轴类零件为什么选用调质处理状态

登录龙源账号
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选50.100或500的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章可打印,杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
大直径轴类零件调质工艺研究与改进
【摘 要】轴类零件通常在比较大的动载荷作用下工作,它们承受着拉伸、压缩、弯曲、扭转或剪切的作用,并且轴承位表面还要有一定的硬度,有利于后续的磨削加工,所以此类零件常通过调质处理来增强其性能。由于尺寸效应,大直径轴类零件淬火后并不能得到马氏体组织(根据淬火后的硬度值对比其半马氏体硬度值得出)。本文介绍了正火+改进后的调质工艺的具体实施方案,并在生产中得到了很好的应用。(剩余2393字)
( &&&欢迎:,,)
畅销排行榜
山东工业技术 2016年09期
山东工业技术 2014年09期
山东工业技术 2014年18期
山东工业技术 2014年01期
山东工业技术 2017年09期
山东工业技术 2016年03期
山东工业技术 2014年12期
山东工业技术 2015年22期
山东工业技术 2017年11期
山东工业技术 2017年01期
邮箱/用户名
还没有龙源账户?君,已阅读到文档的结尾了呢~~
轴类热处理、45钢、调质处理
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
轴类热处理、45钢、调质处理专辑
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口1调质钢;含碳量0.30%~0.50%的中碳结构钢与中碳低;通俗地讲,淬透性是钢材能够被淬透的能力接受淬火成;调质效果与淬透性有着密切关系,淬得越透,心部得到;设计零件选用调质材料时,必须考虑钢件淬透性与调质;根据零件工作条件,分析受力情况,确定正常运行所要;紧固螺栓、连杠等杠类零件,主要工作于拉(压)应力;曲轴、主轴等轴类工件工作于弯曲、扭转应力状态,最;
含碳量0.30%~0.50%的中碳结构钢与中碳低合金结构钢经调质后具有良好的综合机械性能,即具有较高的抗拉强度,σb=700~1100 MPa,又具有较高的塑韧性(伸长率)δ=8%~10%,不收缩率ψ=45%~55%,冲击值αk=60~100 J/cm2。调质是指中碳(低合金)结构钢先进行淬火得马氏体组织(或马氏体为主体的组织),尔后再550~650 ℃高温回火得回火索氏体组织。同一轴径选用不同钢材的工件采用不同调质工艺处理至同一硬度,得到的机械性能产生差异;不同轴径选用同一钢材的工件采用相同的调质工艺处理,各自的机械性能也产生差异,这一现象的产生是钢材淬透性这一特性造成的。
通俗地讲,淬透性是钢材能够被淬透的能力接受淬火成马氏体的能力。淬透性与工件截面厚度有一定关系,即所谓尺寸效应,截面尺寸增大,淬透层深度减小。合金结构钢较碳素结构钢的淬透性高。40Cr、35CrMo等合金结构钢较40、45碳素钢的淬透层的截面相应增大。如全淬透截面尺寸:45钢水淬12~18 mm,油淬5~8 mm,淬透已不易;40Cr钢油淬18~32 mm;35CrMo钢油淬25~40 mm。而40Cr钢50 mm料油淬工件表面15~8 mm淬硬已较难,60~70 mm工件油淬则几乎无淬硬层。
调质效果与淬透性有着密切关系,淬得越透,心部得到的马氏体量越多,调质处理后的综合机械性能也越好,若零件尺寸超出全淬透尺寸,调质后其屈服强度σs、伸长率δ、不数缩率ψ、冲击值αk等都要降低,其降低程度随淬透层深度的减小而增大,乃至调质性能接近正火状态,调质就失去其提高性能的意义了。
设计零件选用调质材料时,必须考虑钢件淬透性与调质零件坯料尺寸的协调关系,保证工件调质热处理后达到要求的机械性能,对钻机关键部件尤应如此。要注意的是一些机械设计手册上有关钢材调质机械性能数据σs、αk等大多是在完全淬透(标有标准试样尺寸)的条件下得到的,工件实际能达到的机械性能往往要比此值低,乃至相差甚远。
根据零件工作条件,分析受力情况,确定正常运行所要求的机械性能是选材的主要依据。
紧固螺栓、连杠等杠类零件,主要工作于拉(压)应力状态,整个截面受到较均匀的拉(压)应力,为此,其整个截面必须淬透,保证性能达到一致。如在动态下工作,且受力较大的拉杠与六角螺栓(12~18 mm)用淬透性好的40Cr钢进行调质,而不采用45钢,避免了不能完全保证心部淬透而造成对性能的不良影响。对25~30 mm柴油机连杠不采用40Cr钢,而用淬透性更好的42CrMo钢进行调质,也是基于上述截面性能一致的理由。
曲轴、主轴等轴类工件工作于弯曲、扭转应力状态,最大复合应力发生在轴外缘,而心部很小,为此,表面强度要求高些,调质轴表面3R/4~R/2淬硬即可,不必全截面淬透。如钻机中16~22 mm轴径,不直接传动负荷的光轴。用45钢调质至HB241~286,局部要求耐磨再进行高频表面淬火,完全可满足使用的性能要求,而没必要采用价格高的40Cr钢,乃至35CrMo钢进行同样的热处理。对负荷较大的轴必须保证轴径3R/4~R/2表层部分淬硬,如钻机中的输出轴,轴径≤42 mm,采用40Cr钢调质硬度HB217~255或HB241~286(有的在花键部分高频表面淬火),使用情况良好。而48~60 mm的40Cr钢输出轴,经同样热处理至表面相同硬度,但使用中易发生塑性扭曲变形而过早失效。原因在于后者不能做到截面3R/4以上表层淬硬,乃至有时(因钢材成分波动等原因)表面也难淬硬(HRC<45),随着淬透层的减少,调质后屈强比σs/σb显著下降,弯曲强度σbb也降低,达不到要求的强度设计值。至于屈服强度σs为轴类零件主要设计指标,且尺寸和质量大小又有所限制时,应选淬透性好的材料,以保证性能要求。48~60 mm负荷较重的输出轴,应采用淬透性好的35CrMo钢取代 40Cr钢进行调质。
齿轮类工件主要工作于交变压应力与弯曲应力状态,要求齿部有较多的接触疲劳强度与弯曲疲劳强度,而调质件的疲劳极限随淬火马氏体量的增多而提高,为此要做到全齿部位截面淬透,保证达到调质齿轮要求的机械性能。鉴于不完全淬透对机械性能的影响,对负荷较轻、模数m≤4的低速从动齿轮采用45钢调质;而对负荷相对较重,有一定冲击的齿轮采用40Cr钢调质;转速提高,要求一定耐磨性时则进行齿廓部位高频淬火。钻机中有些齿宽B≥40 mm,模数m=4~5的齿轮,特别是轴齿轮,采用40Cr钢调质再高频表面淬火,使用中常发生断齿、齿扭曲变形等过早失效现象。齿轮要求强度的同时,还得有一定塑韧性配合,对此,用淬透性好的35CrMo、40CrNi等钢取代40Cr钢调质会改变效果(高频淬火保证齿沟硬化)。当然,对一些冲击较大的此类大负荷齿轮改用20CrMnTi钢渗碳淬大,效果会更佳。
同种钢材的各种调质零件,在淬透性满足要求的前提下,根据不同的使用强度要求,提出不同的调质硬度值,只要塑韧指标保证在要求的范围(强度与硬度成正比,塑韧性随硬度的提高而下降),充分发挥材料强度的潜力。42 mm的输出轴、过桥轴、40Cr钢调质硬度HB217~255,使用中相对易弯曲失效,将其调质硬度提高至HB241~286,效果明显得到改观。又如模数m=3的大齿轮,45钢调质硬度HB217~255,与高频淬火的40Cr钢小齿轮配对传动,使用中易齿面麻点、剥落、损坏、失效,将其调质硬度提高至HB241~286,小齿轮高频淬火硬度由HRC48~55调整至HRC45~50,达到较好效果。
选用调质钢时,在淬透性满足要求的前提下,也要考虑降低材料使用成本和加工成本。低合金结构钢与碳素结构钢在完全淬透的情况下,经高温回火到相同硬度时,两者的强度相近,塑韧性相差无几,此时,一般考虑用碳素结构钢,而不用合金结构钢。如小的定位销、撑脚、螺栓等常用45钢调质。轴类、齿轮类部分截面淬透即可满足性能要求,而不必选用全截面淬透钢材;在淬透性满足性能要求时,提高调质硬度满足较高负荷,而不是更换淬透性更好但价格高的材料,或是增大截面尺寸浪费材料。
在此值得提出商榷的两点;
(1)有的钻机20~40 mm销轴用35CrMo钢调质,硬度HB207~269。从销轴使用性能看,应是较高的强度,不是过多的塑韧性,以增加抗剪切与挤弯的能力。一般用35、45碳素钢(大截面或冲击较大时用30CrMnSi钢)等价格较低的钢,热处理硬度HRC30~45。若硬度HB207~269的强度下适合销轴的使用要求,则40Cr钢调质的强韧性不会比35CrMo钢差,45钢调质也可胜任了。
(2)一些钻机中轴径60 mm的花键轴,卷扬轴采用价格贵、罕用、淬透性较40Cr钢差的30CrMnTi钢,调质硬度HB230~270。其坯料调质淬火时表面淬硬HRC≥42也较难达到,3R/4 轴径表层基本无淬硬层,回火到HB230~270的硬度并不能表明其达到设计要求的机械性能。该钢主要用于大截面(工件壁厚>35 mm)渗碳淬火负荷工件。用于较大负荷大轴径调质轴似乎失去其使用价值,且不能胜任。此时应考虑采用淬透性好的价格相对低些的35CrMo、42CrMo、35CrMnMo等钢,调质后保证淬透层达R/2处,能胜任大扭力矩与疲劳极限及一定的冲击负荷。若实际负荷较小,可考虑减小轴径,或采用40Cr钢,以节约材料成本。
调质选材时热处理工艺性也应加以考虑。如小孔径内花键轴套、内齿轮等调质件,鉴于内孔淬火冷却差,影响其内孔淬透层深度,从而使其运行机械性能降低,应选用淬透性相对较好的钢材,保证调质达到要求的性能。又如碳钢壁薄(壁厚<10 mm)的钢套及形状复杂截面悬殊的盘套,调质淬火变形大,易发生开裂,改用40Cr钢调质效果较好。
20、20Cr、20CrMnTi等含碳量为0.15%~0.25%的低碳(低合金)钢,经渗碳热处理后,表面(0.5~2.0 mm)含碳量达0.8%~1.05%,而心部仍保持原含碳量。淬火并低温回火后,表面组织为高碳马氏体与碳化物组成,硬度高(HRC55~65)、耐磨;心部组织为低碳马氏体或低碳马氏体与铁素体等组成,硬度低(HRC<43),保持较高的塑韧性。广泛用于要求表面耐磨、心部韧的零件。
15、20等低碳钢,因淬透性差,渗碳淬火后心部强度低。只适宜用于表面耐磨、截荷小、冲击轻微、心部不需要较高强度的小工件,如轴套、链条、小水阀等。
零件表面要求耐磨,心部又要求有良好的强韧性,常采用20Cr、20CrMnTi钢等淬透性较好的低合金渗碳钢。如长期在摩擦条件下工作,承受一定交变负荷和冲击负荷的活塞销、销轴等常采用20Cr钢渗碳淬火;对交变负荷重、冲击较大的钻机齿轮(截面≤30~35 mm),则采用20CrMnTi钢渗碳淬火。20CrMnTi钢渗碳淬火晶粒细小,淬透性好,且热处理变形小,可保证心部得到以低碳马氏体为主体的组织,心部强度高(HRC30~43),同时又有较高的塑韧性(αk≥100
J/cm2);对负荷更重的大截面(工件壁厚≥35~40 mm)的渗碳齿轮,可同重型拖拉机、汽车一样,采用30CrMnTi钢,保证心部较高强度,且心部与渗碳层过渡区的强度也较高。
低碳钢渗碳淬火与中碳钢调质(正火)高频表面淬火,虽二者都是提高零件表面硬度、耐磨性及疲劳强度,但使用时应有区分。一般讲,低碳钢淬火主要用于σb=700~1000 MPa的较大负荷及冲击较大、中低速的齿轮,花键轴类等钻机零件;而中碳钢高频表面淬火则用于相对负荷较轻(400~700 MPa),冲击较小的齿轮、轴类等零件。因中碳马氏体的高频淬火层的耐磨性及调质心部的强韧性均较低碳钢渗碳淬火的渗碳层及低碳马氏体心部的为低。此外,受高频淬火工艺的影响,较大模数(m=5~6)重载齿轮及锥形伞齿轮,齿面高频淬火层沿齿廓分布而无法完成;尤以大锥齿轮两弧齿面硬度差值大,使用中常发生断齿等过早损坏现象,影响了钻机的正常运行。对此,应考虑采用20CrMnTi钢渗碳淬火取代40Cr钢调质与高频淬火,虽然制造成本高了些,但一顶几用,还是利大于弊。
氮化运用问题。氮化工件具有表面硬度高,耐磨性好,抗蚀性强及较高的疲劳强度,特别是热处理变形小等特点。主要用于高速下相对滑动,易发生干摩擦的二个精密零件,如机床主轴、镗杆等;要求高抗蚀性与热硬性的模具(压铸模)挤压蜗杆等。对钻机中交变负荷较重,转速相对较低,振动较大,要求高的弯曲强度及接触疲劳强度的齿轮是不适用的。钻机齿轮用40Cr钢调质后氮化取代
20CrMnTi钢渗碳淬火,事实证明,得不偿失。氮化层薄(厚度<0.7 mm),且脆,心部调质强度不足以支撑沉重的硬化层,使用中极易压碎、剥落,特别是钻机齿轮最需要的接触疲劳强度比渗碳淬火的低得多。若有些零件确需耗时50 h以上的氮化来提高质量,选用广泛使用的30CrMoAl钢为佳。
3.1 低碳马氏体
低碳钢淬火,低温回火后的低碳马氏体组织,具有较高的硬度(HRC30~45)与强度,又有较高的塑韧性,特别是材料强度与塑性复合抗力指标断裂韧性KIC也高。而中碳钢淬火后随回火温度(中高温)的降低,硬度与强度提高,但塑韧性下降,断裂韧性KIC也随着下降。在较高强度(HRC>30)时,其断裂韧性与塑韧性均较低碳钢淬火的低得多。
钻机中有些螺栓、销子、垫圈等零件要求较高强度,常采用45钢或40Cr钢,热处理硬度HRC35~45,但使用效果并不理想,常发生过早断裂失效。对此类热处理为最后一道工序,要求中硬度(HRC32~45)及断裂韧性KIC也较高的零件,采用15MnVB等低碳钢淬火,低温回火到要求的硬度,提高了零件使用寿命,
钻机中换挡拔叉,一般形状比较复杂,惯用成型简单的铸钢ZG45制造,热处理后使用总的讲还可以。但一些换挡频繁,扭力较大的拔叉常易断叉损坏,对此应考虑用锻钢取代,以提高质量。因铸钢的成分波动大,夹杂、偏析、疏松等缺陷难以避免,各向异性明显,其机械性能达不到要求。
3.3 球墨铸铁
球墨铸铁具有良好的消震性,高耐磨性、切削加工性好,特别是零件成型简单,成本低。钻机中一些要求一定强度(σb<600 MPa)与耐磨性,冲击值不大
2(αk≤30~50 J/cm),锻钢成型加工复杂的零件,如曲轴、连杠等采用球墨铸铁
制造,达到经济实用的效果。设计零件采用球墨铸铁制造代替锻钢,充分利用其耐压、耐弯、耐磨、造型简单的特长,如活塞环、缸筒等也可加以运用,保证质量、降低成本。同时,应注意的是石墨对基体连续性有一定中断作用,对零件强韧性有一定影响,在动态下工作,尤其承受抗拉、冲击负荷较大的关键部件应慎用。
(1)调质件淬透层的深浅,决定其机械性能的高低。
(2)钻机零件根据服役条件选用调质钢材,必须考虑工件截面尺寸对淬透性的影响。在淬透层达到要求的前提下进行调质方可得到要求的机械性能。同时调整调质硬度的高低,满足不同的使用强度要求。
(3)渗碳钢选材也以淬透性为主,心部要求较高强韧性,一般选用低碳合金钢,否则选用低碳钢。
(4)充分发挥材料的潜力,尽量选用符合零件性能要求的材料,以提高经济效益。
要求: 40Cr、40MnB、42MnVB 调质或正火,感应加热表面淬火,低温回火,时效,HRC50-55
6.条件: 中速、中载或低速、重载,如车床变速箱中的次要齿轮
要求: 45 高频淬火,350-370℃回火,HRC40-45(无高频设备时,可采用快速加热齿面淬火)
7.条件: 中速、重载
要求: 40Cr、40MnB(40MnVB、42CrMo、40CrMnMo、40CrMnMoVBA)淬火,中温回火,HRC45-50.
8.条件: 高速、轻载或高速、中载,有冲击的小齿轮
要求: 15、20、20Cr、20MnVB渗碳,淬火,低温回火,HRC56-62.38CrAl 38CrMoAl 渗氮,渗氮深度0.5mm,HV900
9.条件: 高速、中载,无猛烈冲击,如机床主轴轮.
要求: 40Cr、40MnB、(40MnVB)高频淬火,HRC50-55.
10.条件: 高速、中载、有冲击、外形复杂和重要齿轮,如汽车变速箱齿轮(20CrMnTi淬透性较高,过热敏感性小,渗碳速度快,过渡层均匀,渗碳后直接淬火变形较小,正火后切削加工性良好,低温冲击韧性也较好)
要求: 20Cr、20Mn2B、20MnVB渗碳,淬火,低温回火或渗碳后高频淬火,HRC56-62.
18CrMnTi、20CrMnTi(锻造→正火→加工齿轮→局部镀同→渗碳、预冷淬火、低温回火→磨齿→喷丸)渗碳层深度1.2-1.6mm,齿轮硬度
HRC58-60,心部硬度HRC25-35.表面:回火马氏体+残余奥氏体+碳化物.中心:索氏体+细珠光体
11.条件: 高速、重载、有冲击、模数<5
要求: 20Cr、20Mn2B 渗碳、淬火、低温回火,HRG56-62.
三亿文库包含各类专业文献、应用写作文书、文学作品欣赏、外语学习资料、生活休闲娱乐、中学教育、各类资格考试、78零件材料的选用等内容。 
 设计零件选用调质材料时,必须考虑钢件淬透性与调质零件坯料尺寸的协调关系,保证工件调质热 处理后达到要求的机械性能,对钻机关键部件尤应如此。要注意的是一些机械...  典型零件材料选择、成形工艺、热处理及组织性能摘要 材料是人类生产和社会发展的重要物质基础,也是我们日常生活基本资源中不可分 割的一个组成部分。材料的应用和发展...  机械零件的常用材料及选择_材料科学_工程科技_专业资料。机械零件的常用材料及选择一、机械零件的常用材料机械零件所使用的材料是多种多样的,但是金属材料,尤其是黑色...  机械零件材料选用 原则要考虑三个方面的要求: 1、使用要求(首要考虑) : 1)零件的工况(震动,冲击,高温,低温,高速,高载都应当慎重对待) ; 2)对零件尺寸和质量...  常用机械零件材料选择论文_机械/仪表_工程科技_专业资料。常用机械零件材料的选择 [摘要]文章分析了机械零件材料选择的基本要求,阐述了零件 材料选择的基本方法。对常...  成型零部件材料选用_机械/仪表_工程科技_专业资料。设计必看成型零部件材料选用 1、定义成型零部件指与塑料直接接触而成型制品的模具零部件,如型腔、型芯、滑块、镶...  毕业设计图纸中的零件材料选用指南机械学院各专业的学生通过“机械制造基础”和“机械设计”等课程的学习 已经从理论和有限的实例中了解了机械工程常用的以钢铁为主的...  若零件主要满足强度要求,且尺寸和重量又有所限制时,则选用强 度较高的材料;若零件的接触应力较高,如齿轮和滚动轴承,则应选用可进行表面强化 的材料;在高温度下...  金属工艺学电子教案(23)【课题编号】 23-12.1 【课题名称】 零件材料的选用及热处理 【教材版本】 郁兆昌主编.中等职业教育国家规划教材―金属工艺学(工程技术类...关于轴类件感应加热调质的研究,你知道多少?-全自动智能化IGBT感应加热设备制造商
关于轴类件感应加热调质的研究,你知道多少?
添加时间: 09:26:02 点击量:
&&& 随着人们生活水平的提高,对于生活质量也有新的要求。同样的对轴类零件也具有了新的要求,耐磨、漂亮的零件更加的受到消费者的认可,调质处理无疑是一种较为理想的处理方式。
&&& 根据小编我的总结调质的方式有多种,其中电阻炉加热方式的传统调质处理是最常见的,但电阻炉加热也存在弊端。而采用感应加热方式的调质处理在国内不多见,但因其环保、节能性好的优点,在国外已得到了较为广泛的应用。电阻炉调质主要有以下缺点:1、保温时间长,氧化脱碳多。2、台车炉加热变形量大。3、劳动强度大,需要操作人员多。4、炉子耗能大。5、质量稳定性差。
一、台车炉调质现状
&&& 图1为经台车炉调质后的长杆类零件,可明显看到表面大量的花斑状氧化皮。图2可见长杆类零件调质后严重的&S&变形与&麻花&变形。
&&& 氧化脱碳多不仅造成材料的浪费,更是带来了一系列问题:一方面淬火水槽因为大量的粉末状氧化铁皮(见图3),需要定期将水槽中的水抽干清理出氧化铁皮。氧化铁皮过多容易导致水泵堵塞和水流速度减缓,降低淬火效果;另一方面由于材料氧化脱碳,需要在粗加工时增加加工余量,无形之中增加车削环节的工作量。
&&& 台车炉调质后拉杆变形的问题更是长期困扰热处理企业的一大难题。如图2 的变形量,校直工人需要对拉杆多点反复进行校直才能达到规定的直线度要求。由于第一次变形量大,有些轴杆零件在第一次校直去应力后,往往会反弹。需要进行二次校直和去应力,浪费大量的人力和物力。图4是2013年6月份,我们在车间实地跟踪记录的长杆类零件调质后变形及去应力次数数据。跟踪的总根数为13根,调质后所有拉杆均需校直,经第一次校直后去应力成功的只有4根,第二次校直去应力的到达9根之多。
&&& 虽然经过技术人员不断的努力改进,变形的现象在2013年下半年有较大改观,然而由于受条件限制,在淬火冷却环节发生的不可避免的组织转变不均性叠加一起,势必造成变形的不可控性,呈无规律分布,难以彻底根除。与此同时,由于台车炉密封性能差,工作在台车炉中加热和保温时间长,氧化脱碳的情况较为严重。
&&& 为减少氧化脱碳,常用的方法是在加热过程中使用保护N2等气氛。但在每月24h*30d的不间断生产情况下,加N2保护气氛会导致成本非常高昂以及实际换气操作的复杂。再加上台车炉需要不断进出炉,导致每次进出炉均需要重新加保护气氛,既影响生产效率,又消耗大量的N2.
&&& 因此我们寻求一种能解决变形和氧化这两大难题的调质处理方法,关注这个行业的最新进展,发现国外有资料介绍应用感应加热技术成功进行实心棒料调质处理的案例,目前最大直径能处理到160mm,而国内相关报道较少。
二、感应加热技术应用于调质处理的理论可行性&
&&& 感应热处理是利用电磁感应的方法使得被加热工件内部产生涡流,依靠这些涡流的能量达到加热目的,在进行保温、冷却的热处理方法。一直以来在表面处理领域被广泛应用。
&&& 感应加热的主要依据是:电磁感应、趋肤效应和热传导三项基本原理。感应加热时,工件中电流强度自表面向心部呈指数规律衰减,这也是为什么感应淬火时工件表面瞬间能到达高温,而心部仍然处于低温状态的原因。频率越高,此现象越明显。当加热层深度为热态电流透入深度的40%到50%时,加热的总效率最高。零件在热态的透热深度与频率的简化关系为:&800 =& 500/&f
&&& 若想实现感应加热调质,那么透热深度需达到轴类件的全截面,即零件全透热,从以上公式明显可看出设备频率须保持较低水平。加热设备无法达到低频率,也可通过反复感应加热来将表面的涡流能量不断向内部渗透并结合热传导原理不断使内部到达高温,但这种方式显然会造成较长加热时间以及氧化现象。
&&& 因此,设备应优先选择中频机或工(低)频机,只有这样,工件到达奥氏体化温度的时间才会比台车炉加热短很多,减少氧化脱碳,可以节省毛坯加工余量,精简现有的加工方式。
&&& 鉴于设备实际频率不可能无限小,当f = 100Hz时,&=50mm。目前国际上已经应用直径200&&300mm的大型轴类件的感应加热,但直径增大,对设备的功率、能耗等均提出了很高的要求。倘若选择合适的频率,配备不同电源,感应圈制成多组线圈式,分段进行加热,工件呈流水线生产,在加热段后面喷上环形喷液圈,使得工件可以对称冷却,尽可能使得工件在径向同步冷却。冷却后再配备多组回火感应器,直接进行感应加热回火。图5是国外一家公司感应加热调质生产线的示意。
&&& 调质生产线的组成,从左到右的布局为:①上料工位。②感应加热,奥氏体化。③喷淋工位。④感应加热回火和保温区域。⑤冷却卸料台。这是一条在国际上也比较先进的生产线,据获悉在美国、韩国等也已经投入生产使用。
三、试验数据以及力学性能比较&
试样材料:42CrMo,尺寸规格:120mm*500mm。
1、外协厂家淬火机床试验&
&&& 感应调质试验首先在外协厂家的淬火机床上展开。图6和图7分别为淬火前和淬火时的照片。设备电源频率20&&30KHz,感应器为单圈感应器,且喷水圈和加热圈为一体式,这种感应器结构适合做表面淬火,不太适合做深层加热。在有限的条件情况下,我们尝试尽最大可能地是淬火层变深,选择了非常小的比功率。具体工艺参数见表1。
表1 试验工艺参数
感应器直径
&&& 经回火后试样如图8、图9所示,端面出现了环裂现象,经与国外先进机床制造公司的工程师沟通,这是感应调质不可避免的现象,感应调质生产线在生产过程中也一直存在这种现象,径向深度在10mm左右,轴向深度也是10mm左右。因此根据实际生产经验,要求厂家原材料长度大于4000m,一般选择国内钢厂的标准长度6000mm,整根棒料经感应调质后再进行锯割等处理,这样有利于减少端部废料的产生。
&&& 图10和图11为试样的金相组织,从图可知本次试验淬火深度不足10mm.总结失败原因:不仅因为电源频率过高,更主要原因是感应器的设计问题,喷水圈和加热圈未设计成分体式,这样导致难以连续对试样进行加热,做不到模拟调质生产线时的加热状态。另外,感应器喷水孔呈单排排布,内接进水口只有2个,这样也导致在加热后,工件内部冷却难以实现快速冷却。
2、国内专业厂家试验&
&&&& 由于受限有条件的限制,以致在外协单位淬火试验的失败,我们和国内专业厂家进行合作试验,采用现有的感应淬火机床模拟感应调质的加热及回火,冷却采用浸液冷却。图12为试样的加热状态,可明显看到试样上部已完全透热,呈现漂亮的金黄色。图13为切取的试块。表2和表3 分别为淬火、回火工艺参数,图14为试样沿截面的硬度梯度。
表2 感应加热工艺参数
表3 感应回火工艺参数
&&& 由图14不难看出,工件淬硬层已大于40mm.表面层的硬度稍低是由于表面存在少量脱碳。后经金相显微镜观察,距表面45mm处的金相组织为索氏体,无游离铁素体。图15为试样近表面的金相组织,显示为纯回火索氏体。图16为试样距表面50mm的金相组织,显示为少量回火索氏体与大量的贝氏体,但没有出现游离铁素体组织。按我厂调质标准,其调质深度已超过50mm,基本已淬透。随后,我们对试样进行了线切割取样,做了力学性能试验,结果见表4,可以看到性能较为稳定。
表4& 力学性能数据
断后伸长率
断面收缩率
冲走吸收能量Akv/J
3、国外专业厂家试验&
&&&& 我们采集了一组国外的专业厂家的试验数据与2013年相同规格试样台车炉调质后采集的数据做对比分析。两者材料牌号稍有不同,但化学成分基本一致,具体材料成分见表5.表6为炉子调质与感应加热调质的力学性能比较。
表5& 试样材料化学成分(质量分数)
表6& 炉子调质和感应调质力学性能比较
断后伸长率
断面收缩率
冲走吸收能量Akv/J
取样参考标准
&&& 由表6不难看出,由于42CrMoS4采用的是感应调质,虽然调质硬度较我们单位的更高,而断面收缩率和冲击吸收能量也旗鼓相当。这和感应淬火的特性相关,感应淬火件属于瞬间到温,快速冷却,其淬火后的晶粒比炉子调质更细,硬度较普通淬火要高2&&3HRC,回火后材料的塑韧性自然更高。
四、感应调质本土化的可行性&
1、感应调质的适用范围与设备布置&
&&& 感应调质适用于中小直径的轴类零件进行流水线生产。因此,对于直径过大或数量较少的零件,不推荐采用感应调质。要求直径≦160mm为宜。
&&& 由于感应调质采用的是生产线模式,需要不小的占地面积。40000mm*10000mm的区域,可以满足布置一条标准的感应调质生产线。
2、感应调质所需的先决条件
&&& 当前的长杆零件是先将原材料粗加工后进行炉子调质,形状如图17所示。而感应调质需要的为圆棒料,因此,进行感应调质的前提是去除凹槽以及端部的凸起部分。解决这一问题的办法是将当前的模式改为钢厂标准6m长圆棒料先进行感应调质,在进行锯割和机加工。
&&&& 1、感应加热技术应用于中小径轴杆件的调质从技术上是可以实现的,而且已在国外广泛应用,国内的东北特钢大连基地已有一条感应调质生产线。
&&&& 2、感应调质后零件的力学性能并不亚于甚至优于电阻炉的调质,硬度的均匀性也更好。根据现场观察,感应调质后零件的变形量也远小于电阻炉调质。
&&& 3、结合实际生产及试验数据,感应调质生产线适用于直径≦120mm的轴类零件,更具经济合理性。&本文由河北恒远厂家编制,转载时请注明出处:&
转载文章请注明出处:
轴类热处理加热炉由恒远机电专业生
我公司研发制造的新一代智能型串联
远拓坚持以优质的品质,严谨的制造
,, ,—网站备案/许可证号:冀ICP备号-7
地址:河北省沧州市吴桥县经济开发区嘉陵江路 咨询热线:、79205
技术支持:

我要回帖

更多关于 45钢调质硬度 的文章

 

随机推荐