chemical engineering journal上收超级电容器价格的文章吗

Search in:
Chemical Engineering Science
Editor-in-Chief:
Enter your login details below. If you do not already have an account you will need to .
Author instructions
Useful links
Check submitted paper
Check the status of your submitted manuscript in EES:
Track accepted paper
Once production of your article has started, you can track the status of your article via
CiteScore: 3.44
Impact Factor: 3.306
5-Year Impact Factor: 3.346
Source Normalized Impact per Paper (SNIP): 1.516
SCImago Journal Rank (SJR): 1.043
When authors co-submit and publish a data article in Data in Brief, it appears on ScienceDirect linked to the original research article in this journal.
When authors co-submit and publish a method article in MethodsX, it appears on ScienceDirect linked to the original research article in this journal.
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has...
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today. We welcome manuscripts presenting cutting-edge research, of either an experimental or a theoretical nature. While centered in chemical engineering, manuscripts will often have scope that cuts across disciplines, ranges across scales, from the molecular level to the plant level, with impact not only on specific research questions but also in global issues. Critical reviews of cutting-edge developments are also considered. Papers submitted to Chemical Engineering Science are assessed by the editorial board via a thorough peer-review process only with regard to their quality and potential for fundamental and long-lasting contribution to chemical engineering. Chemical Engineering Science classifies research into the following main fields: . Application areas covered by the journal include Chemicals, Minerals, Energy and Fuels, Water, Environment, Sustainability, Food, Medicine including Pharmaceuticals, and other areas to which chemical engineering applies.
Mahmood K.H. AL-Mashhadani
| Stephen J. Wilkinson
José Danglad-Flores
| Stephan Eickelmann
| A. J?rke
P. Basa?ová
| J. Pi?lová
M. Ross Kunz
| Tammie Borders
Y.Y. Liang
| G.A. Fimbres Weihs
Fausto Gallucci
| Ekain Fernandez
| J. R. Third
Experimental and kinetic modeling study of NH3-SCR of NOx on Fe-ZSM-5, Cu-chabazite and combined Fe- and Cu-zeolite monolithic catalysts
Pranit S. Metkar
| Michael P. Harold
R.J.W. Voncken
| I. Roghair
H. Aslannejad
| H. Fathi
Javier Cardona
| Carla Ferreira
This journal has partnered with Heliyon, an open access journal from Elsevier publishing quality peer reviewed research across all disciplines. Heliyon&s team of experts provides editorial excellence, fast publication, and high visibility for your paper. Authors can quickly and easily transfer their research from a Partner Journal to Heliyon without the need to edit, reformat or resubmit.
&Learn more at
Free online access to featured articles until 1st February 2018
Free online access to featured articles until 1st November 2017
A joint Virtual Special Issue of Chemical Engineering Science, Powder Technology and Particuology
Free online access until September 11 2016
Benoit Haut
| Arnaud Cockx
David F. Fletcher
| Niels G. Deen
Find out how you can benefit from volunteering your time and expertise as a peer reviewer<meta name="keywords" content="超级电容器,MnO2电极,电极材料,比容量,循环寿命," />
<meta name="DC.Title" content="纳米MnO2超级电容器的研究" />
<meta name="citation_title" xml:lang="cn" content="纳米MnO2超级电容器的研究" />
<meta name="DC.Keywords" xml:lang="cn" content="超级电容器,MnO2电极,电极材料,比容量,循环寿命,"/>
<meta name="citation_title" xml:lang="en" content="Research on Nanophase MnO2 for Electrochemical Supercapacitor" />
<meta name="DC.Keywords" xml:lang="en" content="Supercapacitor,MnO2 electrode,Electrode material,Specific capacitance,Cycle life,"/>
纳米MnO2超级电容器的研究
: 286-288&&&&DOI: 10.3866/PKU.WHXB
纳米MnO2超级电容器的研究
张宝宏;张娜
哈尔滨工程大学化学工程系,黑龙江
哈尔滨 150001
Research on Nanophase MnO2 for Electrochemical Supercapacitor
Zhang Bao-HZhang Na
Department of Chemical Engineering, Harbin Engineering University,Harbin, 150001
(1397 KB) &
摘要: 用固相合成法制备纳米MnO2,作为超级电容器材料,通过循环伏安、交流阻抗与恒电流充放电等测试手段对MnO2电极进行分析.结果表明,以1 mol&#8226;L-1 KOH为电解液, MnO2电极在-0.1~0.6 V(vs. Hg/HgO)的电压范围内具有良好的法拉第电容性能.在不同电流密度下,电极比容量达240.25到325.21 F&#8226;g-1.恒电流充放电5000次后,电极容量衰减不超过10%.
Abstract: The nanophase MnO2 was synthesized by solid-phase reaction as electrode material for electrochemical supercapacitor and the MnO2 electrode was tested by cyclic voltammetry(CV),electrochemical impedance spectrometry (EIS) and constant charge-discharge curves. The result shows that MnO2 electrode has good performance of faradic pseudocapacitance in 1mol&#8226;L-1 KOH between -0.1 and 0.6 V(vs Hg/HgO). The electrode can provide a specific capacitance of 240.25 to 325.21 F&#8226;g-1 at different current densities. After 5000 cycles of constant charge-discharge the capacitance reduces no more than 10%.
Key words:
<input type="hidden" value="我在《物理化学学报》上发现了关于“纳米MnO2超级电容器的研究”的文章,特向您推荐。请打开下面的网址:http://www.whxb.pku.edu.cn/CN/abstract/abstract23113.shtml" name="neirong">
<input type="hidden" name="title" value="纳米MnO2超级电容器的研究">
作者相关文章  
张宝宏;张娜. 纳米MnO2超级电容器的研究[J]. 物理化学学报, ): 286-288, 10.3866/PKU.WHXB
Zhang Bao-HZhang Na. Research on Nanophase MnO2 for Electrochemical Supercapacitor. Acta Phys. -Chim. Sin., ): 286-288, 10.3866/PKU.WHXB.
杨化超, 薄拯, 帅骁睿, 严建华, 岑可法. [J]. 物理化学学报, ): 200-207.
神祥艳,何建江,王宁,黄长水. [J]. 物理化学学报, ): .
王海燕,石高全. [J]. 物理化学学报, ): 22-35.
杜惟实,吕耀康,蔡志威,张诚. [J]. 物理化学学报, ): .
廖春荣,熊峰,李贤军,吴义强,罗勇锋. [J]. 物理化学学报, ): 329-343.
吴中,张新波. [J]. 物理化学学报, ): 305-313.
李道琰,张基琛,王志勇,金先波. [J]. 物理化学学报, ): .
余翠平,王岩,崔接武,刘家琴,吴玉程. [J]. 物理化学学报, ): .
李雪芹,常琳,赵慎龙,郝昌龙,陆晨光,朱以华,唐智勇. [J]. 物理化学学报, ): 130-148.
孙猛,李景虹. [J]. 物理化学学报, ): 198-210.
DAWUT Gulbahar,卢勇,赵庆,梁静,陶占良,陈军. [J]. 物理化学学报, ): .
周晓,孙敏强,王庚超. [J]. 物理化学学报, ): 975-982.
王永芳,左宋林. [J]. 物理化学学报, ): 481-492.
林有铖,钟新仙,黄寒星,王红强,冯崎鹏,李庆余. [J]. 物理化学学报, ): 474-480.
李亚捷,倪星元,沈军,刘冬,刘念平,周小卫. [J]. 物理化学学报, ): 493-502.Simon P, Gogotsi Y. Materials for electrochemical capacitors [J]. Nature Materials, ): 845-854.
Xu B, Yue S F, Sui Z Y, et al. What is the choice for supercapacitors: graphene or graphene oxide? [J]. Energy & Environmental Science, ): .
Conway B E. Electrochemical Supercapacitors: Scientific fundamentals and technological applications [B]. Plenum Publishers, New York, 1999.
Conway B E. Transition from supercapacitor to battery behavior in electrochemical energy storage [J]. Journal of The Electrochemical Society, ): .
Camara O R, Trasatti S. Surface electrochemical properties of Ti/(RuO2 + ZrO2) electrodes [J]. Electrochimica Acta, ): 419-422.
Yan J, Wang Q, Wei T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities [J]. Advanced Energy Materials, ): 1300816.
Wang D W, Li F, Wu Z S, et al. Electrochemical interfacial capacitance in multilayer grapheme sheets: dependence on number of stacking layers [J]. Electrochemistry Communications, ): .
Liu Y X, Li J, Lai Y Q, et al. Preparation and properties of pith carbon supercapacitor [J]. Journal of Central South University of Technology, ): 601-606.
Yan J, Fan Z J, Wei T, et al. Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities [J]. Journal of Power Sources, ): .
Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin?. Science, 10-1211.
Fan Z J, Yan J, Wei T, et al. Asymmetric supercapacitors based on graphene/MnO2and activated carbon nanofiber electrodes with high power and energy density [J]. Advanced Functional Materials, ): .
Wang R T, Yan X B. Superior asymmetric supercapacitor based on Ni-Co oxide nanosheets and carbon nanorods [J]. Scientific Reports, 12.
Shang P, Zhang J N, Tang W T, et al. 2D thin nanoflakes assembled on mesoporous carbon nanorods for enhancing electrocatalysis and for improving asymmetric supercapacitor [J]. Advanced Functional Materials, ): .
Chen Y, Zhang X, Zhang D C, et al. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes [J]. Carbon, ):573-580.
Liu C G, Yu Z N, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy density [J]. Nano Letters, ): .
Sudhan N, Subramani K, Karnan M, et al. Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and nonaqueous electrolytes [J]. Energy & Fuels, ): 977-985.
Yuan C Z, Hou L R, Li D K, et al. Unusual electrochemical behavior of Ru-Cr binary oxide-based aqueous symmetric supercapacitors in KOH solution [J]. Electrochimica Acta, 8.
Zhang X, Peng C, Wang R T, et al. High-performance supercapacitors based on novel carbons derived from Sterculia lychnophora [J]. RSC Advances, ): .
Chen J S, Guan C, Gui Y, et al. Rational Design of Self-Supported Ni3S2 Nanosheets Array for Advanced Asymmetric Supercapacitor with a Superior Energy Density [J]. ACS Applied Materials & Interfaces, ): 496-504.
Cai Y J, Luo Y, Xiao Y, et al. Facile synthesis of three-dimensional heteroatom-doped and hierarchical egg-box-like carbons derived from moringa oleifera branches for high-performance supercapacitors [J]. ACS Applied Materials & Interfaces, ): .
Hsu Y K, Chen Y C, Lin Y G, et al. High-cell-voltage supercapacitor of carbon nanotube/carbon cloth operating in neutral aqueous solution [J]. Journal of Materials Chemistry, ): .
Fic K, Lota G, Meller M, et al. Novel insight into neutral medium as electrolyte for high-voltage supercapacitors [J]. Energy & Environmental Science, ): 。
Jabeen N, Hussain A, Xia Q Y, et al. Aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays [J]. Advanced Materials, 4, DOI: 10.1002/ADMA..
Lang J W, Yan X B, Liu W W, et al. Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes [J]. Journal of Power Sources, : 220-229.
Sun X Z, Zhang X, Zhang H T, et al. A comparative study of activated carbon-based symmetric supercapacitors in Li2SO4 and KOH aqueous electrolytes [J]. Journal of Solid State Electrochemistry, ): .
Bai S Y, Tan G Q, Li X Q, et al. Pumpkin-derived porous carbon for supercapacitors with high performance [J]. Chemistry-An Asian Journal, ): .
Chen C, Yu D F, Zhao G Y, et al. Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapaciotrs [J]. Nano Energy, 7-389.
Zhang C Y, Zhu X H, Cao M, et al. Hierarchical porous carbon materials derived from sheep manure for high-capacity supercapacitors [J]. ChemSusChem, ): 932-937.
Wei X J, Li Y B, Gao S Y. Biomass-derived interconnected carbon nanoring electrochemical capacitors with high performance in both strongly acidic and alkaline electrolytes [J]. Journal of Materials Chemistry A, ): 181-188.
Wang R T, Wang P Y, Yan X B, et al. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance [J]. ACS Applied Materials & Interfaces, ): .
Peng C, Yan X B, Wang R T, et al. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes [J]. Electrochimica Acta, 1-408.
Ou Y J, Peng C, Lang J W, et al. Hierarchical porous activated carbon produced from spinach leaves as an electrode material for an electric double layer capacitor [J]. New Carbon Materials, ): 209-215.
Zhang X, Peng C, Wang R T, et al. High-performance supercapacitors based on novel carbons derived from Sterculia lychnophora [J]. RSC Advances, ): .
Peng C, Lang J W, Xu S, et al. Oxygen-enriched activated carbons from pomelo peel in high energy density supercapacitors [J]. RSC Advances, ): .
Geng Z R, Wang H, Wang R T, et al. Facile synthesis of hierarchical porous carbon for supercapacitor with enhanced electrochemical performance [J]. Materials Letters, : 1-5.
Wang R T, Lang J W, Yan X B. Effect of surface area and heteroatom of porous carbon materials on electrochemical capacitance in aqueous and organic electrolytes [J]. Science China Chemistry, ): .
Zhang Y, Liu S S, Zheng X Y, et al. Biomass organs control the porosity of their pyrolyzed carbon [J]. Advanced Functional Materials, ): 1604687.
Jeon J W, Sharma R, Meduri P, et al. In situ one-dtep dynthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors [J]. ACS Applied Materials & Interfaces, ): .
Atchudan R, Edison T N J I, Perumal S, et al. Green synthesis of nitrogen-doped graphitic carbon sheets with use of Prunus persica for supercapacitor applications [J]. Applied Surface Science, : 276-286.
Yang X W, He Y S, Jiang G P, et al. High voltage supercapacitors using hydrated grapheme film in a neutral aqueous electrolyte [J]. Electrochemistry Communications, ): .
Duan B, Gao X, Yao X, et al. Unique elastic N-doped carbon naofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors [J]. Nano Energy, 2-491.
Lin T Q, Chen I W, Liu F X, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage [J]. Science, 67): .
Zhi J, Deng S, Wang Y F, et al. Highly ordered metal oxide nanorods inside mesoporous silica supported carbon nanomembrances: high performance electrode materials for symmetrical supercapacitor devices [J]. The Journal of Physical Chemistry C, ): .
Zhi J, Reiser O, Huang F. Hierarchical MnO2 Spheres Decorated by Carbon-coated cobalt nanobeads: low-cost and high-performance electrode materials for supercapacitors [J]. ACS Applied Materials & Interfaces, ): .
Keskinen J, Tuurala S, Sj&din M, et al. Asymmetric and symmetric supercapacitors based on polypyrrole and activated carbon electrodes [J]. Synthetic Metals, : 192-199.
Lukatskaya M R, Mashtalir O, Ren C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide [J]. Science, 53): .
Rakhi R B, Ahmed B, Anjum D, et al. Direct chemical sythesis of MnO2 nanowhisker on transition metal carbide surfaces for supercapacitor applications [J]. ACS Applied Materials & Interfaces, ): .
Lang J W, Kong L B, Liu M, et al. Asymmetric supercapacitors based on stabilized &-Ni(OH)2 and activated carbon [J]. Journal of Solid State Electrochemistry, ): .
Jin W H, Gao G T, Sun J Y. Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution [J]. Journal of Power Sources, ): 686-691.
Lin Y P, Wu N L. Characterization of MnFe2O4/LiMn2O4 aqueous asymmetric supercapacitor [J]. Journal of Power Sources, ): 851-854.
Meng G, Yang Q, Wu X C, et al. Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor [J]. Nano Energy, 1-839.
Che H W, Liu A F, Mu J B, et al. Facile synthesis of flower-like NixCo3-xO4 (0&x&1.5) microstructures as high-performance electrode materials for supercapacitors [J]. Electrochimica Acta, : 283-291.
Sun S M, Wang S, Li S D, et al. Asymmetric supercapacitors based on a NiCo2O4/three dimensional grapheme composite and three dimensional graphene with high energy density [J]. Journal of Materials Chemistry A, ): .
Yue S H, Tong H, Lu L, et al. Hierarchical NiCo2O4 nanosheets/nitrogen doped graphene/carbon nanotube film with ultrahigh capacitance and long cycle stability as a flexible binder-free electrode for supercapacitors [J]. Journal of Materials Chemistry A, ): 689-698.
Xiong Q Q, Zheng C, Chi H Z, et al. Reconstruction of TiO2/MnO2-C nanotube/nanoflake core/shell arrays as high-performance supercapacitor electrodes [J]. Nanotechnology, ): pp).
Zhang Z Q, Zhang H D, Zhang X Y, et al. Facile synthesis of hierarchical CoMoO4@NiMoO4 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors [J]. Journal of Materials Chemistry A, ): .
Zhang J, Zhang G F, Luo W H, et al. Graphitic carbon coated CuO hollow nanospheres with penetrated mesochannels for high-performance asymmetric supercapacitors [J]. ACS Sustainable Chemistry & Engineering, ): 105-111.
Liu L, Lang J W, Zhang P, et al. Facile synthesis of Fe2O3 nano-dots@nitrogen-doped graphene for supercpacitor electrode with ultralong cycle Life in KOH Electrolyte [J]. ACS Applied Materials & Interfaces, ): .
Su Y, Zhitomirsky I. Asymmetric electrochemical supercapacitor, based on polypyrrole coated carbon nanotube electrodes [J]. Applied Energy, : 48-55.
Chen J S, Guan C, Gui Y, et al. Rational design of self-supported Ni3S2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density [J]. ACS Applied Materials & Interfaces, ): 496-504.
Liu Y H, Wang R T, Yan X B. Synergistic effect between ultra-small nickel hydroxide nanoparticles and reduced graphene oxide sheets for the application in high-performance asymmetric supercapacitor [J]. Scientific Reports, 095.
Guo B S, Yang Y Y, Hu Z G, et al. Redox-active organic molecules functionalized nitrogen-doped porous carbon derived from metal-organic framework as electrode materials for supercapacitor [J]. Electrochimica Acta, : 74-84.
Wang J Y, Dou W, Zhang X T, et al. Embedded Ag quantum dots into interconnected Co3O4 nanosheets grown on 3D graphene networks for high stable and flexible supercapacitor [J]. Electrochimica Acta, : 260-268.
Zhai T, Wan L M, Sun S, et al. Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors [J]. Advanced Materials, ): -8).
Nagamuthu S, Vijayakumar S, Lee S H, et al. Hybrid supercapaciotr devices based on MnCo2O4 as the positive electrode and FeMn2O4 as the negative electrode [J]. Applied Surface Science, : 202-208.
Li T, Zhang W L, Zhi L, et al. High-energy asymmetric electrochemical capacitors based on oxides functionalized hollow carbon fibers electrodes [J]. Nano Energy, -17.
Wang R T, Yan X B, Lang J W, et al. A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials [J]. Journal of Materials Chemistry A, ): .
Zhang Y, Zu L, Lian H Q, et al. An ultrahigh performance supercapacitors based on simultaneous redox in both electrode and electrolyte [J]. Journal of Alloys and Compounds, : 136-144.
Zakhidov A A, Suh D S, Kuznetsov A A, et al. Electrochemically tuned properties for electrolyte-free carbon nanotube sheets [J]. Advanced Functional Materials, ): .
Weng Z, Li F, Wang D W, et al. Controlled electrochemical charge injection to maximize the energy density of supercapacitors [J]. Angewandte Chemie International Edition, ): .
Lin Z Y, Yan X B, Lang J W, et al. Adjusting electrode initial potential to obtain high-performance asymmetric supercapacitor based on porous vanadium pentoxide nanotubes and activated carbon nanorods [J]. Journal of Power Sources, : 358-364.
Zhu YW, Murali S, Stoller MD, et al. Carbon-based supercapacitors produced by activation of graphene [J]. Science, 37): .
Zhang H, Zhang X, Sun X, et al. Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide [J]. Scientific Repprts, 34.
Liu W W, Yan X B, Lang J W, et al. Supercapacitors based on grapheme nanosheets using different non-aqueous electrolyte [J]. New Journal of Chemistry, ): .
Shi M J, Kou S Z, Yan X B. Engineering the electrochemical capacitive properties of graphene sheets in ionic-liquid electrolytes by correct selection of anions [J]. ChemSusChem, ): .
Liu W W, Yan X B, Lang J W, et al. Electrochemical behavior of graphene nanosheets in alkylimidazolium tetrafluoroborate ionic liquid electrolytes: influences of organic solvents and the alkyl chains [J]. Journal of Materials Chemistry, ), .
Liu W W, Yan X B, Lang J W, et al. Effects of concentration and temperature of EMIMBF4/acetonitrile electrolyte on the supercapacitive behavior of graphene nanosheets [J]. Journal of Materials Chemistry, ), .
An Y F, Yang Y Y, Hu Z A, et al. High-performance symmetric supercapacitors based on carbon nanosheets framework with grapheme hydrogel architecture derived from cellulose acetate [J]. Journal of Power Sources, : 45-53.
Wu G, Tan P F, Wang D X, et al. High-performance supercapacitors based on electrochemical-induced vertical-aligned carbon nanotubes and polyaniline nanocomposite electrodes [J]. Scientific Reports, 676.
Tong L Y, Liu J, Boyer S M, et al. Vapor-phase polymerized poly(3,4-ethylenedioxythiophene) (PEDOT)/TiO2 composite fibers as electrode materials for supercapacitors [J]. Electrochimica Acta, : 133-141.
Kim M, Oh I, Kim J. Porous silicon carbide flakes derived from waste silicon wafer for electrochemical supercapacitor [J]. Chemical Engineering Journal, : 170-179.
Xia X H, Zhan J Y, Zhong Y, et al. Single-crystalline, metallic TiC nanowires for highly robust and wide-temperature electrochemical energy storage [J]. Small, 2016, DOI: 10.1002/smll..
Wang J, Tang J, Ding B, et al. Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials [J]. Nature Communications, 717.
Rochefort D, Pont A L. Pseudocapacitive behavior of RuO2 in a proton exchenge ionic liquid [J]. Electrochemistry Communications, ): .
Chang J K, Lee M T, Cheng C W, et al. Pseudocapacitive behavior of Mn oxide in aprotic 1-ethyl-3-methylimidazolium-dicyanamide ionic liquid [J]. Journal of Materials Chemistry, ): .
Makino S, Takasu Y, Sugimoto W. Electrochemical capacitor properties of NiO in ionic liquids [J]. Chemistry Letters, ): 544-545.
Sun G H, Li K X, Sun C G, et al. Physical and electrochemical characterization of CuO-doped activated carbon in ionic liquid [J]. Electrochimica Acta, ): .
Wei D, Scherer M R, Bower C, et al. A nanostructured electrochromic supercpacitor [J]. Nano Letters, ): .
Egashira M, Saito W, Tokita M, et al. Electrode properties of nickel phthalocyanine/carbon nanotube composite in ionic liquid electrolyte [J]. Electrochemistry, ): 783-786.
Paravannoor A, Nair S V, Pattathil P, et al. High voltage supercapacitors based on carbon-grafted NiO nanowires interfaced with an aprotic ionic liquid [J]. Chemical Communications, ): .
Zhang X, Zhao DD, Zhao Y Q, et al. High performance asymmetric supercapacitor based on MnO2 electrode in ionic liquid electrolyte [J]. Journal of Materials Chemistry A, ): .
Wang H Q, Li Z S, Huang Y G, et al. A novel hybrid supercapacitor based on spherical activated carbon and spherical MnO2 in a non-aqueous electrolyte [J]. Journal of Materials Chemistry, ): .
Cheng Q, Tang J, Shinya N, et al. Co(OH)2 nanosheet-decorated graphene-CNT composite for supercapacitors of high energy density [J]. Science and Technology of Advanced Materials, ): pp).
Zhu X L, Zhang P, Xu S, et al. Free-standing three-dimensional graphene/manganese oxide hybrids as binder-free electrode materials for energy storage application [J]. ACS Applied Materials & Interfaces, ): .
Sun S X, Lang J W, Wang R T, et al. Identifying pseudocapacitance of Fe2O3 in an ionic liquid and its application in asymmetric supercapacitors [J], Journal of Materials Chemistry A, ): .
Shen B S, Zhang X, Guo R S, et al. Carbon encapsulated RuO2 nano-dots anchoring on graphene as an electrode for asymmetric supercapacitors with ultralong cycle life in an ionic liquid electrolyte [J]. Journal of Materials Chemistry A, ): .
Jung S, Lee J, Hyeon T, et al. Fabric-based integrated energy devices for wearable activity monitors [J]. Advanced Materials, ): .
Jost K, Durkin D P, Haverhals L M, et al. Natural fiber welded electrode yarns for knittable textile supercapacitors [J]. Advanced Energy Materials, ): 1401286.
Zhu J, Tang S C, Wu J, et al. Wearable high-performance supercapacitors based on silver-sputtered textiles with FeCo2S4-NiCo2S3 composite nanotube-built multitripod architectures as advanced flexible electrodes [J]. Advanced Energy Materials, ): 1601234.
Choi C, Kim K M, Kim K J, et al. Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors [J]. Nature Communications, 811.
Liu W W, Feng Y Q, Yan X B, et al. Superior micro-supercapacitors based on graphene quantum Dots [J]. Advanced Functional Materials, ): .
Liu W W, Feng Y Q, Chen J T, et la. Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers [J]. Nanoscale, ): .
Li N, Zhi C Y, Zhang H Y. High-performance transparent and flexible asymmetric supercapacitor based on graphene-wrapped amorphous FeOOH nanowire and Co(OH)2 nanosheet transparent films produced at air-water interface [J]. Electrochimica Acta, : 618-627.
Ma W J, Chen S H, Yang S Y, et al. Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density [J]. Carbon, : 151-158.
Lin R, Zhu Z H, Yu X, et al. Facile synthesis of TiO2/Mn3O4 hierarchical structures for fiber-shaped flexible asymmetric supercapacitors with ultrahigh stability and tailorable performance [J]. Journal of Materials Chemistry A, ): 814-821.
Kim B C, Too C O, Kwon J S, et al. A flexible capacitor based on conducting polymer electrode [J]. ): .
Zhao Q, Wang G X, Yan K P, et al. Binder-free porous PEDOT electrodes for flexible supercapacitors [J]. Journal of Applied Polymer Science, ): 42549.
Barbosa P C, Rodrigues L C, Silva M M, et al. Characterization of pTMCnLiPF6 solid polymer electrolytes [J]. Solid State Ionics, ): 39-42.
P&rez-Madrigal M M, Edo M G, D&az A, et al. Poly-&-glutamic Acid Hydrogels as Electrolyte for Poly(3,4-ethylenedioxythiophene)]-Based Supercapacitors [J]. The Journal of Physical Chemistry C, ): .
Shi M J, Kou S Z, Shen B S, et al. Improving the performance of all-solid-state supercapacitors by modifying ionic liquid gel electrolytes with graphene nanosheets prepared by arc-discharge [J]. Chinese Chemical Letters, ): 859-864.
Shen B S, Guo R S, Lang J W, et al. A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic liquid electrolyte [J]. Journal of Materials Chemistry A, ): .
Deng J, Zhang Y, Zhao Y, et al. A shape-memory supercapacitor fiber [J]. Angewandte Chemie International Edition, ): .
Zhong J, Meng J, Yang Z, et al. Shape memory fiber supercapacitors [J]. Nano Energy, 0-338.
Huang Y, Zhu M, Pei Z, et al. A shape memory supercapacitor and its application in smart energy storage textile [J]. Journal of Materials Chemistry A, ): .
Liu L Y, Shen B S, Jiang D, et al. Watchband-like supercapacitors with body temperature inducible shape memory ability [J]. Advanced Energy Materials, ): 1600763.
Hu L H, Wu F Y, Lin C T, et al. Graphene-modified LiFePO4 cathode for lithium ion battery beyond [J]. Nature Communications, ): 1687.
Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begins? [J]. Science, 76): .
Choi N S, Chen Z, Freunberger S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors [J], Angewandte Chemie International Edition, ): .
郑宗敏, 张鹏, 阎兴斌, 锂离子混合超级电容器电极材料研究进展[J]. 科学通报, ): .
Kim H, Cho M Y, Kim M H, et al. A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode [J]. Laser Physics Review, ): .
Naoi K. ?Nanohybrid Capacitor?: The next generation electrochemical capacitors [J]. Fuel Cells, ): 825-833.
Aravindan V, Gnanaraj J, Lee Y S, et al. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chemical Reviews, ): .
Lee J H, Shin W H, Ryou M H, et al. Functionalized graphene for high performance lithium ion capacitors. ChemSusChem, ): .
Stoller M D, Murali S, Quarles N, et al. Activated graphene as cathode material for Li-ion hybrid supercapacitors [J]. Physical Chemistry Chemical Physics, ): .
Lee S W, Yabuuchi N, Gallant B M, et al. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nature Nanotechnology, ): 531-537.
Li B, Dai F, Xiao Q. F, et al. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor [J]. Energy & Environmental Science, ): 102-106.
Li B, Dai F, Xiao Q F, et al. Activated carbon from biomass transfer for high-energy density lithium-ion supercapacitors [J]. Advanced Energy Materials, ): 1600802.
Naoi K, Ishimoto S, Miyamoto J, et al. Second generation &nanohybrid supercapacitor&: evolution of capacitive energy storage devices [J]. Energy Environmental Science, ): .
Tang G, Cao L J, Xiao P, et al. A novel high energy hybrid Li-ion capacitor with a three-dimensional hierarchical ternary nanostructure of hydrogen-treated TiO2 nanoparticles/conductive polymer/carbon nanotubes anode and an activated carbon cathode [J]. Journal of Power Sources, : 1-7.
Khomenkoa V, Raymundo-Pi&ero E, B&guin F. High-energy density graphite/AC capacitor in organic electrolyte [J]. Journal of Power Sources, ), 643-651.
Naoi K, Ishimoto S, Isobe Y, et al. High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors [J]. Journal of Power Sources, ): .
Lei Y, Huang Z H, Yang Y, et al. Porous mesocarbon microbeads with graphitic shells: constructing a high-rate, high-capacity cathode for hybrid supercapacitor [J]. Scientific Reports, ): 2477.
Leng K, Zhang F, Zhang L, et al. Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance [J]. Nano Research, ): 581-592.
Lim E, Kim H, Jo C, et al. Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode [J]. ACS Nano, ): .
Liu S N, Zhou J, Cai Z Y, et al. Nb2O5 quantum dots embedded in MOF derived nitrogen-doped porous carbon for advanced hybrid supercapacitor applications [J]. Journal of Materials Chemistry A, ): 17838.
Song H, Fu J J, Ding K, et al. Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors [J]. Journal of Power Sources, : 599-606.
Wang P Y, Wang R T, Lang J W, et al. Porous niobium nitride as a capacitive anode material for advanced Li-ion hybrid capacitor with superior cycling stability [J]. Journal of Materials Chemistry A, ): .
Yang M, Zhong Y, Ren J J, et al. Fabrication of high-power Li-Ion hybrid supercapacitors by enhancing the exterior surface charge storage [J]. Advanced Energy Materials, 00550.
Wang R T, Liu P, Lang J W, et al. Coupling effect between ultra-small Mn3O4 nanoparticles and porous carbon microrods for hybrid supercapacitors [J]. Energy Storage Materials, -60.
Choi H J, Kim J H, Kim H K, et al. Improving the eletrochemical performance of hybrid supercapacitor using well-organized urchin-like TiO2 and activated Carbon [J]. Electrochimica Acta, : 202-210.
Liu W W, Li J D, Feng K, et al. Advanced Li-Ion hybrid supercapacitors based on 3D graphene-foam composites [J]. ACS Applied Materials & Interfaces, ): .
Chen K F, Xue D F. High energy density hybrid supercapacitor: in-situ functionalization of vanadium-based colloidal cathode [J]. ACS Applied Materials & Interfaces, ): .
Wang R T, Lang J W, Zhang P, et al. Fast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitors [J]. Advanced Functional Materials, ): .
Come J, Naguib M, Rozier P, et al. A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode [J]. Journal of The Electrochemical Society, ): A.
Zhang J, Wu H Z, Wang J, et al. Pre-lithiation design and lithium ion intercalation plateaus utilization of mesocarbon microbeads anode for lithium-ion capacitor [J]. Electrochimica Acta, : 156-164.
Zhang J, Shi Z Q, Wang C Y. Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical peiformance of lithium-ion capacitors [J]. Electrochimica Acta, ): 22-28.
袁美蓉, 刘伟强, 朱永法, 等. 负极嵌锂方式对锂离子电容器性能的影响[J]. 材料导报, ): 14-16.
Park M S, Lim Y G, Kim J H, et al. A Novel Lithium-Doping Approach for an advanced Lithium Ion Capacitor [J]. Advanced Energy Materials, ): .
张祺,张苗苗,孟琳. [J]. 电化学, ): 1-.
谭杰成,田艳红,张学军,樊开乐. [J]. 电化学, ): 22-.
廖群,张曙枫,冷文华. [J]. 电化学, ): 22-.
李照华,徐蛟龙,吴
婷. [J]. 电化学, ): 3-.
王元有, 刘亚楠. [J]. 电化学, ): 5-.
胡燚,何湘柱, 邓忠德,孔令涌,尚伟丽. [J]. 电化学, ): 9-.
何亚宁,袁亮, 丁治英,刘士军. [J]. 电化学, ): 1-.
张秋红,申保收,左宋林,卫歆雨. [J]. 电化学, ): 1-.
王新,熊云杰,邹亮亮,黄庆红,邹志青,杨辉. [J]. 电化学, ): 619-626.
姜孟秀,张晶,李月华,张蓉. [J]. 电化学, ): 1-.
邹涛,易清风,张媛媛,刘小平,徐国荣,聂会东,周秀林. [J]. 电化学, ): 1-.
秦建新,林
峰,刘文平,陈
超,任孟德. [J]. 电化学, ): 1-.
刘兴亮,杨茂萍,汪伟伟, 曹勇. [J]. 电化学, ): 13-.
庄 林. [J]. 电化学, ): 724-725.
张校刚. [J]. 电化学, ): 495-496.
版权所有 & 2011 《电化学》编辑部
通信地址:厦门大学D信箱 邮编:361005 电话: 传真: E-mail:dianhx@xmu.edu.cn
本系统由设计开发 技术支持:

我要回帖

更多关于 超级电容器的应用 的文章

 

随机推荐