有机220v家用太阳能电池板正式和反式怎么区分

当前位置:&&
小分子有机太阳能电池给体材料的设计、合成及应用
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
小分子有机太阳能电池给体材料的设计、合成及应用
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='http://jz.docin.com/DocinViewer--144.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口当前位置:&&
小分子有机太阳能电池给体材料的设计、合成及应用
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
小分子有机太阳能电池给体材料的设计、合成及应用
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='http://jz.docin.com/DocinViewer--144.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口您现在的位置:&&&&&&
魏志祥课题组在有机太阳能电池研究方面取得重要进展
  近日,国家纳米科学中心纳米系统与多级次制造重点实验室魏志祥研究员、吕琨研究员、邓丹博士和西安交通大学马伟教授等合作,设计并合成的可溶性有机小分子光伏材料,通过活性层形貌优化,获得了11.3%的光电转换效率,这是目前文献报道的可溶性有机小分子太阳能电池的最高效率,也是有机太阳能电池的最高效率之一。相关研究成果发表在Nature Commun., 740上。(论文链接)  有机太阳能电池因为其具有原材料来源丰富、成本低廉、质量轻、可通过印刷制备为大面积柔性器件等优点,成为具有重要应用前景的太阳能利用方式,近年来引起广泛关注。在活性层材料中,相比于聚合物材料,可溶性有机小分子具有纯度高,明确的分子结构和分子量等优点。但是,目前基于有机小分子太阳能电池的效率依然需要进一步提升,尤其是性能更为稳定的反向器件的最高能量转换效率低于9%。&  提高光电转换效率的两个主要途径,一是通过分子设计调控能级结构,二是是通过改善器件活性层形貌从而降低电荷复合,减少能量损失。魏志祥课题组通过改变可溶性小分子的端基受体中氟原子的个数,实现了这两个方面的协同优化。氟化端基有利于降低材料的HOMO能级和光学带隙;同时可以降低与富勒烯受体的相容性和材料的表面能。研究表明,氟化端基诱导了材料在水平方向上多级次相尺寸的分布,即同时存在相纯度高且利于电荷传输的大尺寸颗粒(约100nm)以及增加给受体界面面积且利于电荷分离的小尺寸颗粒(约15nm)。这种多级次相尺寸的分布使电荷分离和传输更趋于平衡,减少了电荷的复合,从而减少能量损失。在垂直方向上,氟化端基提高了表面给体材料的富集程度,在正极表面形成了电子阻挡层,进一步减少了能量损失,从而实现了器件效率的提升。基于此,该课题组提出了反向器件活性层的理想形貌模型,在水平上形成多尺度纳米组装结构,在垂直方向上形成有利于电荷收集的垂直相分布。该工作深入阐述了高效光伏材料的分子设计、形貌调控和器件性能之间的内在关系,对高效率有机光伏材料的设计具有重要借鉴意义。&  该成果得到国家重点研发计划“纳米科技”重点专项,国家自然科学基金重点项目,中科院纳米先导专项等项目的支持。图:不同氟原子取代的分子结构、活性层形貌示意图和器件性能曲线
&&|&&&&|&&&&
国家纳米科学中心 版权所有 备案序号:京公网安备:地址:北京市海淀区中关村北一条11号  邮编:100190 电话:010- 传真:010- Email:反式钙钛矿太阳能电池研究取得系列进展反式钙钛矿太阳能电池研究取得系列进展梦不关百家号近日,AdvancedMaterials刊登了北京大学物理学院“极端光学创新研究团队”在钙钛矿太阳能电池研究的最新进展。研究团队基于醋酸铅前驱体体系制备的钙钛矿太阳能电池获得超过20%的光电转换效率,进一步显示了反式钙钛矿太阳能电池的发展前景。随着环境问题的日益加剧,太阳能以其清洁、可再生的优势引起了科研界和产业界的广泛关注。其中,高效、经济的光伏技术也成为了当前学术研究和产业发展的热点之一。近年来,一种新型光伏技术——钙钛矿太阳能电池以其易制备、低成本和高效率的特点走入人们的视野,成为新型光伏技术的新宠。短短七年之内,钙钛矿太阳能电池的光电转换效率实现了跨越增长,从最初的3.8%提升至现在的22%以上,表现出了极大的优势和潜力。钙钛矿太阳能电池分为正式(n-i-p)和反式(p-i-n)两种结构。常规的正式器件通常需要致密或介孔氧化物作为电子传输层,其制备工艺相对复杂,且与柔性基底的兼容性不好。相比较而言,反式结构器件因制备工艺简单、可低温成膜、无明显回滞效应等优点受到越来越多的关注,但是其光电转换效率还稍显不足。针对反式结构钙钛矿太阳能电池器件效率较低的问题,北京大学“极端光学创新研究团队”的朱瑞研究员和龚旗煌院士等从钙钛矿薄膜形貌控制、界面调控及组分优化等角度进行了全面系统的研究,在过去的两年中取得了一系列创新成果。他们利用醋酸铅前驱体体系,先是将微量溴甲胺作为添加剂应用于钙钛矿前驱体溶液中,该策略可以有效改善钙钛矿薄膜的表面形貌,使其光学和电学性能均得到明显提升,最终,基于醋酸铅前驱体的反式平面结构钙钛矿太阳能电池的光电转换效率从14.26%大幅度提高至18.32%,研究结果发表在AdvancedFunctionalMaterials上,并被选为封底内页。该论文发表后连续两个月的访问次数在该刊排名前五,也是该刊2016年度访问次数最多的文章之一(Adv.Funct.Mater.,8,博士生赵丽宸和罗德映为共同第一作者)。随后,他们又借助界面调控,首次在钙钛矿太阳能电池领域提出了“电荷载流子平衡”的概念,并系统地研究和实现反式钙钛矿太阳能电池器件内的电荷载流子平衡,将反式钙钛矿太阳能电池光电转换效率进一步提升至接近19%,该结果发表在AdvancedMaterials上(Adv.Mater.,18,博士生陈科、胡芹和刘堂昊为共同第一作者)。之后,该团队又进一步采用双源前驱体溶液法,在体系中引入“甲脒”有机阳离子将吸收光谱拓展至近红外区域,并结合对空穴传输层的优化,确保了电荷有效传输和收集,同时提升了器件的开路电压,最终将光电转换效率提升至20%以上。该结果发表在AdvancedMaterials上,是目前报道的基于醋酸铅前驱体体系钙钛矿太阳能电池的最高性能(Adv.Mater.,2017,DOI:10.1002/adma.,博士生罗德映和赵丽宸为共同第一作者)。此外,他们还撰写了关于反式结构钙钛矿太阳能电池的综述文章,发表在AdvancedEnergyMaterials上,对反式钙钛矿太阳能电池的发展现状进行了系统归纳,并对未来的前景进行了展望(Adv.EnergyMater.,0457,博士生刘堂昊为第一作者)。该系列研究工作得到中国国家自然科学基金委、科技部、北京大学人工微结构和介观物理国家重点实验室、“极端光学协同创新中心”“2011计划”量子物质科学协同创新中心、“青年千人计划”和美国劳伦斯伯克利国家实验室(LBNL)等单位的支持。本文由百家号作者上传并发布,百家号仅提供信息发布平台。文章仅代表作者个人观点,不代表百度立场。未经作者许可,不得转载。梦不关百家号最近更新:简介:关天下之事,系民心之声作者最新文章相关文章

我要回帖

更多关于 反式钙钛矿太阳能电池原理 的文章

 

随机推荐