处的电势。【解析】由于静电感应,球壳的内、外壁形成两个带电球壳。球心电势是两个球壳形成电势、点电荷形成电势的合效果。根据静电感应的尝试,内壁的电荷量为-Q&,外壁的电荷量为+Q+q&,虽然内壁的带电是不均匀的,根据上面的结论,其在球心形成的电势仍可以应用定式,所以…【答案】Uo&= k&-&k&+ k&。〖反馈练习〗如图7-10所示,两个极薄的同心导体球壳A和B,半径分别为RA和RB&,现让A壳接地,而在B壳的外部距球心d的地方放一个电量为+q的点电荷。试求:(1)A球壳的感应电荷量;(2)外球壳的电势。〖解说〗这是一个更为复杂的静电感应情形,B壳将形成图示的感应电荷分布(但没有净电量),A壳的情形未画出(有净电量),它们的感应电荷分布都是不均匀的。此外,我们还要用到一个重要的常识:接地导体(A壳)的电势为零。但值得注意的是,这里的“为零”是一个合效果,它是点电荷q 、A壳、B壳(带同样电荷时)单独存在时在A中形成的的电势的代数和,所以,当我们以球心O点为对象,有UO&= k&+ k&+ k&=&0QB应指B球壳上的净电荷量,故 QB&= 0所以 QA&= -q☆学员讨论:A壳的各处电势均为零,我们的方程能不能针对A壳表面上的某点去列?(答:不能,非均匀带电球壳的球心以外的点不能应用定式!)基于刚才的讨论,求B的电势时也只能求B的球心的电势(独立的B壳是等势体,球心电势即为所求)——UB&=&k&+ k〖答〗(1)QA&= -q ;(2)UB&= k(1-) 。【物理情形2】图7-11中,三根实线表示三根首尾相连的等长绝缘细棒,每根棒上的电荷分布情况与绝缘棒都换成导体棒时完全相同。点A是Δabc的中心,点B则与A相对bc棒对称,且已测得它们的电势分别为UA和UB&。试问:若将ab棒取走,A、B两点的电势将变为多少?【模型分析】由于细棒上的电荷分布既不均匀、三根细棒也没有构成环形,故前面的定式不能直接应用。若用元段分割→叠加,也具有相当的困难。所以这里介绍另一种求电势的方法。每根细棒的电荷分布虽然复杂,但相对各自的中点必然是对称的,而且三根棒的总电量、分布情况彼此必然相同。这就意味着:①三棒对A点的电势贡献都相同(可设为U1);②ab棒、ac棒对B点的电势贡献相同(可设为U2);③bc棒对A、B两点的贡献相同(为U1)。所以,取走ab前& 3U1&= UA& & & & & & & & &2U2&+ U1&= UB取走ab后,因三棒是绝缘体,电荷分布不变,故电势贡献不变,所以& UA′= 2U1& & & & & & & & &UB′= U1&+ U2【答案】UA′=&UA&;UB′=&UA&+&UB&。〖模型变换〗正四面体盒子由彼此绝缘的四块导体板构成,各导体板带电且电势分别为U1&、U2&、U3和U4&,则盒子中心点O的电势U等于多少?〖解说〗此处的四块板子虽然位置相对O点具有对称性,但电量各不相同,因此对O点的电势贡献也不相同,所以应该想一点办法——我们用“填补法”将电量不对称的情形加以改观:先将每一块导体板复制三块,作成一个正四面体盒子,然后将这四个盒子位置重合地放置——构成一个有四层壁的新盒子。在这个新盒子中,每个壁的电量将是完全相同的(为原来四块板的电量之和)、电势也完全相同(为U1&+ U2&+ U3&+ U4),新盒子表面就构成了一个等势面、整个盒子也是一个等势体,故新盒子的中心电势为U′= U1&+ U2&+ U3&+ U4&最后回到原来的单层盒子,中心电势必为 U =&&U′〖答〗U =&(U1&+ U2&+ U3&+ U4)。☆学员讨论:刚才的这种解题思想是否适用于“物理情形2”?(答:不行,因为三角形各边上电势虽然相等,但中点的电势和边上的并不相等。)〖反馈练习〗电荷q均匀分布在半球面ACB上,球面半径为R ,CD为通过半球顶点C和球心O的轴线,如图7-12所示。P、Q为CD轴线上相对O点对称的两点,已知P点的电势为UP&,试求Q点的电势UQ&。〖解说〗这又是一个填补法的应用。将半球面补成完整球面,并令右边内、外层均匀地带上电量为q的电荷,如图7-12所示。从电量的角度看,右半球面可以看作不存在,故这时P、Q的电势不会有任何改变。而换一个角度看,P、Q的电势可以看成是两者的叠加:①带电量为2q的完整球面;②带电量为-q的半球面。考查P点,UP&= k&+ U半球面其中 U半球面显然和为填补时Q点的电势大小相等、符号相反,即 U半球面= -UQ&以上的两个关系已经足以解题了。〖答〗UQ&= k&- UP&。【物理情形3】如图7-13所示,A、B两点相距2L&,圆弧是以B为圆心、L为半径的半圆。A处放有电量为q的电荷,B处放有电量为-q的点电荷。试问:(1)将单位正电荷从O点沿移到D点,电场力对它做了多少功?(2)将单位负电荷从D点沿AB的延长线移到无穷远处去,电场力对它做多少功?【模型分析】电势叠加和关系WAB&= q(UA&-&UB)= qUAB的基本应用。UO&= k&+ k&= 0UD&= k&+ k&=&-U∞&= 0再用功与电势的关系即可。【答案】(1);(2)。&【相关应用】在不计重力空间,有A、B两个带电小球,电量分别为q1和q2&,质量分别为m1和m2&,被固定在相距L的两点。试问:(1)若解除A球的固定,它能获得的最大动能是多少?(2)若同时解除两球的固定,它们各自的获得的最大动能是多少?(3)未解除固定时,这个系统的静电势能是多少?【解说】第(1)问甚间;第(2)问在能量方面类比反冲装置的能量计算,另启用动量守恒关系;第(3)问是在前两问基础上得出的必然结论…(这里就回到了一个基本的观念斧正:势能是属于场和场中物体的系统,而非单纯属于场中物体——这在过去一直是被忽视的。在两个点电荷的环境中,我们通常说“两个点电荷的势能”是多少。)【答】(1)k;(2)Ek1&=&k&,Ek2&=&k;(3)k&。〖思考〗设三个点电荷的电量分别为q1&、q2和q3&,两两相距为r12&、r23和r31&,则这个点电荷系统的静电势能是多少?〖解〗略。〖答〗k(++)。〖反馈应用〗如图7-14所示,三个带同种电荷的相同金属小球,每个球的质量均为m 、电量均为q ,用长度为L的三根绝缘轻绳连接着,系统放在光滑、绝缘的水平面上。现将其中的一根绳子剪断,三个球将开始运动起来,试求中间这个小球的最大速度。〖解〗设剪断的是1、3之间的绳子,动力学分析易知,2球获得最大动能时,1、2之间的绳子与2、3之间的绳子刚好应该在一条直线上。而且由动量守恒知,三球不可能有沿绳子方向的速度。设2球的速度为v ,1球和3球的速度为v′,则动量关系 mv + 2m v′= 0能量关系 3k&= 2 k&+ k&+&mv2&+&2m解以上两式即可的v值。〖答〗v = q&。三、电场中的导体和电介质【物理情形】两块平行放置的很大的金属薄板A和B,面积都是S&,间距为d(d远小于金属板的线度),已知A板带净电量+Q1&,B板带尽电量+Q2&,且Q2<Q1&,试求:(1)两板内外表面的电量分别是多少;(2)空间各处的场强;(3)两板间的电势差。【模型分析】由于静电感应,A、B两板的四个平面的电量将呈现一定规律的分布(金属板虽然很薄,但内部合场强为零的结论还是存在的);这里应注意金属板“很大”的前提条件,它事实上是指物理无穷大,因此,可以应用无限大平板的场强定式。为方便解题,做图7-15,忽略边缘效应,四个面的电荷分布应是均匀的,设四个面的电荷面密度分别为σ1&、σ2&、σ3和σ4&,显然(σ1&+ σ2)S = Q1&(σ3&+ σ4)S = Q2&A板内部空间场强为零,有 2πk(σ1&?&σ2&?&σ3&?&σ4)= 0A板内部空间场强为零,有 2πk(σ1&+&σ2&+&σ3&?&σ4)= 0解以上四式易得 σ1&=&σ4&=&& & & & & & & &σ2&= ?σ3&=&有了四个面的电荷密度,Ⅰ、Ⅱ、Ⅲ空间的场强就好求了〔如EⅡ&=2πk(σ1&+&σ2&?&σ3&?&σ4)= 2πk〕。最后,UAB&= EⅡd【答案】(1)A板外侧电量、A板内侧电量,B板内侧电量?、B板外侧电量;(2)A板外侧空间场强2πk,方向垂直A板向外,A、B板之间空间场强2πk,方向由A垂直指向B,B板外侧空间场强2πk,方向垂直B板向外;(3)A、B两板的电势差为2πkd,A板电势高。〖学员思考〗如果两板带等量异号的净电荷,两板的外侧空间场强等于多少?(答:为零。)〖学员讨论〗(原模型中)作为一个电容器,它的“电量”是多少(答:)?如果在板间充满相对介电常数为εr的电介质,是否会影响四个面的电荷分布(答:不会)?是否会影响三个空间的场强(答:只会影响Ⅱ空间的场强)?〖学员讨论〗(原模型中)我们是否可以求出A、B两板之间的静电力?〔答:可以;以A为对象,外侧受力·(方向相左),内侧受力·(方向向右),它们合成即可,结论为F =&Q1Q2&,排斥力。〕【模型变换】如图7-16所示,一平行板电容器,极板面积为S&,其上半部为真空,而下半部充满相对介电常数为εr的均匀电介质,当两极板分别带上+Q和?Q的电量后,试求:(1)板上自由电荷的分布;(2)两板之间的场强;(3)介质表面的极化电荷。【解说】电介质的充入虽然不能改变内表面的电量总数,但由于改变了场强,故对电荷的分布情况肯定有影响。设真空部分电量为Q1&,介质部分电量为Q2&,显然有Q1&+ Q2&= Q两板分别为等势体,将电容器看成上下两个电容器的并联,必有U1&= U2&即&&=&&,即&&=&解以上两式即可得Q1和Q2&。场强可以根据E =&关系求解,比较常规(上下部分的场强相等)。上下部分的电量是不等的,但场强居然相等,这怎么解释?从公式的角度看,E = 2πkσ(单面平板),当k&、σ同时改变,可以保持E不变,但这是一种结论所展示的表象。从内在的角度看,k的改变正是由于极化电荷的出现所致,也就是说,极化电荷的存在相当于在真空中形成了一个新的电场,正是这个电场与自由电荷(在真空中)形成的电场叠加成为E2&,所以E2&= 4πk(σ&?&σ′)= 4πk(&?&)请注意:①这里的σ′和Q′是指极化电荷的面密度和总量;②&E = 4πkσ的关系是由两个带电面叠加的合效果。【答案】(1)真空部分的电量为Q&,介质部分的电量为Q&;(2)整个空间的场强均为&;(3)Q&。〖思考应用〗一个带电量为Q的金属小球,周围充满相对介电常数为εr的均匀电介质,试求与与导体表面接触的介质表面的极化电荷量。〖解〗略。〖答〗Q′=&Q 。四、电容器的相关计算【物理情形1】由许多个电容为C的电容器组成一个如图7-17所示的多级网络,试问:(1)在最后一级的右边并联一个多大电容C′,可使整个网络的A、B两端电容也为C′?(2)不接C′,但无限地增加网络的级数,整个网络A、B两端的总电容是多少?【模型分析】这是一个练习电容电路简化基本事例。第(1)问中,未给出具体级数,一般结论应适用特殊情形:令级数为1&,于是&+&&=&&解C′即可。第(2)问中,因为“无限”,所以“无限加一级后仍为无限”,不难得出方程&+&&=&【答案】(1)C&;(2)C&。【相关模型】在图7-18所示的电路中,已知C1&= C2&= C3&= C9&= 1μF&,C4&= C5&= C6&= C7&= 2μF&,C8&= C10&= 3μF&,试求A、B之间的等效电容。【解说】对于既非串联也非并联的电路,需要用到一种“Δ→Y型变换”,参见图7-19,根据三个端点之间的电容等效,容易得出定式——Δ→Y型:Ca&=&& & & & & Cb&=&& & & & & Cc&=&Y→Δ型:C1&=&& & & & &C2&=&& & & & &C3&=&有了这样的定式后,我们便可以进行如图7-20所示的四步电路简化(为了方便,电容不宜引进新的符号表达,而是直接将变换后的量值标示在图中)——【答】约2.23μF&。【物理情形2】如图7-21所示的电路中,三个电容器完全相同,电源电动势ε1&= 3.0V&,ε2&= 4.5V,开关K1和K2接通前电容器均未带电,试求K1和K2接通后三个电容器的电压Uao&、Ubo和Uco各为多少。【解说】这是一个考查电容器电路的基本习题,解题的关键是要抓与o相连的三块极板(俗称“孤岛”)的总电量为零。电量关系:++= 0电势关系:ε1&= Uao&+ Uob&= Uao&? Ubo&& & & & &&ε2&= Ubo&+ Uoc&= Ubo&? Uco&解以上三式即可。【答】Uao&= 3.5V&,Ubo&= 0.5V&,Uco&= ?4.0V&。【伸展应用】如图7-22所示,由n个单元组成的电容器网络,每一个单元由三个电容器连接而成,其中有两个的电容为3C ,另一个的电容为3C 。以a、b为网络的输入端,a′、b′为输出端,今在a、b间加一个恒定电压U ,而在a′b′间接一个电容为C的电容器,试求:(1)从第k单元输入端算起,后面所有电容器储存的总电能;(2)若把第一单元输出端与后面断开,再除去电源,并把它的输入端短路,则这个单元的三个电容器储存的总电能是多少?【解说】这是一个结合网络计算和“孤岛现象”的典型事例。(1)类似“物理情形1”的计算,可得 C总&= Ck&= C所以,从输入端算起,第k单元后的电压的经验公式为 Uk&=&再算能量储存就不难了。(2)断开前,可以算出第一单元的三个电容器、以及后面“系统”的电量分配如图7-23中的左图所示。这时,C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤岛”。此后,电容器的相互充电过程(C3类比为“电源”)满足——电量关系:Q1′= Q3′& & & & & Q2′+ Q3′=&电势关系:+&&=&从以上三式解得 Q1′= Q3′=&&,Q2′=&&,这样系统的储能就可以用得出了。【答】(1)Ek&=&;(2)&。〖学员思考〗图7-23展示的过程中,始末状态的电容器储能是否一样?(答:不一样;在相互充电的过程中,导线消耗的焦耳热已不可忽略。)☆第七部分完☆
第二部分 &牛顿运动定律第一讲 牛顿三定律一、牛顿第一定律1、定律。惯性的量度2、观念意义,突破“初态困惑”二、牛顿第二定律1、定律2、理解要点a、矢量性b、独立作用性:ΣF&→&a&,ΣFx&→&ax&…c、瞬时性。合力可突变,故加速度可突变(与之对比:速度和位移不可突变);牛顿第二定律展示了加速度的决定式(加速度的定义式仅仅展示了加速度的“测量手段”)。3、适用条件a、宏观、低速b、惯性系对于非惯性系的定律修正——引入惯性力、参与受力分析三、牛顿第三定律1、定律2、理解要点a、同性质(但不同物体)b、等时效(同增同减)c、无条件(与运动状态、空间选择无关)第二讲 牛顿定律的应用一、牛顿第一、第二定律的应用单独应用牛顿第一定律的物理问题比较少,一般是需要用其解决物理问题中的某一个环节。应用要点:合力为零时,物体靠惯性维持原有运动状态;只有物体有加速度时才需要合力。有质量的物体才有惯性。a可以突变而v、s不可突变。1、如图1所示,在马达的驱动下,皮带运输机上方的皮带以恒定的速度向右运动。现将一工件(大小不计)在皮带左端A点轻轻放下,则在此后的过程中(& & &&)A、一段时间内,工件将在滑动摩擦力作用下,对地做加速运动B、当工件的速度等于v时,它与皮带之间的摩擦力变为静摩擦力C、当工件相对皮带静止时,它位于皮带上A点右侧的某一点D、工件在皮带上有可能不存在与皮带相对静止的状态解说:B选项需要用到牛顿第一定律,A、C、D选项用到牛顿第二定律。较难突破的是A选项,在为什么不会“立即跟上皮带”的问题上,建议使用反证法(t&→&0&,a&→&∞&,则ΣFx&→&∞&,必然会出现“供不应求”的局面)和比较法(为什么人跳上速度不大的物体可以不发生相对滑动?因为人是可以形变、重心可以调节的特殊“物体”)此外,本题的D选项还要用到匀变速运动规律。用匀变速运动规律和牛顿第二定律不难得出只有当L&>&时(其中μ为工件与皮带之间的动摩擦因素),才有相对静止的过程,否则没有。答案:A、D思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2&,试求工件到达皮带右端的时间t(过程略,答案为5.5s)进阶练习:在上面“思考”题中,将工件给予一水平向右的初速v0&,其它条件不变,再求t(学生分以下三组进行)——① v0&= 1m/s &(答:0.5 + 37/8 = 5.13s)② v0&= 4m/s &(答:1.0 + 3.5 = 4.5s)③ v0&= 1m/s &(答:1.55s)2、质量均为m的两只钩码A和B,用轻弹簧和轻绳连接,然后挂在天花板上,如图2所示。试问:① 如果在P处剪断细绳,在剪断瞬时,B的加速度是多少?② 如果在Q处剪断弹簧,在剪断瞬时,B的加速度又是多少?解说:第①问是常规处理。由于“弹簧不会立即发生形变”,故剪断瞬间弹簧弹力维持原值,所以此时B钩码的加速度为零(A的加速度则为2g)。第②问需要我们反省这样一个问题:“弹簧不会立即发生形变”的原因是什么?是A、B两物的惯性,且速度v和位移s不能突变。但在Q点剪断弹簧时,弹簧却是没有惯性的(没有质量),遵从理想模型的条件,弹簧应在一瞬间恢复原长!即弹簧弹力突变为零。答案:0 ;g 。二、牛顿第二定律的应用应用要点:受力较少时,直接应用牛顿第二定律的“矢量性”解题。受力比较多时,结合正交分解与“独立作用性”解题。在难度方面,“瞬时性”问题相对较大。1、滑块在固定、光滑、倾角为θ的斜面上下滑,试求其加速度。解说:受力分析 →&根据“矢量性”定合力方向&→&牛顿第二定律应用答案:gsinθ。思考:如果斜面解除固定,上表仍光滑,倾角仍为θ,要求滑块与斜面相对静止,斜面应具备一个多大的水平加速度?(解题思路完全相同,研究对象仍为滑块。但在第二环节上应注意区别。答:gtgθ。)进阶练习1:在一向右运动的车厢中,用细绳悬挂的小球呈现如图3所示的稳定状态,试求车厢的加速度。(和“思考”题同理,答:gtgθ。)进阶练习2、如图4所示,小车在倾角为α的斜面上匀加速运动,车厢顶用细绳悬挂一小球,发现悬绳与竖直方向形成一个稳定的夹角β。试求小车的加速度。解:继续贯彻“矢量性”的应用,但数学处理复杂了一些(正弦定理解三角形)。分析小球受力后,根据“矢量性”我们可以做如图5所示的平行四边形,并找到相应的夹角。设张力T与斜面方向的夹角为θ,则θ=(90°+ α)- β= 90°-(β-α) & & & & & & & & (1)对灰色三角形用正弦定理,有&=&& & & & & & & & & & & & & & & & & & & &(2)解(1)(2)两式得:ΣF =&最后运用牛顿第二定律即可求小球加速度(即小车加速度)答:&。2、如图6所示,光滑斜面倾角为θ,在水平地面上加速运动。斜面上用一条与斜面平行的细绳系一质量为m的小球,当斜面加速度为a时(a<ctgθ),小球能够保持相对斜面静止。试求此时绳子的张力T 。解说:当力的个数较多,不能直接用平行四边形寻求合力时,宜用正交分解处理受力,在对应牛顿第二定律的“独立作用性”列方程。正交坐标的选择,视解题方便程度而定。解法一:先介绍一般的思路。沿加速度a方向建x轴,与a垂直的方向上建y轴,如图7所示(N为斜面支持力)。于是可得两方程ΣFx&= ma&,即Tx&-&Nx&= maΣFy&= 0&,&即Ty&+ Ny&= mg代入方位角θ,以上两式成为T cosθ-N sinθ = ma & & & & & & & & & && &(1)T sinθ + Ncosθ = mg& & & & & & & & & & & &(2)这是一个关于T和N的方程组,解(1)(2)两式得:T = mgsinθ&+ ma&cosθ解法二:下面尝试一下能否独立地解张力T 。将正交分解的坐标选择为:x——斜面方向,y——和斜面垂直的方向。这时,在分解受力时,只分解重力G就行了,但值得注意,加速度a不在任何一个坐标轴上,是需要分解的。矢量分解后,如图8所示。根据独立作用性原理,ΣFx&= max即:T&-&Gx&= max即:T&-&mg&sinθ&= m acosθ显然,独立解T值是成功的。结果与解法一相同。答案:mgsinθ&+ ma&cosθ思考:当a>ctgθ时,张力T的结果会变化吗?(从支持力的结果N&= mgcosθ-ma sinθ看小球脱离斜面的条件,求脱离斜面后,θ条件已没有意义。答:T = m&。)学生活动:用正交分解法解本节第2题“进阶练习2”进阶练习:如图9所示,自动扶梯与地面的夹角为30°,但扶梯的台阶是水平的。当扶梯以a = 4m/s2的加速度向上运动时,站在扶梯上质量为60kg的人相对扶梯静止。重力加速度g = 10 m/s2,试求扶梯对人的静摩擦力f 。解:这是一个展示独立作用性原理的经典例题,建议学生选择两种坐标(一种是沿a方向和垂直a方向,另一种是水平和竖直方向),对比解题过程,进而充分领会用牛顿第二定律解题的灵活性。答:208N 。3、如图10所示,甲图系着小球的是两根轻绳,乙图系着小球的是一根轻弹簧和轻绳,方位角θ已知。现将它们的水平绳剪断,试求:在剪断瞬间,两种情形下小球的瞬时加速度。解说:第一步,阐明绳子弹力和弹簧弹力的区别。(学生活动)思考:用竖直的绳和弹簧悬吊小球,并用竖直向下的力拉住小球静止,然后同时释放,会有什么现象?原因是什么?结论——绳子的弹力可以突变而弹簧的弹力不能突变(胡克定律)。第二步,在本例中,突破“绳子的拉力如何瞬时调节”这一难点(从即将开始的运动来反推)。知识点,牛顿第二定律的瞬时性。答案:a甲&= gsinθ ;a乙&= gtgθ 。应用:如图11所示,吊篮P挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳被烧断瞬间,P、Q的加速度分别是多少?解:略。答:2g ;0 。三、牛顿第二、第三定律的应用要点:在动力学问题中,如果遇到几个研究对象时,就会面临如何处理对象之间的力和对象与外界之间的力问题,这时有必要引进“系统”、“内力”和“外力”等概念,并适时地运用牛顿第三定律。在方法的选择方面,则有“隔离法”和“整体法”。前者是根本,后者有局限,也有难度,但常常使解题过程简化,使过程的物理意义更加明晰。对N个对象,有N个隔离方程和一个(可能的)整体方程,这(N + 1)个方程中必有一个是通解方程,如何取舍,视解题方便程度而定。补充:当多个对象不具有共同的加速度时,一般来讲,整体法不可用,但也有一种特殊的“整体方程”,可以不受这个局限(可以介绍推导过程)——Σ= m1&+ m2&+ m3&+ … + mn其中Σ只能是系统外力的矢量和,等式右边也是矢量相加。1、如图12所示,光滑水平面上放着一个长为L的均质直棒,现给棒一个沿棒方向的、大小为F的水平恒力作用,则棒中各部位的张力T随图中x的关系怎样?解说:截取隔离对象,列整体方程和隔离方程(隔离右段较好)。答案:N =&x 。思考:如果水平面粗糙,结论又如何?解:分两种情况,(1)能拉动;(2)不能拉动。第(1)情况的计算和原题基本相同,只是多了一个摩擦力的处理,结论的化简也麻烦一些。第(2)情况可设棒的总质量为M ,和水平面的摩擦因素为μ,而F = μMg ,其中l<L ,则x<(L-l)的右段没有张力,x>(L-l)的左端才有张力。答:若棒仍能被拉动,结论不变。若棒不能被拉动,且F = μMg时(μ为棒与平面的摩擦因素,l为小于L的某一值,M为棒的总质量),当x<(L-l),N≡0 ;当x>(L-l),N =&〔x -〈L-l〉〕。应用:如图13所示,在倾角为θ的固定斜面上,叠放着两个长方体滑块,它们的质量分别为m1和m2&,它们之间的摩擦因素、和斜面的摩擦因素分别为μ1和μ2&,系统释放后能够一起加速下滑,则它们之间的摩擦力大小为:A、μ1&m1gcosθ ; & &B、μ2&m1gcosθ ;C、μ1&m2gcosθ ; & &D、μ1&m2gcosθ ;解:略。答:B 。(方向沿斜面向上。)思考:(1)如果两滑块不是下滑,而是以初速度v0一起上冲,以上结论会变吗?(2)如果斜面光滑,两滑块之间有没有摩擦力?(3)如果将下面的滑块换成如图14所示的盒子,上面的滑块换成小球,它们以初速度v0一起上冲,球应对盒子的哪一侧内壁有压力?解:略。答:(1)不会;(2)没有;(3)若斜面光滑,对两内壁均无压力,若斜面粗糙,对斜面上方的内壁有压力。2、如图15所示,三个物体质量分别为m1&、m2和m3&,带滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦均不计,绳子的质量也不计,为使三个物体无相对滑动,水平推力F应为多少?解说:此题对象虽然有三个,但难度不大。隔离m2&,竖直方向有一个平衡方程;隔离m1&,水平方向有一个动力学方程;整体有一个动力学方程。就足以解题了。答案:F =&&。思考:若将质量为m3物体右边挖成凹形,让m2可以自由摆动(而不与m3相碰),如图16所示,其它条件不变。是否可以选择一个恰当的F′,使三者无相对运动?如果没有,说明理由;如果有,求出这个F′的值。解:此时,m2的隔离方程将较为复杂。设绳子张力为T ,m2的受力情况如图,隔离方程为:&= m2a隔离m1&,仍有:T = m1a解以上两式,可得:a =&g最后用整体法解F即可。答:当m1&≤ m2时,没有适应题意的F′;当m1&> m2时,适应题意的F′=&&。3、一根质量为M的木棒,上端用细绳系在天花板上,棒上有一质量为m的猫,如图17所示。现将系木棒的绳子剪断,同时猫相对棒往上爬,但要求猫对地的高度不变,则棒的加速度将是多少?解说:法一,隔离法。需要设出猫爪抓棒的力f ,然后列猫的平衡方程和棒的动力学方程,解方程组即可。法二,“新整体法”。据Σ= m1&+ m2&+ m3&+ … + mn&,猫和棒的系统外力只有两者的重力,竖直向下,而猫的加速度a1&= 0 ,所以:( M + m )g = m·0 + M a1&解棒的加速度a1十分容易。答案:g 。四、特殊的连接体当系统中各个体的加速度不相等时,经典的整体法不可用。如果各个体的加速度不在一条直线上,“新整体法”也将有一定的困难(矢量求和不易)。此时,我们回到隔离法,且要更加注意找各参量之间的联系。解题思想:抓某个方向上加速度关系。方法:“微元法”先看位移关系,再推加速度关系。、1、如图18所示,一质量为M 、倾角为θ的光滑斜面,放置在光滑的水平面上,另一个质量为m的滑块从斜面顶端释放,试求斜面的加速度。解说:本题涉及两个物体,它们的加速度关系复杂,但在垂直斜面方向上,大小是相等的。对两者列隔离方程时,务必在这个方向上进行突破。(学生活动)定型判断斜面的运动情况、滑块的运动情况。位移矢量示意图如图19所示。根据运动学规律,加速度矢量a1和a2也具有这样的关系。(学生活动)这两个加速度矢量有什么关系?沿斜面方向、垂直斜面方向建x 、y坐标,可得:a1y&= a2y& & & & & & &①且:a1y&= a2sinθ & & ②隔离滑块和斜面,受力图如图20所示。对滑块,列y方向隔离方程,有:mgcosθ- N = ma1y& & &③对斜面,仍沿合加速度a2方向列方程,有:Nsinθ= Ma2& & & & & ④解①②③④式即可得a2&。答案:a2&=&&。(学生活动)思考:如何求a1的值?解:a1y已可以通过解上面的方程组求出;a1x只要看滑块的受力图,列x方向的隔离方程即可,显然有mgsinθ= ma1x&,得:a1x&= gsinθ 。最后据a1&=&求a1&。答:a1&=&&。2、如图21所示,与水平面成θ角的AB棒上有一滑套C ,可以无摩擦地在棒上滑动,开始时与棒的A端相距b ,相对棒静止。当棒保持倾角θ不变地沿水平面匀加速运动,加速度为a(且a>gtgθ)时,求滑套C从棒的A端滑出所经历的时间。解说:这是一个比较特殊的“连接体问题”,寻求运动学参量的关系似乎比动力学分析更加重要。动力学方面,只需要隔离滑套C就行了。(学生活动)思考:为什么题意要求a>gtgθ?(联系本讲第二节第1题之“思考题”)定性绘出符合题意的运动过程图,如图22所示:S表示棒的位移,S1表示滑套的位移。沿棒与垂直棒建直角坐标后,S1x表示S1在x方向上的分量。不难看出:S1x&+ b = S cosθ & & & & & & & & & ①设全程时间为t ,则有:S =&at2& & & & & & & & & & & & & ②S1x&=&a1xt2& & & & & & & & & & & & ③而隔离滑套,受力图如图23所示,显然:mgsinθ= ma1x& & & & & & & & & & & &④解①②③④式即可。答案:t =&另解:如果引进动力学在非惯性系中的修正式 Σ+&*&= m&(注:*为惯性力),此题极简单。过程如下——以棒为参照,隔离滑套,分析受力,如图24所示。注意,滑套相对棒的加速度a相是沿棒向上的,故动力学方程为:F*cosθ- mgsinθ= ma相& & & & & & (1)其中F*&= ma & & & & & & & & & & &(2)而且,以棒为参照,滑套的相对位移S相就是b ,即:b = S相&=&a相&t2& & & & & & & & &(3)解(1)(2)(3)式就可以了。第二讲 配套例题选讲教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。例题选讲针对“教材”第三章的部分例题和习题。
第五部分 动量和能量第一讲 基本知识介绍一、冲量和动量1、冲力(F—t图象特征)→&冲量。冲量定义、物理意义冲量在F—t图象中的意义→从定义角度求变力冲量(F对t的平均作用力)2、动量的定义动量矢量性与运算二、动量定理1、定理的基本形式与表达2、分方向的表达式:ΣIx&=ΔPx&,ΣIy&=ΔPy&…3、定理推论:动量变化率等于物体所受的合外力。即=ΣF外&三、动量守恒定律1、定律、矢量性2、条件a、原始条件与等效b、近似条件c、某个方向上满足a或b,可在此方向应用动量守恒定律四、功和能1、功的定义、标量性,功在F—S图象中的意义2、功率,定义求法和推论求法3、能的概念、能的转化和守恒定律4、功的求法a、恒力的功:W = FScosα= FSF&= FS&Sb、变力的功:基本原则——过程分割与代数累积;利用F—S图象(或先寻求F对S的平均作用力)c、解决功的“疑难杂症”时,把握“功是能量转化的量度”这一要点五、动能、动能定理1、动能(平动动能)2、动能定理a、ΣW的两种理解b、动能定理的广泛适用性六、机械能守恒1、势能a、保守力与耗散力(非保守力)→&势能(定义:ΔEp&=&-W保)b、力学领域的三种势能(重力势能、引力势能、弹性势能)及定量表达2、机械能3、机械能守恒定律a、定律内容b、条件与拓展条件(注意系统划分)c、功能原理:系统机械能的增量等于外力与耗散内力做功的代数和。七、碰撞与恢复系数1、碰撞的概念、分类(按碰撞方向分类、按碰撞过程机械能损失分类)碰撞的基本特征:a、动量守恒;b、位置不超越;c、动能不膨胀。2、三种典型的碰撞a、弹性碰撞:碰撞全程完全没有机械能损失。满足——m1v10&+ m2v20&= m1v1&+ m2v2&m1&+&&m2&=&&m1&+&&m2解以上两式(注意技巧和“不合题意”解的舍弃)可得:v1&=&,& v2&=&对于结果的讨论:①当m1&= m2&时,v1&= v20&,v2&= v10&,称为“交换速度”;②当m1&<<&m2&,且v20&= 0时,v1&≈&-v10&,v2&≈&0&,小物碰大物,原速率返回;③当m1&>>&m2&,且v20&= 0时,v1&≈&v10&,v2&≈&2v10&,b、非(完全)弹性碰撞:机械能有损失(机械能损失的内部机制简介),只满足动量守恒定律c、完全非弹性碰撞:机械能的损失达到最大限度;外部特征:碰撞后两物体连为一个整体,故有v1&= v2&=&3、恢复系数:碰后分离速度(v2&-&v1)与碰前接近速度(v10&-&v20)的比值,即:e =&&。根据“碰撞的基本特征”,0&≤&e&≤&1&。当e = 0&,碰撞为完全非弹性;当0&<&e&<&1&,碰撞为非弹性;当e = 1&,碰撞为弹性。八、“广义碰撞”——物体的相互作用1、当物体之间的相互作用时间不是很短,作用不是很强烈,但系统动量仍然守恒时,碰撞的部分规律仍然适用,但已不符合“碰撞的基本特征”(如:位置可能超越、机械能可能膨胀)。此时,碰撞中“不合题意”的解可能已经有意义,如弹性碰撞中v1&= v10&,v2&= v20的解。2、物体之间有相对滑动时,机械能损失的重要定势:-ΔE =&ΔE内&= f滑·S相&,其中S相指相对路程。第二讲 重要模型与专题一、动量定理还是动能定理?物理情形:太空飞船在宇宙飞行时,和其它天体的万有引力可以忽略,但是,飞船会定时遇到太空垃圾的碰撞而受到阻碍作用。设单位体积的太空均匀分布垃圾n颗,每颗的平均质量为m ,垃圾的运行速度可以忽略。飞船维持恒定的速率v飞行,垂直速度方向的横截面积为S ,与太空垃圾的碰撞后,将垃圾完全粘附住。试求飞船引擎所应提供的平均推力F 。模型分析:太空垃圾的分布并不是连续的,对飞船的撞击也不连续,如何正确选取研究对象,是本题的前提。建议充分理解“平均”的含义,这样才能相对模糊地处理垃圾与飞船的作用过程、淡化“作用时间”和所考查的“物理过程时间”的差异。物理过程需要人为截取,对象是太空垃圾。先用动量定理推论解题。取一段时间Δt&,在这段时间内,飞船要穿过体积ΔV = S·vΔt的空间,遭遇nΔV颗太空垃圾,使它们获得动量ΔP&,其动量变化率即是飞船应给予那部分垃圾的推力,也即飞船引擎的推力。&=&&=&&=&&=&&= nmSv2如果用动能定理,能不能解题呢?同样针对上面的物理过程,由于飞船要前进x = vΔt的位移,引擎推力须做功W =&x ,它对应飞船和被粘附的垃圾的动能增量,而飞船的ΔEk为零,所以:W =&ΔMv2即:vΔt =&(n m S·vΔt)v2得到:&=&nmSv2两个结果不一致,不可能都是正确的。分析动能定理的解题,我们不能发现,垃圾与飞船的碰撞是完全非弹性的,需要消耗大量的机械能,因此,认为“引擎做功就等于垃圾动能增加”的观点是错误的。但在动量定理的解题中,由于I =&t&,由此推出的&=&必然是飞船对垃圾的平均推力,再对飞船用平衡条件,的大小就是引擎推力大小了。这个解没有毛病可挑,是正确的。(学生活动)思考:如图1所示,全长L、总质量为M的柔软绳子,盘在一根光滑的直杆上,现用手握住绳子的一端,以恒定的水平速度v将绳子拉直。忽略地面阻力,试求手的拉力F 。解:解题思路和上面完全相同。答:二、动量定理的分方向应用物理情形:三个质点A、B和C ,质量分别为m1&、m2和m3&,用拉直且不可伸长的绳子AB和BC相连,静止在水平面上,如图2所示,AB和BC之间的夹角为(π-α)。现对质点C施加以冲量I ,方向沿BC ,试求质点A开始运动的速度。模型分析:首先,注意“开始运动”的理解,它指绳子恰被拉直,有作用力和冲量产生,但是绳子的方位尚未发生变化。其二,对三个质点均可用动量定理,但是,B质点受冲量不在一条直线上,故最为复杂,可采用分方向的形式表达。其三,由于两段绳子不可伸长,故三质点的瞬时速度可以寻求到两个约束关系。下面具体看解题过程——绳拉直瞬间,AB绳对A、B两质点的冲量大小相等(方向相反),设为I1&,BC绳对B、C两质点的冲量大小相等(方向相反),设为I2&;设A获得速度v1(由于A受合冲量只有I1&,方向沿AB ,故v1的反向沿AB),设B获得速度v2(由于B受合冲量为+,矢量和既不沿AB ,也不沿BC方向,可设v2与AB绳夹角为〈π-β〉,如图3所示),设C获得速度v3(合冲量+沿BC方向,故v3沿BC方向)。对A用动量定理,有:I1&= m1&v1& & & & & & & & & & & & & & & & &①B的动量定理是一个矢量方程:+= m2&,可化为两个分方向的标量式,即:I2cosα-I1&= m2&v2cosβ & & & & & & & & &②I2sinα= m2&v2sinβ & & & & & & & & & & & ③质点C的动量定理方程为:I - I2&= m3&v3& & & & & & & & & & & & & &④AB绳不可伸长,必有v1&= v2cosβ & & & & & ⑤BC绳不可伸长,必有v2cos(β-α) = v3& & &⑥六个方程解六个未知量(I1&、I2&、v1&、v2&、v3&、β)是可能的,但繁复程度非同一般。解方程要注意条理性,否则易造成混乱。建议采取如下步骤——1、先用⑤⑥式消掉v2&、v3&,使六个一级式变成四个二级式:I1&= m1&v1& & & & & & & & & & & & & & & & & & & & &⑴I2cosα-I1&= m2&v1& & & & & & & & & & & & & & & & ⑵I2sinα= m2&v1&tgβ & & & & & & & & & & & & & & & &⑶I - I2&= m3&v1(cosα+ sinαtgβ) & & & & & & & & &⑷2、解⑶⑷式消掉β,使四个二级式变成三个三级式:I1&= m1&v1& & & & & & & & & & & & & & & & & & & & & & & & &㈠I2cosα-I1&= m2&v1& & & & & & & & & & & & & & & & & & & & ㈡I = m3&v1&cosα+ I2& & & & & & & & & & && & & & & & &&&㈢3、最后对㈠㈡㈢式消I1&、I2&,解v1就方便多了。结果为:v1&=&(学生活动:训练解方程的条理和耐心)思考:v2的方位角β等于多少?解:解“二级式”的⑴⑵⑶即可。⑴代入⑵消I1&,得I2的表达式,将I2的表达式代入⑶就行了。答:β= arc tg()。三、动量守恒中的相对运动问题物理情形:在光滑的水平地面上,有一辆车,车内有一个人和N个铅球,系统原来处于静止状态。现车内的人以一定的水平速度将铅球一个一个地向车外抛出,车子和人将获得反冲速度。第一过程,保持每次相对地面抛球速率均为v ,直到将球抛完;第二过程,保持每次相对车子抛球速率均为v ,直到将球抛完。试问:哪一过程使车子获得的速度更大?模型分析:动量守恒定律必须选取研究对象之外的第三方(或第四、第五方)为参照物,这意味着,本问题不能选车子为参照。一般选地面为参照系,这样对“第二过程”的铅球动量表达,就形成了难点,必须引进相对速度与绝对速度的关系。至于“第一过程”,比较简单:N次抛球和将N个球一次性抛出是完全等效的。设车和人的质量为M ,每个铅球的质量为m 。由于矢量的方向落在一条直线上,可以假定一个正方向后,将矢量运算化为代数运算。设车速方向为正,且第一过程获得的速度大小为V1&第二过程获得的速度大小为V2&。第一过程,由于铅球每次的动量都相同,可将多次抛球看成一次抛出。车子、人和N个球动量守恒。0 = Nm(-v) + MV1&得:V1&=&v & & & & & & & & & & & & & & & & & &①第二过程,必须逐次考查铅球与车子(人)的作用。第一个球与(N–1)个球、人、车系统作用,完毕后,设“系统”速度为u1&。值得注意的是,根据运动合成法则,铅球对地的速度并不是(-v),而是(-v + u1)。它们动量守恒方程为:0 = m(-v + u1) +〔M +(N-1)m〕u1得:u1&=第二个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u2&。它们动量守恒方程为:〔M+(N-1)m〕u1&= m(-v + u2) +〔M+(N-2)m〕u2&得:u2&=&&+&第三个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u3&。铅球对地的速度是(-v + u3)。它们动量守恒方程为:〔M+(N-2)m〕u2&= m(-v + u3) +〔M+(N-3)m〕u3得:u3&=&+&&+&以此类推(过程注意:先找uN和uN-1关系,再看uN和v的关系,不要急于化简通分)……,uN的通式已经可以找出:V2&= uN&=&&+&&+&&+ … +&即:V2&=&& & & & & & & & & & & & & & & &②我们再将①式改写成:V1&=&& & & & & & & & & & & & & & & & & & & & ①′不难发现,①′式和②式都有N项,每项的分子都相同,但①′式中每项的分母都比②式中的分母小,所以有:V1&> V2&。结论:第一过程使车子获得的速度较大。(学生活动)思考:质量为M的车上,有n个质量均为m的人,它们静止在光滑的水平地面上。现在车上的人以相对车大小恒为v、方向水平向后的初速往车下跳。第一过程,N个人同时跳下;第二过程,N个人依次跳下。试问:哪一次车子获得的速度较大?解:第二过程结论和上面的模型完全相同,第一过程结论为V1&=&&。答:第二过程获得速度大。四、反冲运动中的一个重要定式物理情形:如图4所示,长度为L、质量为M的船停止在静水中(但未抛锚),船头上有一个质量为m的人,也是静止的。现在令人在船上开始向船尾走动,忽略水的阻力,试问:当人走到船尾时,船将会移动多远?(学生活动)思考:人可不可能匀速(或匀加速)走动?当人中途停下休息,船有速度吗?人的全程位移大小是L吗?本系统选船为参照,动量守恒吗?模型分析:动量守恒展示了已知质量情况下的速度关系,要过渡到位移关系,需要引进运动学的相关规律。根据实际情况(人必须停在船尾),人的运动不可能是匀速的,也不可能是匀加速的,运动学的规律应选择S =&t 。为寻求时间t ,则要抓人和船的位移约束关系。对人、船系统,针对“开始走动→中间任意时刻”过程,应用动量守恒(设末态人的速率为v ,船的速率为V),令指向船头方向为正向,则矢量关系可以化为代数运算,有:0 = MV + m(-v)&即:mv = MV&由于过程的末态是任意选取的,此式展示了人和船在任一时刻的瞬时速度大小关系。而且不难推知,对中间的任一过程,两者的平均速度也有这种关系。即:m&= M& & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & ①设全程的时间为t ,乘入①式两边,得:mt = Mt设s和S分别为人和船的全程位移大小,根据平均速度公式,得:m s = M S & & & & ②受船长L的约束,s和S具有关系:s + S = L & & & & & & & & & & & & & & & & & ③解②、③可得:船的移动距离 S =L(应用动量守恒解题时,也可以全部都用矢量关系,但这时“位移关系”表达起来难度大一些——必须用到运动合成与分解的定式。时间允许的话,可以做一个对比介绍。)另解:质心运动定律人、船系统水平方向没有外力,故系统质心无加速度→系统质心无位移。先求出初态系统质心(用它到船的质心的水平距离x表达。根据力矩平衡知识,得:x =&),又根据,末态的质量分布与初态比较,相对整体质心是左右对称的。弄清了这一点后,求解船的质心位移易如反掌。(学生活动)思考:如图5所示,在无风的天空,人抓住气球下面的绳索,和气球恰能静止平衡,人和气球地质量分别为m和M ,此时人离地面高h 。现在人欲沿悬索下降到地面,试问:要人充分安全地着地,绳索至少要多长?解:和模型几乎完全相同,此处的绳长对应模型中的“船的长度”(“充分安全着地”的含义是不允许人脱离绳索跳跃着地)。答:h 。(学生活动)思考:如图6所示,两个倾角相同的斜面,互相倒扣着放在光滑的水平地面上,小斜面在大斜面的顶端。将它们无初速释放后,小斜面下滑,大斜面后退。已知大、小斜面的质量分别为M和m ,底边长分别为a和b ,试求:小斜面滑到底端时,大斜面后退的距离。解:水平方向动量守恒。解题过程从略。答:(a-b)。进阶应用:如图7所示,一个质量为M ,半径为R的光滑均质半球,静置于光滑水平桌面上,在球顶有一个质量为m的质点,由静止开始沿球面下滑。试求:质点离开球面以前的轨迹。解说:质点下滑,半球后退,这个物理情形和上面的双斜面问题十分相似,仔细分析,由于同样满足水平方向动量守恒,故我们介绍的“定式”是适用的。定式解决了水平位移(位置)的问题,竖直坐标则需要从数学的角度想一些办法。为寻求轨迹方程,我们需要建立一个坐标:以半球球心O为原点,沿质点滑下一侧的水平轴为x坐标、竖直轴为y坐标。由于质点相对半球总是做圆周运动的(离开球面前),有必要引入相对运动中半球球心O′的方位角θ来表达质点的瞬时位置,如图8所示。由“定式”,易得:x =&Rsinθ & & & & & & & & & ①而由图知:y = Rcosθ & & & & & & & &②不难看出,①、②两式实际上已经是一个轨迹的参数方程。为了明确轨迹的性质,我们可以将参数θ消掉,使它们成为:&+&&= 1这样,特征就明显了:质点的轨迹是一个长、短半轴分别为R和R的椭圆。五、功的定义式中S怎么取值?在求解功的问题时,有时遇到力的作用点位移与受力物体的(质心)位移不等,S是取力的作用点的位移,还是取物体(质心)的位移呢?我们先看下面一些事例。1、如图9所示,人用双手压在台面上推讲台,结果双手前进了一段位移而讲台未移动。试问:人是否做了功?2、在本“部分”第3页图1的模型中,求拉力做功时,S是否可以取绳子质心的位移?3、人登静止的楼梯,从一楼到二楼。楼梯是否做功?4、如图10所示,双手用等大反向的力F压固定汽缸两边的活塞,活塞移动相同距离S,汽缸中封闭气体被压缩。施力者(人)是否做功?在以上四个事例中,S若取作用点位移,只有第1、2、4例是做功的(注意第3例,楼梯支持力的作用点并未移动,而只是在不停地交换作用点),S若取物体(受力者)质心位移,只有第2、3例是做功的,而且,尽管第2例都做了功,数字并不相同。所以,用不同的判据得出的结论出现了本质的分歧。面对这些似是而非的“疑难杂症”,我们先回到“做功是物体能量转化的量度”这一根本点。第1例,手和讲台面摩擦生了热,内能的生成必然是由人的生物能转化而来,人肯定做了功。S宜取作用点的位移;第2例,求拉力的功,在前面已经阐述,S取作用点位移为佳;第3例,楼梯不需要输出任何能量,不做功,S取作用点位移;第4例,气体内能的增加必然是由人输出的,压力做功,S取作用点位移。但是,如果分别以上四例中的受力者用动能定理,第1例,人对讲台不做功,S取物体质心位移;第2例,动能增量对应S取L/2时的值——物体质心位移;第4例,气体宏观动能无增量,S取质心位移。(第3例的分析暂时延后。)以上分析在援引理论知识方面都没有错,如何使它们统一?原来,功的概念有广义和狭义之分。在力学中,功的狭义概念仅指机械能转换的量度;而在物理学中功的广义概念指除热传递外的一切能量转换的量度。所以功也可定义为能量转换的量度。一个系统总能量的变化,常以系统对外做功的多少来量度。能量可以是机械能、电能、热能、化学能等各种形式,也可以多种形式的能量同时发生转化。由此可见,上面分析中,第一个理论对应的广义的功,第二个理论对应的则是狭义的功,它们都没有错误,只是在现阶段的教材中还没有将它们及时地区分开来而已。而且,我们不难归纳:求广义的功,S取作用点的位移;求狭义的功,S取物体(质心)位移。那么我们在解题中如何处理呢?这里给大家几点建议:&1、抽象地讲“某某力做的功”一般指广义的功;2、讲“力对某物体做的功”常常指狭义的功;3、动能定理中的功肯定是指狭义的功。当然,求解功地问题时,还要注意具体问题具体分析。如上面的第3例,就相对复杂一些。如果认为所求为狭义的功,S取质心位移,是做了功,但结论仍然是难以令人接受的。下面我们来这样一个处理:将复杂的形变物体(人)看成这样一个相对理想的组合:刚性物体下面连接一压缩的弹簧(如图11所示),人每一次蹬梯,腿伸直将躯体重心上举,等效为弹簧将刚性物体举起。这样,我们就不难发现,做功的是人的双腿而非地面,人既是输出能量(生物能)的机构,也是得到能量(机械能)的机构——这里的物理情形更象是一种生物情形。本题所求的功应理解为广义功为宜。以上四例有一些共同的特点:要么,受力物体情形比较复杂(形变,不能简单地看成一个质点。如第2、第3、第4例),要么,施力者和受力者之间的能量转化不是封闭的(涉及到第三方,或机械能以外的形式。如第1例)。以后,当遇到这样的问题时,需要我们慎重对待。(学生活动)思考:足够长的水平传送带维持匀速v运转。将一袋货物无初速地放上去,在货物达到速度v之前,与传送带的摩擦力大小为f ,对地的位移为S 。试问:求摩擦力的功时,是否可以用W = fS ?解:按一般的理解,这里应指广义的功(对应传送带引擎输出的能量),所以“位移”取作用点的位移。注意,在此处有一个隐含的“交换作用点”的问题,仔细分析,不难发现,每一个(相对皮带不动的)作用点的位移为2S&。(另解:求货物动能的增加和与皮带摩擦生热的总和。)答:否。(学生活动)思考:如图12所示,人站在船上,通过拉一根固定在铁桩的缆绳使船靠岸。试问:缆绳是否对船和人的系统做功?解:分析同上面的“第3例”。答:否。六、机械能守恒与运动合成(分解)的综合物理情形:如图13所示,直角形的刚性杆被固定,水平和竖直部分均足够长。质量分别为m1和m2的A、B两个有孔小球,串在杆上,且被长为L的轻绳相连。忽略两球的大小,初态时,认为它们的位置在同一高度,且绳处于拉直状态。现无初速地将系统释放,忽略一切摩擦,试求B球运动L/2时的速度v2&。模型分析:A、B系统机械能守恒。A、B两球的瞬时速度不等,其关系可据“第三部分”知识介绍的定式(滑轮小船)去寻求。(学生活动)A球的机械能是否守恒?B球的机械能是否守恒?系统机械能守恒的理由是什么(两法分析:a、“微元法”判断两个WT的代数和为零;b、无非弹性碰撞,无摩擦,没有其它形式能的生成)?由“拓展条件”可以判断,A、B系统机械能守恒,(设末态A球的瞬时速率为v1&)过程的方程为:m2g&=&&+&& & & & & & ①在末态,绳与水平杆的瞬时夹角为30°,设绳子的瞬时迁移速率为v ,根据“第三部分”知识介绍的定式,有:v1&= v/cos30°, v2&= v/sin30°两式合并成:v1&= v2&tg30°= v2/& & &②解①、②两式,得:v2&=&七、动量和能量的综合(一)物理情形:如图14所示,两根长度均为L的刚性轻杆,一端通过质量为m的球形铰链连接,另一端分别与质量为m和2m的小球相连。将此装置的两杆合拢,铰链在上、竖直地放在水平桌面上,然后轻敲一下,使两小球向两边滑动,但两杆始终保持在竖直平面内。忽略一切摩擦,试求:两杆夹角为90°时,质量为2m的小球的速度v2&。模型分析:三球系统机械能守恒、水平方向动量守恒,并注意约束关系——两杆不可伸长。(学生活动)初步判断:左边小球和球形铰链的速度方向会怎样?设末态(杆夹角90°)左边小球的速度为v1(方向:水平向左),球形铰链的速度为v(方向:和竖直方向夹θ角斜向左),对题设过程,三球系统机械能守恒,有:mg( L-L) =&m&+&mv2&+&2m& & &①三球系统水平方向动量守恒,有:mv1&+ mvsinθ= 2mv2& & & & & & & & ②左边杆子不形变,有:v1cos45°= vcos(45°-θ) & & & & &③右边杆子不形变,有:vcos(45°+θ) = v2cos45° & & & & ④四个方程,解四个未知量(v1&、v2&、v和θ),是可行的。推荐解方程的步骤如下——1、③、④两式用v2替代v1和v ,代入②式,解θ值,得:tgθ= 1/4&2、在回到③、④两式,得:v1&=&v2&, & v =&v2&3、将v1&、v的替代式代入①式解v2即可。结果:v2&=&(学生活动)思考:球形铰链触地前一瞬,左球、铰链和右球的速度分别是多少?解:由两杆不可形变,知三球的水平速度均为零,θ为零。一个能量方程足以解题。答:0 、&、0 。(学生活动)思考:当两杆夹角为90°时,右边小球的位移是多少?解:水平方向用“反冲位移定式”,或水平方向用质心运动定律。答:&。进阶应用:在本讲模型“四、反冲……”的“进阶应用”(见图8)中,当质点m滑到方位角θ时(未脱离半球),质点的速度v的大小、方向怎样?解说:此例综合应用运动合成、动量守恒、机械能守恒知识,数学运算比较繁复,是一道考查学生各种能力和素质的难题。据运动的合成,有:&=&&+&&=&&-&其中必然是沿地面向左的,为了书写方便,我们设其大小为v2&;必然是沿半球瞬时位置切线方向(垂直瞬时半径)的,设大小为v相&。根据矢量减法的三角形法则,可以得到(设大小为v1)的示意图,如图16所示。同时,我们将v1的x、y分量v1x和v1y也描绘在图中。由图可得:v1y&=(v2&+ v1x)tgθ & & & & & & & & & & & & & & & & ①质点和半球系统水平方向动量守恒,有:Mv2&= mv1x& & & & & & & & &②对题设过程,质点和半球系统机械能守恒,有:mgR(1-cosθ) =&M&+&m&,即:mgR(1-cosθ) =&M&+&m(&+&) & & & & & & & & & & ③三个方程,解三个未知量(v2&、v1x&、v1y)是可行的,但数学运算繁复,推荐步骤如下——1、由①、②式得:v1x&=&v2&, & & & &v1y&= (tgθ) v2&&2、代入③式解v2&,得:v2&=3、由&=&&+&解v1&,得:v1&=v1的方向:和水平方向成α角,α= arctg&= arctg()这就是最后的解。〔一个附属结果:质点相对半球的瞬时角速度 ω =&&=&&。〕八、动量和能量的综合(二)物理情形:如图17所示,在光滑的水平面上,质量为M = 1 kg的平板车左端放有质量为m = 2 kg的铁块,铁块与车之间的摩擦因素μ= 0.5 。开始时,车和铁块以共同速度v = 6 m/s向右运动,车与右边的墙壁发生正碰,且碰撞是弹性的。车身足够长,使铁块不能和墙相碰。重力加速度g = 10 m/s2&,试求:1、铁块相对车运动的总路程;2、平板车第一次碰墙后所走的总路程。模型分析:本模型介绍有两对相互作用时的处理常规。能量关系介绍摩擦生热定式的应用。由于过程比较复杂,动量分析还要辅助以动力学分析,综合程度较高。由于车与墙壁的作用时短促而激烈的,而铁块和车的作用是舒缓而柔和的,当两对作用同时发生时,通常处理成“让短时作用完毕后,长时作用才开始”(这样可以使问题简化)。在此处,车与墙壁碰撞时,可以认为铁块与车的作用尚未发生,而是在车与墙作用完了之后,才开始与铁块作用。规定向右为正向,将矢量运算化为代数运算。车第一次碰墙后,车速变为-v ,然后与速度仍为v的铁块作用,动量守恒,作用完毕后,共同速度v1&=&&=&&,因方向为正,必朝墙运动。(学生活动)车会不会达共同速度之前碰墙?动力学分析:车离墙的最大位移S =&,反向加速的位移S′=&,其中a = a1&=&,故S′< S ,所以,车碰墙之前,必然已和铁块达到共同速度v1&。车第二次碰墙后,车速变为-v1&,然后与速度仍为v1的铁块作用,动量守恒,作用完毕后,共同速度v2&=&&=&&=&,因方向为正,必朝墙运动。车第三次碰墙,……共同速度v3&=&&=&,朝墙运动。……以此类推,我们可以概括铁块和车的运动情况——铁块:匀减速向右→匀速向右→匀减速向右→匀速向右……平板车:匀减速向左→匀加速向右→匀速向右→匀减速向左→匀加速向右→匀速向右……显然,只要车和铁块还有共同速度,它们总是要碰墙,所以最后的稳定状态是:它们一起停在墙角(总的末动能为零)。1、全程能量关系:对铁块和车系统,-ΔEk&=ΔE内&,且,ΔE内&= f滑&S相&,即:(m + M)v2&= μmg·S相&代入数字得:S相&= 5.4 m2、平板车向右运动时比较复杂,只要去每次向左运动的路程的两倍即可。而向左是匀减速的,故第一次:S1&=&第二次:S2&=&&=&第三次:S3&=&&=&……n次碰墙的总路程是:ΣS = 2( S1&+ S2&+ S3&+ … + Sn&)=&( 1 +&&+&&+ … +&&)& =&( 1 +&&+&&+ … +&&)碰墙次数n→∞,代入其它数字,得:ΣS = 4.05 m(学生活动)质量为M 、程度为L的木板固定在光滑水平面上,另一个质量为m的滑块以水平初速v0冲上木板,恰好能从木板的另一端滑下。现解除木板的固定(但无初速),让相同的滑块再次冲上木板,要求它仍能从另一端滑下,其初速度应为多少?解:由第一过程,得滑动摩擦力f =&&。第二过程应综合动量和能量关系(“恰滑下”的临界是:滑块达木板的另一端,和木板具有共同速度,设为v ),设新的初速度为m&=( m + M )vm&-&( m + M )v2&= fL解以上三式即可。答:=&v0&。第三讲 典型例题解析教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。例题选讲针对“教材”第七、第八章的部分例题和习题。

我要回帖

更多关于 会计科目表及详细解释 的文章

 

随机推荐