ucc gnd t/r+ 各是r.t.什么意思思

ucc3801_图文_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
上传于||文档简介
&&T​I​公​司​P​W​M
阅读已结束,如果下载本文需要使用1下载券
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,查找使用更方便
还剩22页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢开关电源&器件
第四部分:其它电源控制芯片及其应用电路
第三部分中,结合不二越机器人,我们分析了M51995芯片及其应用电路。实际上,目前流行的开关电源控制芯片有很多,许多厂商都生产了自己的系列芯片。适当了解这些芯片及其应用方法,对我们全面掌握开关电源这门技术是必要的。
第一节:UC1864、UC3842芯片及其应用
UC系列开关电源芯片是Unitorde公司产品。
&4-1-1.UC1864芯片
一.管脚排列
该芯片采用16脚封装,管脚排列如图4-1所示。
& 5V:内部5V引出端。
& +:误差放大器同相输入端。
& -:误差放大器反相输入端。
& Ur:E/A(误差放大器)输出端。
& SGnd:信号地。
Ra、Rm、Cv:压控振荡器的外接阻容端。Cv为振荡电容,Rm决定最小频率,Ra决定最大频率/最小频率。
图4-1:UC1864管脚
RT/CT:瞬时定时器的外接阻容端。
ZERO:零点比较器的零点检测信号输入端。
OUT1:输出端1。
OUT2:输出端2。
PGnd:电源地。
Vcc:输入电源端,通常取12-20VDC。
FAULT:保护电路输入端。
SVREF:软启动及基准电压端。
其实,UC1861-UC1868是Unitorde公司设计的ZVS、ZCS控制芯片,彼此之间的差别在输出电压、欠压锁定阈值等的不同。其管脚定义都是一致的。
二.主要性能特点
1.脉冲宽度固定而频率可调(PFM)。二输出端可以并联使用。
2.ZVS型控制器。
3.压控振荡器,频率10kHz-1MHz,一般使用50-500kHz。
4.有过压、过流、欠压等保护,保护时拉低两个输出成低电平。
5.通电软启动功能。
6.精度1%。
7.低启动电流,典型值150uA。
8.双输出,1A,FET驱动。
三.工作原理
故障锁存器
和延时锁存器
故障比较器
零点比较器
误差放大器
图4-2:UC1864内部结构原理图
芯片内部包括误差放大器、压控振荡器、控制逻辑器、输出级、欠压锁定器、5VDC电压发生器、故障比较器、故障锁存器、延迟锁存器、零点比较器等。
误差放大器:同相端接反馈电压信号,反相端接SVREF软基准电源(5VDC)。误差放大器输出Ur作为压控振荡器的控制电压,用来调节振荡频率。
压控振荡器:振荡频率中心值和Ur成负线性关系。Ra决定了最大/最小频率比值,Rm决定最小频率,Cv为振荡电容。
零点比较器:信号ZERO电压取自开关管的压降,在其下降沿通过0.5VDC时,控制关断输出级。
故障比较器:故障比较器、故障锁存器、延迟锁存器构成故障保护电路。在外电路故障信号超过3V时,开始保护,使输出为低电平。不用时,FAULT脚可以接地。
欠压锁定电路:用于芯片启动或者故障发生后重新启动时的软启动操作。欠压锁定门槛电压为8V(通)/7V(断),具有滞回特性。在启动时,如果Vcc低于阈值,则强制输出为低电平。当Vcc高于阈值时,5VDC发生器开始工作,电路开始进入工作状态。
输出级:有两个输出级。图腾柱输出,1A。这两个输出可以并联使用,使峰值电流达到2A。
四.应用实例
这里给出UC1864的应用实例原理图。
图4-3:UC1864构成的正激ZVS开关电源电路
这是一个谐振式ZVS正激隔离电源电路。隔离变压器前的Lr、Cr元件为谐振元件,二者构成M型并联谐振。输出电路经过VD2半波整流,L1、C3、C2滤波,送负载使用。输出L1、C3滤波前的二极管VD3为续流二极管。
芯片的两个输出被并联,共同驱动MOSFET开关管。
故障端被接地,没有使用。
输出电压被引回误差比较器输入+端,作为反馈信号。Vcc上方的二极管VD1限制了反馈信号最大值不能超过Vcc+0.7VDC。Ur并联到-端,成为跟随电路,-端前面的电容C4具有微分作用。
MOS开关管DS之间压降被R6、R7分压后取回做ZERO信号,以控制开关管的零压关断。由于谐振电感Lr的作用,开关管的开通是在零电流下完成的。开关管的并联电容C7用于钳位。
晶体管T用于在过压时(采样点超过5+0.7VDC),瞬时把ZERO点电位拉到0.3VDC,使开关管关断。
&4-1-2.UC3842芯片
一.管脚排列
图4-4:UC3842管脚图
COMP:误差放大器输出。
UFB:反馈电压输入端。它与内部2.5VDC基准电源比较,产生误差电压来控制调节脉冲宽度。
ISENSE:接电感电流传感器。当采样电压大于1VDC时,缩小脉冲宽度,使电源处于断续工作状态。
RT/CT:定时阻容端。频率f=1.8/(CTRT)。
OUTPUT:输出端。
Vcc:电源。10-13VDC,关闭电压10VDC。
REF:内部基准电源输出,5VDC+/-0.1VDC,50mA。
二.主要特性
用于20-50W的小功率开关电源,管脚少,电路简单。
1.单输出级,可以驱动MOS、晶体管。
2.PWM芯片。
3.工作频率500kHz。
4.低启动和工作电流,启动电流小于1mA,工作电流15mA。
5.大电流图腾柱输出,1A。
6.带欠压封锁保护。
三.芯片原理
内部框图如图4-5。
误差放大器
图4-5:UC3842电源控制芯片原理框图
内部包括振荡器、误差放大器、电流比较器、PWM锁存、5VDC基准电源、输出电路等。
5VDC基准电源:内部电源,经衰减得到2.5VDC作为误差比较器的比较基准。该电源还可以提供外部5VDC/50mA。
振荡器:产生方波振荡。RT接在4、8(REF)脚之间,CT接4、5(GND)之间。频率f=1.8/(CTRT)。最大500kHz。
&&误差放大器:由UFB端输入的反馈电压和2.5VDC做比较,误差电压COMP用于调节脉冲宽度。COMP端引出接外部RC网络,以改变增益和频率特性。
输出电路:图腾柱输出结构,电路1A,驱动MOS管及双极型晶体管。
电流取样比较器:3脚ISENSE用于检测开关管电流,可以用电阻或电流互感器采样,当VISENSE&1VDC时,关闭输出脉冲,使开关管关断。这实际上是一个过流保护电路。
欠压锁定电路UVLO:开通阈值16VDC,关闭阈值10VDC。具有滞回特性。
PWM锁存电路:保证每一个控制脉冲作用不超过一个脉冲周期,即所谓逐脉冲控制。
另外,UCC与GND之间的稳压管用于保护,防止器件损坏。
四.应用电路
图4-6:UC3842控制的反激式开关电源
这是一个反激式开关电源原理图,控制芯片即UC3842。
这个电源的输出电压等级有三种:5VDC、+12VDC、-12VDC。
该电路变换器同样是一个降压型硬开关电路。由单管驱动隔离变压器主绕组,C2、R3可以提供变压器原边泄放通路。输出经整流、滤波送负载。
Vcc电源由R2从原边电压Vi提供。Vcc同时也作为辅助反馈绕组的反馈电压。
电路振荡器频率由RT、CT决定。按规定,CT接RT/CT与地之间,RT接RT/CT与VREF之间。频率f=1.8/(CTRT)。
反馈比较电路信号是从辅助绕组经过VD1、VD2、C3、C4等整流滤波后得到的Vcc分压提取的。C6、R7构成信号的有源滤波。
开关管电流被R10取样后,经R9、C7滤波,送ISENSE端,当超过阈值1VDC时,确认过载,关断电源输出。
芯片输出部分由Vout驱动单MOSFET管,C8、VD3对开关管有电压钳位作用。
可以看出,这个电路是个极为典型的普通硬开关电路。UC3842和M51995属于同一类控制芯片。
第二节:TL494芯片及个人计算机电源
&4-2-1.TL494芯片
这是一个应用极为广泛的控制器件,在个人PC电源中,基本使用的都是这个芯片。它是由TI公司生产的。
一.芯片管脚定义
TL494是16脚芯片。
补偿/PWM比较输入
死区时间控制
图4-7:TL494管脚排列
1脚/同相输入:误差放大器1同相输入端。
2脚/反相输入:误差放大器1反相输入端。
3脚/补偿/PWM比较输入:接RC网络,以提高稳定性。
4脚/死区时间控制:输入0-4VDC电压,控制占空比在0-45%之间变化。同时该因脚也可以作为软启动端,使脉宽在启动时逐步上升到预定值。
5脚/CT:振荡器外接定时电阻。
6脚/RT:振荡器外接定时电容。振荡频率:f=1/RTCT。
7脚/GND:电源地。
8脚/C1:输出1集电极。
9脚/E1:输出1发射极。
10脚/E2:输出2发射极。
11脚/C2:输出2集电极。
12脚/Vcc:芯片电源正。7-40VDC。
13脚/输出控制:输出方式控制,该脚接地时,两个输出同步,用于驱动单端电路。接高电平时,两个输出管交替导通,可以用于驱动桥式、推挽式电路的两个开关管。
14脚/VREF:5VDC电压基准输出。
15脚/反相输入:误差放大器2反相输入端。
16脚/同相输入:误差放大器2同相输入端。
二.基本特性
1.具有两个完整的脉宽调制控制电路,是PWM芯片。
2.两个误差放大器。一个用于反馈控制,一个可以定义为过流保护等保护控制。
3.带5VDC基准电源。
4.死区时间可以调节。
5.输出级电流500mA。
6.输出控制可以用于推挽、半桥或单端控制。
7.具备欠压封锁功能。
三.结构原理
图4-8给出了TL494的内部原理框图。
基准稳压器
4死区时间控制
16同相输入
15反相输入
3补偿/PWM比较输入
死区时间比较器
13输出控制
图4-8:TL494内部原理框图
芯片内部电路包括振荡器、两个误差比较器、5VDC基准电源、死区时间比较器、欠压封锁电路、PWM比较器、输出电路等。
1.振荡器:
提供开关电源必须的振荡控制信号,频率由外部RT、CT决定。这两个元件接在对应端与地之间。取值范围:RT:5-100k,CT:0.001-0.1uF。
振荡频率:f=1/RTCT。
形成的信号为锯齿波。最大频率可以达到500kHz。
2.死区时间比较器:
这一部分用于通过0-4VDC电压来调整占空比。当4脚预加电压抬高时,与振荡锯齿波比较的结果,将使得D触发器CK端保持高电平的时间加宽。该电平同时经过反相,使输出晶体管基极为低,锁死输出。4脚电位越高,死区时间越宽,占空比越小。
由于预加了0.12VDC,所以,限制了死区时间最小不能小于4%,即单管工作时最大占空比96%,推挽输出时最大占空比为48%。
振荡器5脚信号
死区封锁时间
图4-9:死区时间比较器单独起作用时的波形
图4-9给出了死区时间比较器单独作用时的工作相关波形。
3.PWM比较器及其调节过程:
由两个误差放大器输出及3脚(PWM比较输入)控制。
当3端电压加到3.5VDC时,基本可以使占空比达到0,作用和4脚类似。但此脚真正的作用是外接RC网络,用做误差放大器的相位补偿。
常规情况下,在误差放大器输出抬高时,增加死区时间,缩小占空比;反之,占空比增加。作用过程和4脚的死区控制相同,从而实现反馈的PWM调节。0.7VDC的电压垫高了锯齿波,使得PWM调节后的死区时间相对变窄。
如果把3脚比做4脚,则PWM比较器的作用波形和图4-9类似。然而,该比较器的占空比调节,要在死区时间比较器的限制范围内起作用。
单管工作方式时,VCK直接控制输出,输出开关频率与振荡器相同。当13脚电位为高时,封锁被取消,触发器的Q、Q非端分别控制两个输出管轮流导通,频率是单管方式的一半。
*手册里给出的芯片原理示意图中,逻辑上是不完整的。特别是输出控制电路,双管轮流工作的逻辑及占空比调节没有准确表述,分析时要注意。
4.5VDC基准电源:
这个5VDC基准电源用于提供芯片需要的偏置电流。如13脚接高电平时,及误差放大器等可以使用它。基准电源精度5%,电流能力10mA,温度范围0-70度。
5.误差放大器:
两个误差放大器用于电源电压反馈和过流保护。
这两个放大器以或的关系,同时接到PWM比较器同相输入端。反馈信号比较后的输出,送PWM比较器,以和锯齿波比较,进行PWM调节。
由于放大器是开环的,增益达到95dB。加之输出点3被引出,使用时,设计者可以根据需要灵活使用。
6.UC封锁电路:
用于欠压封锁,当Vcc低于4.9VDC,或者内部电源低于3.5VDC时,CK端被钳位为高电平,从而使输出封锁,达到保护作用。
7.输出电路:
输出电路有两个输出晶体管,单管电流500mA。其工作状态由13脚(输出控制)来决定。
当13脚接低电平时,通过与门封锁了D触发器翻转信号输出,此时两个晶体管状态由PWM比较器及死区时间比较器直接控制,二者完全同步,用于控制单管开关电源。当然,此时两个输出也允许并联使用,以获得较大的驱动电流。
当13脚接高电平时,D触发器起作用,两个晶体管轮流导通,用于驱动推挽或桥式变换器。
&4-2-2.个人计算机电源电路
与一般开关电源相同,个人计算机电源也分为输入电路、变换器、输出电路及控制电路四个主体部分。
传统的计算机电源电路使用两个GTR作为功率开关器件,并构成半桥电路拓补。控制电路与变换器,变换器与输出电路都采用了变压器隔离。
图4-10是一个典型的计算机电源的原理图。
一.输入电路
图4-11:个人计算机电源的输入电路
输入电路从220VAC电源接入,经过C1、R1、T1、C4、T6、C2、C3等过滤环节,以抑制高频谐波干扰及浪涌。T1、T6还有降压作用。
4管全波桥进行整流,输出直流电压。经过T平波,送变换器电路。
C5、C6的中间引出线用于变换器半桥开关电路的公用主通路,C5、C6、R2、R3同时提供半桥开关交替工作时必须的电流通道。这一部分实际属于后面的变换器电路。
NTCR1为负温度系数热敏电阻,用于温度补偿。压敏电阻Z1、过流电阻Z2分别用于过压、过流保护。
上部开关230/115V用于230V和115V进口电源转换。
二.变换器电路
图4-12:计算机电源的变换器电路
上图是电源的变换器部分。参照原来我们介绍的半桥式拓补结构(如图4-13),我们发现,这实际上是个半桥式隔离变换器。
图4-13:半桥式隔离开关变换器
其轮换过程是:半周1为Ui—Q1—T2-3—T3—C7&—C6—Ui,半周2为Ui—C5—C7—T3—T2-3—Q2—Ui。由这个过程可知,C5、C6、C7两个半周中,轮流处于充放电状态。R2、R3作为C5、C6的并联电阻,也参与换流过程。
两个管子的基极偏置由脉冲变压器T2-1、T2-2分别提供,这两个脉冲变压器是由控制电路控制的。脉冲变压器的电压脉冲经过整流,再经R6/R7、R10/R11分压,送晶体管基极。
C9、C10用于二极管两侧电压钳位,保护二极管不被损坏。D1、D2用于两管同时关断期间的续流,防止损坏晶体管。C8、R4用于变压器泄放通路,防止管子全部关断时过压。
三.输出电路
图4-14给出了电源的输出电路。
(一)、主输出通路及+5V、-5V、+12V、-12V
该电路T3为变压器原边,受半桥变换器电路控制。变压器中心抽头被接地,A、B、C、D依次提供+12V、+5V、-5V、-12V等的交流输入电源。通过不同变比的隔离变压器付边抽头,产生了+5V、-5V、+12V、-12V、3.3V等多等级电源输出。
这些电源全部采用双管全波整流。虚线内为平波电抗器,L1-C30、L2-C37、L3-C38、L4-C39、C36等用于滤波。
C25、R49用于变压器副边去耦。
+12VDC、+5VDC输出被引回,作为电压反馈信号,送回控制电路,构成负反馈,以实现PWM调节。
(二)、+3.3V电路
+3.3VDC电源依靠独立的反馈调节电路来实现稳压。
由于L6绕组是反激的,其整流桥前端交流输入电压为:
Ui3.3=UBC-UL6-Uf3.3
其中Uf3.3是来自于Q13集电极的反馈信号经隔离二极管D32后获得。
3.3V输出信号经过953R、R76分压,控制TL431基准电源输入。TL431输出用于基极电阻R74前的电平钳位,作为比较基准。R72提供基准电源及基极偏置电流。R73、C33用于431芯片的相位补偿。Q13集电极电位经过去耦电容(10nF)及隔离二极管D32,送回整流桥前端,正好形成负反馈,达到稳压的目的。
图4-14:计算机电源的输出电路
四.控制电路
这个电路(图4-15)使用了两个集成芯片,TL494和LM393。TL494是电源控制芯片,LM393为双比较器芯片。下面分解分析各单元的原理。
图4-15:计算机电源的控制电路
(一)启动电路
变压器T6的输入电源为输入电路的输出直流Ui,变压后,从中心抽头引出,经D30整流,送12脚Vcc。同时+12VDC输出经过隔离二极管D、电容C21去耦,送回12脚Vcc。
T6、D30仅能提供电源启动时的芯片偏置。一旦开始工作,电源将由+12VDC经D、C21供电。因此,这是一个自激型电源电路。
(二)振荡电路
通过芯片TL494的5脚外接电容C11(1.5nF)和6脚外接电阻R16(12k),确定了该电源的振荡频率为:
f=1/RTCT=1/(12x103x1.5x10-9)≈55.6KHz。
+12VDC反馈
TL494/+5VDC基准
(三)电压反馈电路
图4-16:电压反馈电路
根据局部电路,加以整理,得到上面的电压反馈电路。可以看出,系统从+12V、+5V分别引回反馈信号,做加法运算后送比较器1的同相端,作为反馈。
补偿端3和反相端2之间外接了R18-C1,构成PI调节器。
输出反馈电压越高,上面电路的3脚输出越高,使得芯片输出死区越宽,从而降低占空比,进而降低电源电压;反之亦然。这样就实现了电源电压的负反馈调节过程。
(四)输出控制电路
图4-17:电压反馈电路
TL494的13脚输出控制被直接接到芯片+5VDC参考电源,输出电路工作在双管驱动方式。
8、11脚为芯片两个输出的集电极,接外部晶体管Q3、Q4的基极。R13、R14即作为Q3、Q4的基极偏置,也是芯片输出晶体管的上拉电阻。Q3、Q4分别驱动脉冲变压器T2的两个原边绕组,对应的两个副边绕组T2-1、T2-2驱动变换器的两个半桥晶体管。
Q3、Q4的两个并联二极管用于电路断电时的续流,防止高压损坏晶体管。
D7、D8构成直流通路,是偏置电路的一部分,并有电平移动作用;由于发射极被垫高,使得Q3、Q4可以可靠关断。C11用于构成交流通路,可提高交流增益,同时对二极管两端有电压钳位作用,避免损坏二极管。
(五)过压保护电路
去TL494死区时间控制(4脚)
来自+12V电路
去PS-ON电路
图4-18:过压保护电路
图中,+5V、-5V、+3.3V、-12V在左侧构成加法电路结构,经D9、D27隔离后,送三极管Q6基极。ZD1、ZD3用来设置比较门槛。如果出现过压,Q6将饱和导通,把Q5基极拉到地电位,Q5饱和导通。此时,一个高电平(约4VDC)通过Q5管被送到TL494死区时间控制端(4脚),TL494输出因死去接近100%而被封锁。
+12V经过D、D15、R45、D14被送到Q7基极前端,当过压时,Q7饱和导通,促使Q5基极为低电平,Q5也饱和导通。这样,+5V电源就通过Q5送到TL494死区时间控制端(4脚),使芯片输出封锁。
D12、R30把Q5集电极电位引回Q6基极,有正反馈作用,可以加快晶体管的翻转速度,使电源在过压时快速反应。
D13被用于向PS-ON电路提供一个偏置。
(六)第二电源电路
去TL494/Vcc
去POWERGOOD电路
去PS-ON电路
图4-19:第二电源电路
第二电源无论整个电源是否开启,只要市电有输入,就处于工作状态。T6的原边电路实际上是个振荡器,其振荡经T6变压器变压后输出。
当送电时,Q12集电极通过T6原边,基极通过R55、R56获得偏置,而进入导通状态。T6辅助绕组电动势上正、下负,电流(向下)逐步增加,并经C3、R56、Q12基极对C3反向充电。Q12进入饱和状态。随着T6的电流达到最大值,并开始减小,大多数开始反向。这时,T6电动势上负下正,和电容反向充电后的上负下正电压叠加,加到Q12基极,使其截止。接着,C3开始向T6辅助绕组放电,T6电流减小逐步过零,电动势又变成上正下负,Q12基极电位重新抬高直至饱和导通。
D28、C19、R57及D31、C32、R58用于变压器绕组的释放回路,稳压管用于抬高Q12基极翻转电压,以调节翻转周期。
输出分两路:一路经过D30整流后送TL494做Vcc电源,一旦T494启动,其本身5VDC开始工作,作为芯片所需要的5V偏置。另一路经D29送后面的三端电源器件78L05,生成5VDC电源。
C36用于保护二极管D29。其后是标准的三端电源电路。
辅助电源如果丢失,计算机休眠后主板将无法唤醒电源重新启动。
(七)PS-ON电路
这部分用于计算机的唤醒。当主板休眠时,PS-ON为3.6V,当主板唤醒时,该点被主板继电器接地。
死区时间控制
来自过压保护电路
过压保护电路的过压保护信号
辅助电源5VDC
图4-20:PS-ON电路
当计算机休眠时,PS-ON信号为3.6V,Q10、Q1饱和导通,TL494的4脚电位约为4.7V。此时,占空比接近于零,输出被禁止。
计算机要唤醒时,PS-ON被接地。Q10、Q1截止。TL494的死区时间控制端(4脚)为地电位,允许占空比接近最大值,电源输出被开放。
(八)POWERGOOD电路
LM393是一个双比较器电路。管脚排列:
1:比较器1输出。& 2:比较器1反相端。 3:比较器1同相端。
4:接地Gnd。&&&&&
5:比较器2同相端。 6:比较器2反相端。
7:比较器2输出。 &8:电源Vcc。
PS-OK去主板
TL494/+5VDC
第二电源+5V
TL494/+5VDC
图4-21:POWERGOOD电路
常规情况下,PS-ON接地,开环运放2的输出7被置为高电平。该高电平经R40被引回比例放大器1的同相输入端,使其输出PS-OK为高电平。这个高电平被送主板,表示电源系统正常。
在系统待机时,主板PS-ON断开,+5V信号使得放大器2输出低电平,该低电平送放大器1的同相端,放大器1也输出低电平。PS-OK为低,主机停止工作,并进入待命状态。
如果是刚唤醒计算机系统,C18的作用是使PS-OK的建立滞后于电源系统几百毫秒,这样保证计算机系统在电源系统先工作正常后,再接收到PS-OK信号,恢复工作。
(九)其它辅助控制电路
误差放大器2的同相输入端被接地,反相输入端接VREF(+5VDC),这样TL494的误差放大器2强制输出低电平。由于片内误差放大器输出端二极管的隔离作用,误差放大器2实际上不起作用。
第三节:单片开关电源及其应用
TOPSwitch单片电源电路是美国动力(PI)公司的产品,在仪器仪表、笔记本电脑、移动电话、音像设备等系统中获得广泛应用。
这个器件集成了功率开关管(MOSFET)、控制电路、振荡器等于一体。它仅采用三端器件,以最简单的接线方式,构成电源系统。从而极大地简化了150W以下电源系统的设计。
4-3-1.TOPSwitch-I、TOPSwitch-II系列单片电源
一.TOPSwitch-I、TOPSwitch-II系列单片电源器件
  单片开关电源具有单片集成化、最简外围电路、最佳性能指标、能构成无工频变压器开关电源等显著优点。美国动力公司在世界上率先研制成功的三端隔离式脉宽调制单片开关电源集成电路,被誉为“顶级开关电源”。
TOPSwitch-I系列是美国动力公司1994年推出的第一代产品。包括:TOP100-TOP104、TOP200-TOP204/TOP214、TOP209/TOP210。
TOPSwitch-II则是在1997年推出的第二代产品。第二代产品在电路性能,特别是输出功率上获得大幅度的提高。
这两个系列的封装是一致的,实际上它是一个三端器件。三个脚分别是D、S、C,即漏极、源极、控制极。封装形式有TO-220的三端器件式和DIP-8、SMD-8的八脚双列式两种基本形式。如左图。八脚封装的1-3、6-8通常并联后作为S,所以也相当于三端器件。
这三个脚的含义是:
(a)TO-220封装(b)DIP-8封装和SMD-8封装
图4-22:TOPSwitch的封装
源极S:连接内部MOSFET的源极,同时也是TOP开关及开关电源初级电路的公共接地点及基准点。
漏极D:是内部MOSFET的漏极,也是内部电流的检测点。该点内部有一电流源提供芯片偏置电流。
控制极C:误差放大电路和反馈电流输入端。其作用是:1)提供自动重启电容连接点并决定重启频率。2)通过调节其输入电流,可以调整占空比。3)为芯片提供正常工作的偏置电流。4)提供旁路和补偿功能的电容连接点。
下面的介绍中,我们以TOPSwitch-II为主。
二.TOPSwitch-II产品的分类及特点
(一)、产品分类
TOPSwitch-Ⅱ与第一代产品相比,它不仅在性能上进一步改进,而且输出功率得到显著提高,现已成为国际上开发中、小功率开关电源及电源模块的优选集成电路,其产品分类见表1。
表1:TOPSwitch-Ⅱ的产品分类及最大输出功率POM(单位:W)
TO-220封装(Y)
DIP-8封装(P)/SMD-8封装(G)
固定输入(110/115/230V,AC,±15%)
宽范围输入(85V~265V,AC)
固定输入(110/115/230V,AC,±15%)
宽范围输入(85V~265V,AC)
TOP221P/221G
TOP222P/222G
TOP223P/223G
TOP224P/224G
(二)、性能特点
1.将脉宽调制(PWM)控制系统的全部功能集成到三端芯片中。内含脉宽调制器、功率开关场效应管(MOSFET)、自动偏置电路、保护电路、高压启动电路和环路补偿电路,通过高频变压器使输出端与电网完全隔离,真正实现了无工频变压器、隔离式开关电源的单片集成化,使用安全可靠。
2.输入交流电压和频率的范围极宽。作固定电压输入时可选110V/115V/230V交流电,允许变化±15%;在宽电压范围输入时,适配85V~265V交流电,但POM值要比前者降低40%。
3.典型频率100KHz,允许值90-110KHz,占空比调节范围:1.7-67%。
4.TOPSwitch-Ⅱ只有3个引出端,可以同三端线性集成稳压器相媲美,能以最简方式构成无工频变压器的反激式普通型或精密型开关电源。开关频率的典型值为100kHz,允许范围是90kHz~110kHz,占空比调节范围是1.7%~67%。
5.外围电路简单,成本低廉。芯片本身功耗很低,温度范围0-70摄氏度,最高结温135摄氏度。电源效率可达80%左右,比线性集成稳压电源提高了近一倍。
三.TOPSwitch-II的工作原理
TOPSwitch-Ⅱ的内部框图如图4-23所示。主要包括10部分:
1.控制电压源
由控制电压UC向并联调整器和门驱动级提供偏压,而控制端电流IC则能调节占空比。
图4-23:TOPSwitch-II内部原理框图
2.带隙基准电压源
给内部提供各种基准电压。
产生锯齿波(SAW)、最大占空比信号(Dmax)和时钟信号(CLOCK))。
4.并联调整器/误差放大器
5.脉宽调制器
通过改变控制端电流IC的大小,连续调节脉冲占空比,实现脉宽调制并能滤掉开关噪声电压。
6.门驱动级和输出级
内含耐压为700V的功率开关管MOSFET。
7.过流保护电路
利用MOSFET的漏-源通态电阻RDS(ON)来检测过电流,当ID过大时令MOSFET关断,起到过流保护作用。
8.过热保护及上电复位电路
当芯片结温Tj&135℃,关断输出级。
9.关断/自动重启动电路
当调节失控时,立即使芯片在低占空比下工作。倘若故障已排除,就自动重新启动电源恢复正常工作。
10.高压电流源
提供偏流用。
事实上,TOPSwitch-I也包括这样的十个部分。
  TOPSwitch-Ⅱ的工作原理是利用反馈电流IC来调节占空比D,达到稳压目的。如:当输出电压UO↑时,经过光耦反馈电路使得IC↑→D↓→UO↓,最终使UO不变。
四.TOPSwitch-II单片电源的应用
下面这个图,显示了单片开关电源的典型应用方法。
图4-24:15W-TOPSwitch-II单片电源的应用
该电路交流输入电压范围Ui=85V~265V,AC,输入电网频率f=47Hz~440Hz,电压调整率SV=±0.5%,负载调整率SI=±1%,电源效率达80%,输出纹波电压的最大值为±50mV。
该电源采用带稳压管(VDZ2)的光耦反馈工作方式。电路中共使用两片集成电路,IC1为TOP202Y型单片开关电源,IC2是日本产NEC2501-H型线性光耦合器。C6与L2构成交流输入端的电磁干扰(EMI)滤波器。C6能滤除由初级脉动电流产生的串模干扰,L2可抑制初级绕组中产生的共模干扰。C7和C8为安全电容,能滤除由初、次级绕组之间耦合电容所产生的共模干扰。宽范围电压输入时,85V~265V交流电经过整流器BR、C1整流滤波后,获得直流输入电压Ui。由VDZ1和VD1构成的漏极钳位保护电路可将由高频变压器漏感产生的尖峰电压钳位到安全值以下,并能减小振铃电压。VDZ1选用P6KE150型瞬态电压抑制器(TVS),其钳位电压为150V,钳位时间仅1ns,峰值功率是5W。VD1需采用UF0V的超快恢复二极管(FRD),其反向恢复时间trr=30ns。
次级电压经VD2,C2,L1,C3整流滤波后产生+7.5V的输出电压。R2和VDZ2与输出端并联,构成开关电源的假负载,可提高空载或轻载时的负载调整率。反馈绕组电压经过VD3整流、C4滤波后,得到反馈电压,再经过光敏三极管给TOP202Y提供一个偏置电压。VD2选择UGB8BT型超快恢复二极管,为降低功耗,还可选肖特基二极管。光耦合器IC2和稳压管VDZ2还构成了TOP202Y的外部误差放大器,能提高稳压性能。当输出电压UO发生变化时,由于VDZ2具有稳压作用,就使光耦中LED的工作电流IF发生变化,进而改变TOP202Y的控制端电流IC,再通过调节输出占空比,使UO保持稳定,这就是其稳压原理。R1为LED的限流电阻,并能决定控制环路的增益。C5是控制端旁路电容,除对环路进行补偿之外,还决定着自动重启动频率。高频变压器选用EE22型铁氧体磁芯,初级电感量LP=620μH±10%,漏感量LP0≤11μH。
&4-3-2.TOPSwitch-FX系列单片电源
一.芯片简介
Integrations(PI)公司在2000年3月发布了新的TOPSwitch-FX开关电源IC系列,它为设计高度集成的电源提供了更大的灵活性,采用的EcoSmart节能技术可以帮助工程师生产出符合环保要求的更加“绿色”的电子产品。器件输出功率最高达75W,可广泛应用于手机充电器、PC待机电源、机顶盒、DVD和LCD显示器等不同领域。
二.引脚:
TOPSwitch-FX在TOPSwitch-II三个引脚的基础上增加了二个引脚,其中一个是多功能引脚(M),另一个是频率引脚(F)。
(一)多功能引脚(Multi-Function):
TOPSwitch-FX使多功能可以通过单一的可编程引脚(Multi-Function)来实现。
1.这个引脚可以利用一个电阻同时设置欠压、过压以及前馈的保护功能。当整流后的DC电压值超过了设置的过压阈值时,将强迫TOPSwitch-FX的功率MOSFET关断,增加了对浪涌电压的防护能力。欠压检测可以防止关闭电源时出现瞬变的电压尖峰。执行电压前馈可以减少输出电压纹波。
2.这个引脚还可以允许用几种方式进行TOPSwitch-FX的远程ON/OFF控制。
3.此外,这个引脚还可以用来在外部编程设置精确的电流限值。
(二)频率引脚(FREQUENCY):
只在TO-220封装下提供,它与控制脚(CONTROL)短接时,可使正常的开关频率130kHz缩小到一半,即65kHz。这对于噪声敏感的视频应用或高效率待机工作模式都是有利的。
三.器件的新功能
TOPSwitch-FX还集成了一些新的功能,其中有:
1.新增多功能引脚,保护功能加强。
2.新增频率引脚,有利于控制噪声和提高待机效率。
3.软启动(Soft-Start),可以降低启动时元器件的峰值电流与电压负荷。
4.频率抖动(Frequency Jitter),可降低电磁干扰。
5.滞后过热保护。
6.采用多方面的EcoSmart节能技术,使能源得到更有效的利用,可实现环保设计。例如,遥控开/关、省略周期(Cycle
Skipping)和频率减半等功能可以显著地降低能耗,特别是在待机和空载的条件下。这种特性使得很多电子产品可以达到甚至超过如Energy
Star、Blue Angel、Energy 2000之类的通用节能标准。
这个芯片尽管增加了许多新的功能,但仅仅8个月,即被新版本的TOPSwitch-GX替代。因此,该芯片不做课程重点,我们这里重点介绍TOPSwitch-GX芯片。
&4-3-3.TOPSwitch-GX系列单片开关电源
以往芯片存在一些不足:纹波电压较大、空载和轻载损耗大、高温工作时输出功率受限、启动时元件承受较大的尖峰电压和电流以及设计不够灵活等。针对这些不足之处,Power
Integrations公司优化了芯片的内部布局,改进了电路功能,于2000年11月新推出了TOPSwitch家族的第四代芯片:TOPSwitch-GX系列。
TOPSwitch-GX系列增加了许多新功能,从而有效地降低了电源系统成本,提高了电源性能,改善了设计灵活性并扩展了电源输出功率。如其中的TOP250型芯片,最大输出功率可达290W,该芯片极大地扩展了开关电源芯片在大功率领域内的应用范围。
一.TOPSwitch-GX系列的功能特点
TOPSwitch-GX系列新增的主要功能及其优点如下:
1.更宽的输出功率范围,最大可达290W。
2.可减少外围器件的损耗。
3.在极低压或过压时能实现完全软启动,进一步减小了器件在启动时的电压、电流应力。
4.外部可编程精确地设定限制电流,减小了变压器铁芯体积,提高了电源效率。
5.更大的占空比,能提供更大的输出功率并减小了输入电容。
6.在Y、R、F型式封装中将电压检测管脚与限流管脚分开封装,提高了设计的灵活性。
7.欠压保护,不会造成误关断。
8.有过压保护,可以限制浪涌电流。
9.采用线电压前馈,减小了低压时的输出电压纹波,限制了高压时的最大占空比(Dmax)。
10.有±3%的频率抖动,减小了电磁干扰(EMI),并降低了EMI滤波器的损耗。
11.空载、轻载时可降低工作频率,使输出电路无需加假负载,从而显著地减少了能量损耗。
12.高达132kHz的工作频率,减小了变压器和电源的体积。
13.在视频应用时可选择半频(66kHz)运行(只限于Y、R、F封装),有利于控制噪声。
14.温度范围更宽的滞后热关断,允许电源在高温下输出更大的功率,并有效地防止装置过热。
TOPSwitch-GX系列的这些优点使其可广泛地应用于手提电脑、PDA、集线器、交换器、路由器、台式电脑、小型服务器、机顶盒、数码电视、打印机、DVD、UPS、电视游戏机、音频放大器等装置中。
二.器件管脚功能描述
(一)管脚排列
TOPSwitch-GX系列有TOP242—TOP250的9种不同容量型号,又分为Y、P、G、R、F等5种封装形式。根据封装形式不同,TOPSwitch-GX系列芯片新增的管脚数也不同。P、G型封装与第三代芯片TOPSwitch-FX系列一样只有D、S、C、M四个管脚,而Y、R、F型封装则有六个管脚:D、S、C、F、X、L。图4-25为Y/R/F型封装芯片引脚图,Y、R、F型封装的管脚功能如下。
图4-25:TOPSwitch-GX引脚图
(二)管脚功能说明
器件的六个引脚说明如下:
1.漏极管脚(D):高压功率MOSFET漏极输出。通过此脚从高压开关电流源输入内部启动偏置电流。
2.控制管脚(C):用于调节占空比的误差放大器电流输入脚。在正常操作期间通过连接至内部分流调节器来提供内部偏置电流,也可以作为电源的旁路和自动重启/补偿电容的连接点。
3.源极管脚(S):内部MOSFET的源极。将其连接至输出MOSFET源极时可得到高压功率回馈。
4.电压检测管脚(L):作为欠压保护(UV)、过压保护(OV)、减少Dmax的线性前馈及远程开/关等4项功能的控制脚。
1)当脚L与脚S短接时,各项功能均不起作用;
2)当L脚串联电阻接至电源母线时,可实现UV、OV及随母线电压减少Dmax的3项功能;
3)当脚L通过电阻与脚C相连,并外接一级开关信号放大电路时可以实现远程控制开/关的作用。
5.外部限流管脚(X):用于外部电流限制值设置的输入脚。
1)当串联电阻接至地线时为外部可编程精确设定限流值;
2)当串电阻接至电源母线时可随母线电压调节限流值。
6.频率管脚(F):用于选择开关频率的输入脚。在多数应用场合下将脚F连接至源极管脚S,此时开关频率为132kHz。在一些特殊应用场合如对噪音敏感的音频设备中,将脚F连接至控制管脚C时开关频率降为66kHz以减小干扰。
三.器件类型及参数
下表是GX系列的器件类型及相关数据。
输出功率表
固定输入110/115/230 VAC ±15%
宽范围输入85-265 VAC
TOP242P或G
TOP242Y或F
TOP243P或G
TOP243Y或F
TOP244P或G
TOP244Y或F
TOP245P或G
TOP245Y或F
TOP246P或G
TOP246Y或F
TOP247Y或F
TOP248Y或F
TOP249Y或F
TOP250Y或F
可以看出,GX系列从6.5W到290W,有比较宽的功率选择范围。
总体分类:
按输入:固定输入为110/115/230VAC,宽输入为:85-265VAC。
按模块外形:密封式和敞开式,后者功率相对更高。
按封装形式:有Y、P、G、R、F等5种封装形式。
其它更具体的模块使用特性及应用要领,需要时我们可以查阅相关手册。
由于许多新的特性和宽的选择范围,这个系列的器件目前是PI公司推广的主流开关电源器件。
四.内部功能原理:
下图是器件的内部原理框图。
高压电流源
过流比较器
前沿闭锁电路
轻载频率降低
并联调整器/
误差放大器
过热滞后保护
图4-26:TOPSwitch-GX的内部原理框图
电路主要包含18部分:
1.控制电压源。
2.带隙基准电压源。
3.频率抖动振荡器。
4.并联调整器/误差放大器。
5.脉宽调制器,含PWM比较器和触发器。
6.过流保护电路。
7.门极驱动和输出极。
8.具有滞后特性的过热保护电路。
9.高压电流源。
10.软启动电路。
11.关断/自动重启电路。
12.欠压比较器。
13.电流极限比较器。
14.线路比较器。
15.线路检测端和极限电流设定端的内部电路。
16.轻载时自动降低开关频率的电路。
17.停止逻辑。
18.开启电压为1V的电压比较器。
五.TOPSwitch-GX的典型应用
图4-27给出了GX模块的典型应用实例。
图4-27:TOPSwitch-GX应用电路
所示电路为单端反激式开关电源,利用了TOPSwitch—GX的某些特性来降低系统成本,减小电源尺寸,提高效率。此电路采用通用的85~265V交流输入,输出12V直流电压,功率70W。考虑到密封适配器的工作环境,选用热损耗最小的TOP249Y。
电阻R9和R10从外部将限流值设定为仅略高于低电压工作时的满载峰值电流,从而允许使用更小的变压器磁芯,同时可以避免启动和输出负载瞬态的磁芯饱和。电阻R9和R10还能使限流值随电压升高而降低,从而限制高输入电压时的最大过载功率,并使次级无需任何保护电路。电阻R11实现欠压和过压检测。当R11=2MΩ时,电源在直流电压达到100V之后才开始工作。在关断交流输入时,欠压检测防止C1放电时的输出干扰,并在输入直流电压降到40V以下时关断TOPSwitch—GX。过压门限值被设定为DC450V,当超过此值时,例如发生电涌时,器件在电涌期间停止工作,从而使器件可以经受700V高压的冲击。
电容C11与VR1并联以降低齐纳箝位损耗,VR1、D1组成缓冲吸收电路,吸收功率器件在关断过程中由于变压器漏感产生的电压尖峰过冲。电路的工作频率为132kHz,可用PQ26/20磁芯提供70W功率。为了调节输出,用光耦(U2)和次级基准一起,通过电阻分压网络(U3,R4,R5,R6)检测输出电压。D3和C12对偏置绕组的输出进行整流和滤波,R8实现漏感尖峰滤波,使偏置电压在输出负载变化很大时仍能保持恒定,为了改善抵抗共摸电涌的能力,偏置绕组的共摸电路直接与直流大电容(C1)相连。
输入电容能提供TOPSwitch-GX所需的最小直流电压,以保证最低额定输入电压和最大输出功率条件下电压受控。由于GX的DCmax比TOPSwitch-Ⅱ的高,它可以使用更小的输入电容。对TOPSwitch-GX而言,通常输入电容可按2μF/W来选取。
* * * * * * * * * *
其它的典型开关电源芯片还有很多,读者可以查阅相关资料。
第五部分:开关电源其它相关技术及应用
第一节:开关电源的电压基准器件
开关电源基准的获得方式
基准电源器件在开关电源中是一个重要的器件,它主要用于作为反馈的比较基准。
开关电源的比较基准一般有如下三种获得方式:
1)&&&&&&&&&
使用芯片内部基准电源。
2)&&&&&&&&&
使用稳压管。
3)&&&&&&&&&
使用基准电源器件。
第一种方式比较方便,但灵活性往往受到限制;第二种则控制精度比较差。要达到比较精密的控制调节效果,建议采用基准电源器件作为误差比较基准。
二.基准电源器件的类型及其工作原理
这种基准器件分为串联型和并联型两种。
图5-1:并联基准与串联基准
1.并联基准
如上左图,并联基准与负载是并联的。
UREF=Uin-IFRS=Uin-(IQ+IL)RS
当负载电流发生变化时,通过调节IQ来保持UREF稳定。
这类器件有:LM358、AD589等。
2.串联基准
如上右图,串联基准与负载是串联的。
UREF=Uin-IFRS=Uin-(IQ+IL)RS
当负载电流发生变化时,通过调节RS来保持UREF稳定。
这类器件有:AD581、REF192、TL431等。
三.TL431基准电源器件
这个器件在电源中使用率最高,这里简单介绍该器件。
(一)TL431简介
图5-2:TL431结构及原理
德州仪器公司(TI)生产的TL431是一是一个有良好的热稳定性能的三端可调分流基准源。它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值(如图2)。该器件的典型动态阻抗为0.2Ω。
图5-2左图是该器件的符号。3个引脚分别为:阴极(CATHODE)、阳极(ANODE)和参考端(REF)。
由图可以看到,VI是一个内部的2.5V基准源,接在运放的反相输入端。由运放的特性可知,只有当REF端(同相端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管的电流将从1到100mA变化。当然,该图绝不是TL431的实际内部结构,所以不能简单地用这种组合来代替它。但如果在设计、分析应用TL431的电路时,这个模块图对开启思路,理解电路都是很有帮助的。
(二)TL431的应用
前面提到TL431的内部含有一个2.5V的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。如图5-3所示的电路,当R1和R2的阻值确定时,两者对Vo的分压引入反馈,若V
o增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。显见,这个深度的负反馈电路必然在VI等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1
当然,这个电路并不太实用,但它很清晰地展示了该器件在应用中的方法。将这个电路稍加改动,就可以得到在很多实用的电源电路,如图5-4。
一般地,在阴极和参考端之间,可以引进R、C串联网络,以做相位补偿。
图5-3:推荐的应用电路及电压输出
图5-4是一个最简单的+5VDC稳压电路。
作为基准器件,TL431可以在恒压源、恒流源等电路中广泛采用。我们前面讲到的开关电源,就广泛地使用这个器件作为比较基准。
&图5-4:精密5V稳压器
第二节:光电耦合器在数字开关电源中的应用
一 .关于光电耦合器
对于开关电源,隔离技术和抗干扰技术是至关重要的,随着电子元器件的迅速发展,光电耦合器的线性度越来越高,是目前在单片机和开关电源中用得最多隔离抗干扰器件。
光耦合器亦称光电隔离器或光电耦合器,简称光耦。它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳内。当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。以光为媒介把输入端信号耦合到输出端的光电耦合器,由于它具有体积小、寿命长、无触点,抗干扰能力强,输出和输入之间绝缘,单向传输信号等优点,在数字电路上获得广泛的应用。
图5-5:光电耦合器及其典型用法
实际上,光电耦合器有晶体管、达林顿、可控硅、磁效应管等多种输出形式。
通常的光电耦合器由于它的非线性,因此在模拟电路中的应用只限于对较高频率的小信号的隔离传送。普通光耦合器只能传输数字(开关)信号,不适合传输模拟信号。近年来问世的线性光耦合器能够传输连续变化的模拟电压或模拟电流信号,使其应用领域大为拓宽。
二.光耦合器的性能特点及其抗干扰作用
光耦合器的主要优点是单向传输信号,输入端与输出端完全实现了电气隔离,抗干扰能力强,使用寿命长,传输效率高。它广泛用于电平转换、信号隔离、级间隔离、开关电路、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。
由于光电耦合器的输入阻抗与一般干扰源的阻抗相比较小,因此分压在光电耦合器的输入端的干扰电压较小,它所能提供的电流并不大,不易使半导体二极管发光。光电耦合器的外壳是密封的,它不受外部光的影响。光电耦合器的隔离电阻很大、隔离电容很小(约几个pF),所以能阻止电路性耦合产生的电磁干扰。
线性方式工作的光电耦合器是在光电耦合器的输入端加控制电压,在输出端会成比例地产生一个用于进一步控制下一级的电路的电压。它由发光二极管和光敏三极管组成,当发光二极管接通而发光,光敏三级管导通。光电耦合器是电流驱动型,需要一定的电流才能使发光二极管导通,如果输入信号太小,发光二极管不会导通,其输出信号将失真。在开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。
在开关电源中我们是采用电压环进行闭环调节实现输出电压的稳定输出的,光电耦合器作为输入采样、反馈信号、输出驱动的隔离器件。一方面光电耦合器可以起到隔离两个系统地线的作用,使两个系统的电源相互独立,消除地电位不同所产生的影响。另一方面,光电耦合器的发光二极管是电流驱动器件,可以形成电流环路的传送形式,电流环路是低阻抗电路,对噪音的敏感度低,提高了系统的抗干扰能力,起到了电磁兼容和隔离抗干扰的作用,不会因为电路中的高频电流的电磁干扰对控制电路产生干扰。
三.光耦合器的技术参数
主要有发光二极管正向压降VF、正向电流IF、电流传输比CTR、输入级与输出级之间的绝缘电阻、集电极-发射极反向击穿电压V(BR)CEO、集电极-发射极饱和压降VCE(sat)。此外,在传输数字信号时还需考虑上升时间、下降时间、延迟时间等参数。
电流传输比CTR是光耦合器的重要参数,通常用直流电流传输比来表示。当输出电压保持恒定时,它等于直流输出电流IC与直流输入电流IF的百分比。其公式为:
CTR=(IO/IF)X100%
采用一只光敏三极管的光耦合器,CTR的范围大多为20%~300%(如4N35),而PC817则为80%~160%,达林顿型光耦合器(如4N30)可达100%~5000%。这表明欲获得同样的输出电流,后者只需较小的输入电流。因此,CTR参数与晶体管的hFE有某种相似之处。
普通光耦合器的CTR-IF特性曲线呈非线性,在IF较小时的非线性失真尤为严重,因此它不适合传输模拟信号。线性光耦合器的CTR-IF特性曲线具有良好的线性度,特别是在传输小信号时,其交流电流传输比(ΔCTR=ΔIC/ΔIF)很接近于直流电流传输比CTR值。因此,它适合传输模拟电压或电流信号,能使输出与输入之间呈线性关系。这是其重要特性。
四.线性光耦合器的产品及选取原则
使用光电耦合器主要是为了提供输入电路和输出电路间的隔离,在设计电路时,必须遵循下列原则:所选用的光电耦合器件必须符合国内和国际的有关隔离击穿电压的标准;由英国埃索柯姆(Isocom)公司、美国摩托罗拉公司生产的4N&&系列(如4N25、4N26、4N35)光耦合器,目前在国内应用地十分普遍。鉴于此类光耦合器呈现开关特性,其线性度差,适宜传输数字信号(高、低电平),可以用于单片机的输出隔离;所选用的光耦器件必须具有较高的耦合系数。
开关电源则应该选择线性光电耦合器,上表给出了常见的线性光电耦合器及主要数据。
其次,必须正确选择线性光耦合器的型号及参数。
第三,除了必须遵循普通光耦的选取原则外,还必须考虑合理选择CTR值。光耦合器的电流传输比(CTR)的允许范围是50%~200%。这是因为当CTR<50%时,光耦中的LED就需要较大的工作电流(IF>5.0mA),才能正常控制单片开关电源IC的占空比,这会增大光耦的功耗。若CTR>200%,在启动电路或者当负载发生突变时,有可能将单片开关电源误触发,影响正常输出。
第三节:电磁兼容技术与噪声
一.开关电源的电磁干扰
&&&&开关电源因具有体积小、重量轻、效率高、工作可靠、可远程监控等优点,而广泛应用于工业、通讯、军事、民用、航空等各个领域。
在很多场合,开关电源,特别是通信开关电源要有很强的抗电磁干扰能力,如对浪涌、电网电压波动的适应能力,对静电干扰、电场、磁场及电磁波等的抗干扰能力,保证自身能够正常工作以及对设备供电的稳定性。
一方面,因开关电源内部的功率开关管、整流或续流二极管及主功率变压器,是在高频开关的方式下工作,其电压电流波形多为方波。在高压大电流的方波切换过程中,将产生严重的谐波电压及电流。这些谐波电压及电流一方面通过电源输入线或开关电源的输出线传出,对与电源在同一电网上供电的其它设备及电网产生干扰,使设备不能正常工作;另一方面严重的谐波电压电流在开关电源内部产生电磁干扰,从而造成开关电源内部工作的不稳定,使电源的性能降低。还有部分电磁场通过开关电源机壳的缝隙,向周围空间辐射,与通过电源线、直流输出线产生的辐射电磁场,一起通过空间传播的方式,对其它高频设备及对电磁场比较敏感的设备造成干扰,引起其它设备工作异常。
因此,对开关电源,要限制由负载线、电源线产生的传导干扰及有辐射传播的电磁场干扰,使处于同一电磁环境中的设备均能够正常工作,互不干扰。
二.国内外电磁兼容性标准
电磁兼容性是指设备或系统在其电磁环境中能正常工作且不对该环境中的任何设备构成不能承受的电磁干扰的能力。
要彻底消除设备的电磁干扰及对外部一切电磁干扰信号是不可能的。只能通过系统地制定设备与设备之间的相互允许产生的电磁干扰大小及抵抗电磁干扰的能力的标准,才能使电气设备及系统间达到电磁兼容的要求。国内外大量的电磁兼容性标准,为系统内的设备相互达到电磁兼容性制订了约束条件。
国际无线电干扰特别委员会(CISPR)是国际电工委员会(IEC)下属的一个电磁兼容标准化组织,设六个分会。早在1934年就开展EMC标准的研究。其中第六分会(SCC)主要负责制定关于干扰测量接收机及测量方法的标准。CISPR16《无线电干扰和抗干扰度测量设备规范》对电磁兼容性测量接收机、辅助设备的性能以及校准方法给出了详细的要求。CISPR17《无线电干扰滤波器及抑制元件的抑制特性测量》制订了滤波器的测量方法。CISPR22《信息技术设备无线电干扰限值和测量方法》规定了信息技术设备在0.15~1000MHz频率范围内产生的电磁干扰限值。CISPR24《信息技术设备抗扰度限值和测量方法》规定了信息技术设备对外部干扰信号的时域及频域的抗干扰性能要求。其中CISPR16、CISPR22及CISPR24构成了信息技术设备包括通信开关电源设备的电磁兼容性测试内容及测试方法要求,是目前通信开关电源电磁兼容性设计的最基本要求。
IEC最近也出版了大量的基础性电磁兼容性标准,其中最有代表性的是IEC61000系列标准。它规定电子电气设备的雷击、浪涌(SURGE)、静电放电(ESD)、电快速瞬变脉冲群(EFT)、电流谐波、电压跌落、电压瞬变及短时中断、电压起伏和闪烁、辐射电磁场、由射频电磁场引起的传导干扰抗扰度、传导干扰及辐射干扰等的电磁兼容性要求。
另外,美国联邦委员会制定的FCC15、德国电气工程师协会制订的VDE、VDE、VDE0878,都对通信设备的电磁兼容性提出了要求。
我国对电磁兼容性标准的研究比较晚,采取的最主要的办法是引进、消化、吸收,洋为中用是国内电磁兼容性标准制订的最主要方法。1998年,信息产业部根据CISPR22、IEC61000系列标准及ITU-T0.41标准,制定了YD/T983-1998《通信电源设备电磁兼容性限值及测量方法》,详尽规定了通信电源设备包括通信开关电源的电磁兼容性的具体测试项目、要求及测试方法,为通信电源电磁兼容性的检验、达标并通过入网检测明确了设计目标。
国标也等同采用了相应的国际标准。如GB/T系列标准等同采用了IEC61000系列标准;GB《信息技术设备的无线电干扰限值及测量方法》等同采用CISPR22;GB/T《信息技术设备抗扰度限值和测量方法》等同采用CISPR24。
三.开关电源的电磁兼容性问题
电磁兼容产生的三个要素为:干扰源、传播途径及受干扰体。
开关电源因工作在开关状态下,其引起的电磁兼容性问题是相当复杂的。从整机的电磁兼容性讲,主要有共阻抗耦合、线间耦合、电场耦合、磁场耦合和电磁波耦合几种。
1.共阻抗耦合主要是干扰源与受干扰体在电气上存在共同阻抗,通过该阻抗使干扰信号进入受干扰对象。
2.线间耦合主要是产生干扰电压及干扰电流的导线或PCB线,因并行布线而产生的相互耦合。
3.电场耦合主要是由于电位差的存在,产生的感应电场对受干扰体产生的耦合。
4.磁场耦合主要是大电流的脉冲电源线附近产生的低频磁场对干扰对象产生的耦合。
5.而电磁波耦合,主要是由于脉动的电压或电流产生的高频电磁波,通过空间向外辐射,对相应的受干扰体产生的耦合。
实际上,每一种耦合方式是不能严格区分的,只是侧重点不同而已。
在开关电源中,主功率开关管在很高的电压下,以高频开关方式工作,开关电压及开关电流均为方波,该方波所含的高次谐波的频谱可达方波频率的1000次以上。同时,由于电源变压器的漏电感及分布电容,以及主功率开关器件的工作状态并非理想,在高频开或关时,常常产生高频高压的尖峰谐波振荡。该谐波振荡产生的高次谐波,通过开关管与散热器间的分布电容传入内部电路或通过散热器及变压器向空间辐射。用于整流及续流的开关二极管,也是产生高频干扰的一个重要原因。因整流及续流二极管工作在高频开关状态,由于二极管的引线寄生电感、结电容的存在以及反向恢复电流的影响,使之工作在很高的电压及电流变化率下,而产生高频振荡。因整流及续流二极管一般离电源输出线较近,其产生的高频干扰最容易通过直流输出线传出。
开关电源为了提高功率因数,均采用了有源功率因数校正电路。同时,为了提高电路的效率及可靠性,减小功率器件的电应力,大量采用了软开关技术。其中零电压、零电流或零电压零电流开关技术应用最为广泛。该技术极大地降低了开关器件所产生的电磁干扰。但是,软开关无损吸收电路多利用L、C进行能量转移,利用二极管的单向导电性能实现能量的单向转换,因而,该谐振电路中的二极管成为电磁干扰的一大干扰源。
开关电源中,一般利用储能电感及电容器组成L、C滤波电路,实现对差模及共模干扰信号的滤波,以及交流方波信号转换为平滑的直流信号。由于电感线圈分布电容,导致了电感线圈的自谐振频率降低,从而使大量的高频干扰信号穿过电感线圈,沿交流电源线或直流输出线向外传播。滤波电容器,随着干扰信号频率的上升,由于引线电感的作用,导致电容量及滤波效果不断下降,直至达到谐振频率以上时,完全失去电容器的作用而变为感性。不正确地使用滤波电容及引线过长,也是产生电磁干扰的一个原因。
开关电源PCB布线不合理、结构设计不合理、电源线输入滤波不合理、输入输出电源线布线不合理、检测电路的设计不合理,均会导致系统工作的不稳定或降低对静电放电、电快速瞬变脉冲群、雷击、浪涌及传导干扰、辐射干扰及辐射电磁场等的抗扰性能力。
四.电磁兼容性研究及解决方法
电磁兼容性的研究。一般运用CISPR16及IEC61000中规定的电磁场检测仪器及各种干扰信号模拟器、附助设备,在标准测试场地或实验室内部,通过详尽的测试分析、结合对电路性能的理解来进行分析研究。
从电磁兼容性的三要素讲,要解决开关电源的电磁兼容性,可从三个方面入手。
1)&&&&&&&&&
减小干扰源产生的干扰信号;
2)&&&&&&&&&
切断干扰信号的传播途径;
3)&&&&&&&&&
增强受干扰体的抗干扰能力。
在解决开关电源内部的电磁兼容性时,可以综合运用上述三个方法,以成本效益比及实施的难易性为前提。
对开关电源产生的对外干扰,如电源线谐波电流、电源线传导干扰、电磁场辐射干扰等,只能用减小干扰源的方法来解决。一方面,可以增强输入输出滤波电路的设计,改善有源功率因数校正(APFC)电路的性能,减少开关管及整流续流二极管的电压电流变化率,采用各种软开关电路拓扑及控制方式等。另一方面,加强机壳的屏蔽效果,改善机壳的缝隙泄漏,并进行良好的接地处理。
而对外部的抗干扰能力,如浪涌、雷击应优化交流输入及直流输出端口的防雷能力。通常,对1.2/50&s开路电压及8/20&s短路电流的组合雷击波形,因能量较小,可采用氧化锌压敏电阻与气体放电管等的组合方法来解决。对于静电放电,通常在通信端口及控制端口的小信号电路中,采用TVS管及相应的接地保护、加大小信号电路与机壳等的电距离,或选用具有抗静电干扰的器件来解决。快速瞬变信号含有很宽的频谱,很容易以共模的方式传入控制电路内,采用防静电相同的方法并减小共模电感的分布电容、加强输入电路的共模信号滤波(如加共模电容或插入损耗型的铁氧体磁环等)来提高系统的抗扰性能。
减小开关电源的内部干扰,实现其自身的电磁兼容性,提高开关电源的稳定性及可靠性,应从以下几个方面入手:注意数字电路与模拟电路PCB布线的正确区分、数字电路与模拟电路电源的正确去耦;注意数字电路与模拟电路单点接地、大电流电路与小电流特别是电流电压取样电路的单点接地以减小共阻干扰、减小地环的影响;布线时注意相邻线间的间距及信号性质,避免产生串扰;减小地线阻抗;减小高压大电流线路特别是变压器原边与开关管、电源滤波电容电路所包围的面积;减小输出整流电路及续流二极管电路与直流滤波电路所包围的面积;减小变压器的漏电感、滤波电感的分布电容;采用谐振频率高的滤波电容器等。
关于传播途径,有如下问题值得注意。MCU与液晶显示器的数据线、地址线工作频率较高,是产生辐射的主要干扰源;小信号电路是抗外界干扰的最薄弱环节,适当地增加高抗干扰能力的TVS及高频电容、铁氧体磁珠等元器件,以提高小信号电路的抗干扰能力;与机壳距离较近的小信号电路,应加适当的绝缘耐压处理等。功率器件的散热器、主变压器的电磁屏蔽层要适当接地,综合考虑各种接地措施,有助于提高整机的电磁兼容性。各控制单元间的大面积接地用接地板屏蔽,可以改善开关电源内部工作的稳定性。在整流器的机架上,要考虑各整流器间电磁耦合、整机地线布置、交流输入中线、地线及直流地线、防雷地线间的正确关系、电磁兼容量级的正确分配等。
第四节:功率因素校正技术简述
对开关电源来讲,功率因素校正技术是一门新兴的技术,它对提高开关电源效率发挥了重要的作用。这里我们只简单介绍其概念和基本原理,不对实际电路进行介绍。感兴趣的读者可以自行查阅相关资料。
一.校正技术的提出和标准
传统的开关电源,功率因素为0.45-0.75,效率极低,而且高次谐波含量高。采用了功率因素校正技术的电源,功率因素可以提高到0.95-0.99。
开关电源校正的概念起源于1980年,在80年代末和90年代获得重视和推广。欧洲和日本相继对开关电源的谐波提出了控制标准,目前有两个沿用的标准:IEC555-2和IEC。
由于对电源效率品质和电磁兼容性要求的日益提高,开关电源功率因素校正技术成为开关电源的研究热点之一。
二.功率因素校正的基本原理
如果输入整流电路之后直接接电阻性负载,则整流后的波形为正弦波,功率因素基本为1,高次谐波成分很低。
但由于实际电路中L、C滤波等的作用,电流、电压造成相差,而且电容的充放电电流、电感的电压等都会造成尖脉冲,从而造成高次谐波的产生和功率因素的明显下降。
我们假想——如果在整流电路和变换器之间插入一级隔离电路,使得输入电路的综合负载接近于电阻性,则功率因素可望得到提高。
三.功率因素校正电路(PFC)
实际的功率因素校正电路有两类:
无源校正电路——依靠无源元件电路改善功率因素,减小电流谐波,其电路简单,但体积庞大,现在很少采用。
有源校正电路——在输入电路和DC/DC变换器之间插入一个变换器,通过特定控制电路使得电流跟随电压,并反馈输出电压使之稳定,从而使DC/DC变换器实现预稳。这个方案电路复杂,但体积明显减小,因而成为PFC技术的主要研究方向。
对有源PFC技术,原来采用两级变换器,第一级专门作为PFC前置级,第二级用于DC/DC变换。现在开始研究单级变换器,即把相关可以合并的部分做到同一级中,形式上雷同于一级变换器电路。
四.集成PFC控制器
针对PFC技术的研究日益成熟后,陆续又开发了一系列PFC集成控制电路。
UC3854、UC3858、TDA16888、FA5331P、FA5332P等,都是这类控制芯片。
可以说,从控制技术上来将,软开关技术、PFC技术是提高电源品质的双刃剑,有关研究方兴未艾。
已投稿到:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

我要回帖

更多关于 2rucc 的文章

 

随机推荐