ansys workbench mesh杆系结构怎么mesh的

ansys :check mesh 后怎么处理
检查出某些小的体连接处出现问…_ansys吧_百度贴吧
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&签到排名:今日本吧第个签到,本吧因你更精彩,明天继续来努力!
本吧签到人数:0成为超级会员,使用一键签到本月漏签0次!成为超级会员,赠送8张补签卡连续签到:天&&累计签到:天超级会员单次开通12个月以上,赠送连续签到卡3张
关注:49,282贴子:
ansys :check mesh 后怎么处理
检查出某些小的体连接处出现问…收藏
ansys软件中国区合作伙伴,东南亚地区22多年服务支持经验,专业的技术团队为客户提供ANSYS产品的全面解决方案.免费咨询热线:021-
这东西是啥啊
我也有兴趣 可以给我模型吗
是容差设置有问题吗 。。。这是什么啊?我也有兴趣,可以给我模型吗
尼玛 这不是振动筛箱模型吗?
你有直线振动筛的图纸吗?可否发给我一份
CAD里把模型修改下,作图精度问题。用CAD中的布尔加法后,如果能形成一个整体并且没有丢失实体,你导入到ANSYS里一定能划分网格,ANSYS网格容错率还是非常高的。
在模型导入ANSYS时仅保留实体特征,尽量把其余面、线等特征提前消除掉
楼主 请问 你是怎么解决的呢? 我划分网格check mesh后 也有几个这样的单元
登录百度帐号推荐应用
为兴趣而生,贴吧更懂你。或温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!&&|&&
LOFTER精选
网易考拉推荐
用微信&&“扫一扫”
将文章分享到朋友圈。
用易信&&“扫一扫”
将文章分享到朋友圈。
&&&& 内力均相对单元坐标系,单元各边内力相同,为该单元单位长度上的内力,如 Mx 的单位为“力×长度/长度”,如需该单元的总弯矩则再乘以单元边长即可。&&& 在实际工程结构中,如板梁或箱梁结构采用板壳单元时,常常需要获取某个截面的内力,但是板壳单元不能直接获取这些内力,此时就必须通过计算获取。截面内力计算可通过路径积分法或单元节点力求和法。下面以悬臂板梁为例采用单元节点力求和法说明其计算方法和过程。&&&&&&& !& EX6.16& 悬臂板梁内力计算&&&&&&& !& 采用 SHELL93 单元&&&&&&& finish& $ /clear& $ /prep7& $ l=4& $ t=0.02& $ b=1.8& $ blc4,,,l,b& $ et,1,shell93&&&&&&& mp,ex,1,2.1e11& $ mp,prxy,1,0.3& $ r,1,t& $ esize,0.2& $ mshkey,1& $ amesh,all&&&&&&& dl,4,,all& $ sfa,all,2,pres,1000& $ /solu& $ solve& $ /post1&&&&&&& !& 定义单元表&&&&&&& etable,mytx,smisc,1& $ etable,myty,smisc,2& $ etable,mytxy,smisc,3&&&&&&& etable,mymx,smisc,4& $ etable,mymy,smisc,5& $ etable,mymxy,smisc,6&&&&&&& etable,mynx,smisc,7& $ etable,myny,smisc,8&&&&&&& !& 该方法极为简单,其内力计算基于单元节点力,内力可分别基于总体直角坐标系(缺省)或 RSYS。具体方法是如求 L/2 截面的内力,&&&&&&& !& 可选择该截面的节点及其一侧的单元,然后指定力矩点执行 FSUM 即可。&&&&&&& nsel,s,loc,x,l/2-0.2,l/2 !选择l/2截面及其一侧单元的节点(用于选择单元)&&&&&&& esln,,1 !选择包含上述节点的单元(即上述节点确定的单元)&&&&&&& nsel,r,loc,x,l/2 !再从中选择l/2截面的所有节点&&&&&&& spoint,,l/2,b/2 !指定力矩求和点(l/2截面与板横向中心)&&&&&&& fsum !节点力求和
4.&& 节点偏置&&& 当节点表示的不是单元中面位置时,就需要采用节点偏置。&&& 可采用节点偏置的板壳单元只有层壳单元 SHELL91 和 SHELL99。&&& 节点偏置可用于不同厚度板壳结构、与梁单元混合建模、与实体单元混合建模等情况。
6.5& 实体结构
一、& 施加载荷
&&& 理论上实体单元可用于任何结构的分析,当结构不宜采用梁杆单元和板壳单元时,可采用实体单元模拟结构的行为。
1.&& 局部表面荷载&&& 对实体的整个面施加表面荷载比较简单,但有时需要在某个面的局部范围施加表面荷载,如桥墩支座、大梁传递于柱顶的荷载、轮压荷载等。此时可采用两个方法,一是在表面创建荷载作用的局部几何面;二是控制单元划分精度保证在荷载作用面的范围内生成单元。显然第一种方法比较简单,可创建任何形状的几何面。
2.&& 表面切向荷载&&& “表面效应单元”可施加任意方向的荷载,可利用该单元施加表面切向分布荷载。首先生成实体有限元模型,然后在实体单元表面上生成表面效应单元,再将荷载施加到表面效应单元即可。&&& 2D 表面效应单元是一条线,有两节点和三节点两种,3D 表面效应单元是一个面,有 4 节点和 8 节点两种,可根据不同的实体单元选择其 KEYOPT 参数,以配合使用。
二、& 后处理技术
1.&& 任意点应力的获取&&& 有时需要知道任意坐标位置(X,Y,Z)处的应力,该位置可能不在单元的结果点或节点上,无法直接获得该位置的应力,此时可以通过编程计算获得。计算原理为在坐标点定义很小的路径,将某个结果数据映射到路径上,而路径上的应力最大值即为所求。
&&&&&&& !EX6.23 3D实体单元任意点应力&&&&&&& finish& $ /post1&&&&&&& x1=2& $ y1=2& $ z1=10& $ e0=0.00001&&&&&&&&&&&&&&&& ! 定义任意点的 X,Y,Z 坐标&&&&&&& path,path1,2&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ! 定义路径名&&&&&&& ppath,1,,x1-e0,y1-e0,z1& $ ppath,2,,x1,y1,z1&&&&& &! 定义路径几何&&&&&&& pdef,sx,s,x,avg& $ *get,asx,path,,max,sx&&&&&&&&&&&& & ! 映射并获取 Sx 赋予变量 ASX&&&&&&& pdef,sy,s,y,avg& $ *get,asy,path,,max,sy&&&&&&&&&&&&& ! 映射并获取 Sy 赋予变量 ASy&&&&&&& pdef,sz,s,z,avg& $ *get,asz,path,,max,sz&&&&&&&&&&&&&& ! 映射并获取 Sz 赋予变量 ASz&&&&&&& pdef,sxy,s,xy,avg& $ *get,asxy,path,,max,sxy&&&&&&& ! 映并获取 Sxy 赋予变量 ASxy&&&&&&& pdef,syz,s,yz,avg& $ *get,asyz,path,,max,syz&&&&&&& ! 映并获取 Syz 赋予变量 ASyz&&&&&&& pdef,sxz,s,xz,avg& $ *get,asxz,path,,max,sxz&&&&&&&& ! 映并获取 Sxz 赋予变量 ASxz&&&&&&& pdef,s1,s,1,avg& $ *get,as1,path,,max,s1&&&&&&&&&&& &! 映射并获取 S1 赋予变量 AS1&&&&&&& pdef,s2,s,2,avg& $ *get,as2,path,,max,s2&&&&&&&&&&& &! 映射并获取 S2 赋予变量 AS2&&&&&&& pdef,s3,s,3,avg& $ *get,as3,path,,max,s3&&&&&&&& &&& ! 映射并获取 S3 赋予变量 AS3&&&&&&& pdef,sint,s,int,avg& $ *get,asint,path,,max,sint&&&&& ! 映射并获取 Sint 赋予变量 ASint&&&&&&& pdef,seqv,s,eqv,avg& $ *get,ase,path,,max,seqv& ! 映射并获取 Seqv 赋予变量 ASe&&&&&&& *status&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& !列出变量
2.&& 路径的应用&&& 利用路径可列表和图形显示沿某条线(路径)的某个结果分量。很多时候,需要沿着某条线的应力和位移等分布情况,这时就可采用路径技术,并可对路径结果进行各种计算。
3.&& 切面应力&&& 当需要 3D 实体结构内部的任意剖面应力分布时,可采用切面技术和面操作技术两种。&&& 切面操作技术中,切面的定义采用 /CPLANE 命令,切面的显示方式可采用 /TYPE 命令定义。因工作平面既可移动也可旋转,因此通常以工作平面定义为基础定义切面。但是尽管切面所显示的模型不同,但显示的结果范围(云图颜色标识)是相同的,不是基于切面而是基于所选择的整个模型,因此只有通过人工调整云图的大小范围才能取得比较好的显示效果。
三、& 内力计算
&&& 正如板壳单元内力一样,很多情况下也需要 3D 实体结构的截面内力,但 3D 实体单元不能直接得到截面内力。&&& 通常 3D 实体单元截面内力有三种求法:截面分块积分法、面操作法、单元节点力求和法。&&& 截面分块积分法和面操作法可求得任意截面上的近似内力。&&& 单元节点力求和法与板壳单元中的方法相同,即通过选择节点和单元,然后对单元节点力求和即可得到某个截面的内力。但该法需要所求内力的截面为一列单元的边界,或者说截面不穿过单元(节点分布在截面上),这样所求截面内力是精确的。&&&&&&& finish& $ /clear& $ /prep7&&&&&&& et,1,solid95& $ mp,ex,1,2e11& $ mp,prxy,1,0.3&&&&&&&&&&& &&&&&&&& ! 定义单元类型、材料特性&&&&&&& blc4,2,3,0.2,0.3,4& $ da,2,all& $ fk,1,fy,-2e4& $ fk,3,fy,-2e4&&&&&&& !& 创建几何模型、加约束和荷载&&&&&&& fk,3,fx,0.8e4& $ fk,4,fx,0.8e4& $ sfa,1,1,pres,1e6&&&&&&&&&&&& &&&& ! 施加荷载&&&&&&& esize,0.05& $ vmesh,all& $ finish& $ /solu& $ solve&&&&&&&&&&&&&&&&& ! 生成有限元模型并求解&&&&&&& finish& $ /post1&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ! 进入后处理层
&&&&&&& nsel,s,loc,z,2,2+0.05& $ esln,,1&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ! 选择 1/2L 截面及截面右侧的节点和单元&&&&&&& nsel,r,loc,z,2&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ! 从中再选择 1/2l 截面的节点&&&&&&& spoint,,2.1,3.15,2&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ! 指定力矩求和中心(1/2l 截面的中心)&&&&&&& fsum&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&! 单元节点力求和,并给出列表结果&&&&&&& !& 结果分别为 FX=-16000,FY=40000,FZ=-60000&&&&&&& !& MX=80000,MY=32000,MZ=-0.&&& 除 MZ 很小可忽略外,其余与理论值完全相等,这是截面分块积分法和面操作法不可比的,并且可以看出该方法的求解及其简单。但对于复杂结构由于单元划分控制不可能那么好,就不如面操作法准确,除非在划分单元时就决定求解内力的截面,然后将几何实体在此位置切分。
6.6&& 杆梁壳体的连接处理
&&& 实际工程结构常常需要采用杆单元、梁单元、板壳单元及实体单元(简称为“杆梁壳体”)等的组合模拟,这就需要考虑各种单元间的连接。尽管大部分不同种类单元的自由度是相同的,但有些自由度则不同。&&& 当不同种类单元的自由度相同时,采用共用节点即可;而当不同种类单元的自由度不同时则需要建立“约束方程”。单元自由度异同有两个含义,即单元自由度个数和自由度物理意义。本节讨论不同种类单元连接时的处理。
一、& 约束方程的建立
&&& 约束方程是一种联系自由度值的线性方程,其形式如下:
&&&&&&&&&&&&&&&&&&&&&&
&&& 式中: U(I) 为自由度项, Coefficent(I) 为自由度项的系数, N 为方程中项的编号。约束方程可代替自由度耦合,比自由度耦合更加通用。
&&& 约束方程的建立有多种方法。
&&&&&&&&&&&&&&&&&&&&&&
&1.&& 直接生成约束方程&&& 命令:CE, NEQN, CONST, NODE1, Lab1, C1, NODE2, Lab2, C2, NODE3, Lab3, C3&&&&&&& NEQN - 约束方程编号,其值可取:&&&&&&&&&&& =N:任意编号;&&&&&&&&&&& =HIGH(缺省):既有约束方程的最高编号;&&&&&&&&&&& =NEXT:既有约束方程的最高编号 +1,为自动编号。&&&&&&& CONST - 方程的常数项,即上式中的左端项。&&&&&&& NODE1 - 约束方程第一项的节点号,若为 -NODE1 则从约束方程中删除该项(可用于修改)。&&&&&&& Lab1 - 第一项的节点自由度标识符,结构分析可为平动自由度&&&&&&&&&&& UX、UY、UZ 及转动自由度 ROTX、ROTY、ROTZ。&&&&&&& C1 - 约束方程第一项的系数,若为 0 则不计该项。&&&&&&& NODE2,Lab2,C2 - 约束方程第二项的节点编号、自由度标识符、系数。&&&&&&& NODE3,Lab3,C3 - 约束方程第三项的节点编号、自由度标识符、系数。&&& 当某个约束方程中的项数多于三项时,重复执行 CE 命令向该约束方程中增加其他项;若修改约束方程的常数项,则采用不带节点参数的 CE 命令。求解期间只能修改约束方程的常数项,且仅可采用 CECMOD 命令修改。
&&& 建立约束方程需要注意的几个问题:&&&&&&& ① 约束方程中的第一项为特殊自由度,该自由度不能包含在耦合节点集、约束位移集或主自由度集中,否则将被删除。如果该特殊自由度包含在其它约束方程中,程序会根据其他项自由度进行调整,即将该特殊自由度与第二项或第三项交换,交换出现冲突时将删除该特殊项。&&&&&&& ②& 约束方程中的所有项不能包含在耦合自由度集中。&&&&&&& ③& 同一自由度可以包含在多个约束方程中,但必须谨慎,以防出现不相容的约束方程。&&&&&&& ④& 约束方程中的自由度必须是模型中存在的,且节点也必须是单元节点,不能是孤立节点。&&&&&&& ⑤& 所有约束方程都基于小变形和小应变理论,当在大变形或大应变分析中使用时,应当只约束那些自由度方向为小变形和小应变的方向。&&&&&&& ⑥& 与耦合自由度相同,约束方程也可能产生不可预料的反作用力和节点力。&&&&&&& ⑦& 自由度与当前节点坐标系相关,如可将节点坐标系与总体柱坐标系一致等。
2.&& 在界面上自动生成约束方程&&& 命令:CEINTF, TOLER, DOF1, DOF2, DOF3, DOF4, DOF5, DOF6, MoveTol&&&&&&& TOLER - 单元选择容差,缺省值为单元尺寸的 25%,超过此范围的节点不在界面上。&&&&&&& DOF1~DOF6 - 写入约束方程的自由度,缺省为所有有效自由度。DOF1 也可为 ALL。&&&&&&& MoveTol - 容许的节点“移动”距离,为第二容差,即界面上节点贴近单元表面的距离小于该容差则将节点移动到表面上。该距离依据单元
&&&&&&&&&&&&&&&&&&&&&&& 坐标(-1~1),典型值为 0.05,缺省时为 0(相等)。&&&&&&&&&&& MoveTol 的值可小于或等于 TOLER,但不得大于 TOLER。&&& 该命令将两个具有不同网格的区域通过约束方程联系起来,即通过所选择某个区域的节点与另外区域的所选择的单元建立约束方程。节点应从网格密度大的区域(设为 A)选择,而单元则从网格密度小的区域(设为 B)选择,A 区域节点的自由度用 B 区域单元节点的自由度内插建立约束方程,内插方法采用 B 区域单元的形函数。&&& 与 CEINTF 等效的方法有耦合节点自由度(命令 CPINTF)、建立线性单元(命令 EINTF)、MPC 方法、接触单元等。
3. 生成刚性区域&&& 命令:CERIG, MASTE, SLAVE, Ldof, Ldof2, Ldof3, Ldof4, Ldof5&&&&&&& MASTE - 刚性区域保留的节点,也称主节点。&&&&&&& SLAVE - 刚性区域去掉的节点,也称从节点,若为 ALL 则为所有选择的节点。&&&&&&& Ldof - 约束方程中的自由度,其值可取:&&&&&&&&&&& =ALL(缺省):所有有效自由度,若为 3D,根据 UX、UY、UZ、ROTX、ROTY、ROTZ 生成 6 个约束方程;若为 2D,根据 UX、
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& UY、ROTZ生成3个约束方程,2D 刚性区域必须位于 XY 平面中。&&&&&&&&&&& =UXYZ:平动自由度。若为 3D,根据从节点的 UX、UY、UZ 及主节点的 UX、UY、UZ、ROTX、ROTY、ROTZ 自由度生成 3 个约束
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 方程。若为 2D,根据从节点的 UX、UY 及主节点的 UX、UY、ROTZ 自由度生成 2 个约束方程。&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&& 该参数对于具有不同自由度单元的共用节点传递弯矩非常有用。&&&&&&&&&&&&=RXYZ:转动自由度。若为 3D,根据 ROTX、ROTY、ROTZ 自由度生成 3 个约束方程。若为 2D,根据 ROTZ 自由度生成 1 个
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 约束方程。&&&&&&&&&&& =UX:仅从节点的 UX 自由度;&&&&&&&&&&& =UY:仅从节点的 UY 自由度;
&&&&&&&&&&& =UZ:仅从节点的 UZ 自由度;&&&&&&&&&&& =ROTX:仅从节点的 ROTX 自由度。&&&&&&&&&&& =ROTY:仅从节点的 ROTY 自由度。&&&&&&&&&&& =ROTZ:仅从节点的 ROTZ 自由度。&&&&&&& Ldof2,Ldof3,Ldof4,Ldof5 - 当 Ldof 不等于 ALL、UXYZ 或 RXYZ时,才定义的其余自由度。&&& 该命令连接主节点和从节点的自由度通过约束方程生成刚性线,而具有公共节点的刚性线连接为刚性面或刚性体。建立刚性区域时,会生成一个或多个约束方程,约束方程编号会自动在原有最大编号上加 1。&&& 与 CERIG 命令等效的方法有 MPC 方法和接触单元。
二、& 杆与梁壳体的连接
&&& 2D 杆元节点自由度:Ux 和 Uy;&&& 3D 杆元节点自由度:即 Ux、Uy 和 Uz。&&& 梁壳体单元都包含了这 3 个平动自由度,并且具有相同的物理意义,因此杆单元与梁壳体单元的连接采用公共节点即可,无需建立约束方程。&&& 实际工程结构如比较复杂的杆系结构,为简化计算用杆元模拟长细比很大的杆件,或者两端构造非常明确的铰销连接杆件,其余采用梁单元模拟。如桁架结构中的腹杆可用杆元模拟,而弦杆等采用梁单元模拟,从而形成“杆梁”单元连接。同样地,当杆件支承在刚度较大的实体上时,可用杆元模拟杆件,而用实体单元模拟几何实体时就形成“杆体”单元连接。
&&&&&&&&&&&&&&&&&&&&&&& &
&&&&&&& !& EX6.25& 桁架、梁和实体组合结构计算&&&&&&& finish& $ /clear& $ /prep7&&&&&&& l1=0.8& $ l2=2& $ l3=1& $ h1=3& $ h2=1.2& $ b=1.5& $ err=0.1&&&&&&&& ! 定义参数&&&&&&& et,1,solid95& $ et,2,link8& $ et,3,beam4&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &! 定义 3 种单元类型&&&&&&& mp,ex,1,3.3e10& $ mp,prxy,1,0.2&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ! 定义材料 1 性质&&&&&&& mp,ex,2,2.1e11& $ mp,prxy,2,0.3&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &! 定义材料 2 性质&&&&&&& r,1,0.25*acos(-1)*(0.16*0.16-0.144*0.144)&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ! 定义实常数 1&&&&&&& r,2,0.e-3,1.45e-2,0.3,0.2& $ rmore,,6.52e-5&&&&&&&&&&&&&&&& ! 定义实常数 2&&&&&&& r,3,0.e-2,2.14e-3,0.2,0.3& $ rmore,,6.52e-5&&&&&&&&&&&&&&&& ! 定义实常数 2&&&&&&& /view,1,1,1,1& $ /ang,1,-120,zs,1&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &! 设置视图方向&&&&&&& blc4,,,l1,b,h1& $ wpoff,,,h1-h2& $ vsbw,all&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&! 创建长方体并切分为 2 个体&&&&&&& wpcsys,-1&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ! 工作平面恢复,并创建关键点和线&&&&&&& k,20,l1+l2,,h1& $ k,21,l1+l2+l3,,h1& $ k,22,l1+l2+2*l3,,h1& $ k,23,l1+l2+3*l3,,h1&&&&&&& k,24,l1+l2,b,h1& $ k,25,l1+l2+l3,b,h1& $ k,26,l1+l2+2*l3,b,h1& $ k,27,l1+l2+3*l3,b,h1&&&&&&& k,28,l1+l2+3*l3,b/2,h1& $ k,29,l1+l2+3*l3,b/2&&&&&&& l,6,20& $ l,12,20& $ l,20,21& $ l,21,22& $ l,22,23& $ l,7,24& $ l,11,24& $ l,24,25& $ l,25,26&&&&&&& l,26,27& $ l,6,24& $ l,20,24& $ l,21,25& $ l,22,26& $ l,23,28& $ l,28,27& $ l,28,29&&&&&&& dk,29,all& $ da,1,all&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ! 在关键点和面施加约束&&&&&&& ksel,s,,,20,23& $ fk,all,fz,-3e4&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &! 对 4 个关键点各施加 30kN 载荷&&&&&&& ksel,s,,,24,27& $ fk,all,fz,-2e4& $ ksel,all&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ! 对 4 个关键点各施加 20kN 载荷
&&&&&&& fk,23,fx,1e4& $ fk,27,my,1000&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ! 对另外两个关键点施加载荷和扭矩&&&&&&& esize,0.2& $ mshape,0& $ mshkey,1&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&! 定义单元网格尺寸、类型等&&&&&&& vatt,1,,1& $ vmesh,all&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&! 赋予几何体材料和单元属性,划分网格&&&&&&& lsel,s,loc,x,l1+err,l1+l2&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ! 选择拟划分为桁元的线,并定义组件&&&&&&& lsel,a,loc,x,l1+l2+l3& $ lsel,a,loc,x,l1+l2+2*l3& $ cm,linkline,line&&&&&&& latt,2,1,2&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ! 赋予线材料 2、实常数 1 和单元 2 属性&&&&&&& lesize,all,,,1& $ lmesh,all&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ! 定义每线划分一个单元,并划分之&&&&&&& lsel,s,loc,x,l1+l2+err,l1+l2+3*l3&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&! 选择除几何体外的线&&&&&&& cmsel,u,linkline& $ lsel,u,loc,z,0,h1-err&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ! 从中去掉桁元线和柱线&&&&&&& latt,2,2,3& $ lesize,all,,,4& $ lmesh,all&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&! 赋予线材料 2、实常数 2、单元 3 属性&&&&&&& lsel,s,loc,x,l1+l2+3*l3&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&! 选择柱竖线,赋予属性,划分单元&&&&&&& lsel,r,loc,z,0,h1-err& $ latt,2,3,3& $ lesize,all,,,4& $ lmesh,all& $ allsel,all&&&&&&& finish& $ /solu& $ solve& $ /post1& $ pldisp,1&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ! 求解并进入后处理
阅读(3575)|
用微信&&“扫一扫”
将文章分享到朋友圈。
用易信&&“扫一扫”
将文章分享到朋友圈。
历史上的今天
在LOFTER的更多文章
loftPermalink:'',
id:'fks_086069',
blogTitle:'ANSYS 入门教程 (46) - 结构线性静力分析 (d)',
blogAbstract:'
6.4& 板壳结构 - 板壳弯曲理论
一、& 板壳弯曲理论简介
1.&& 板壳分类&&& 按板面内特征尺寸与厚度之比划分:&&&&&&& 当 L/h & (5~8)& 时为厚板,应采用实体单元。&&&&&&& 当 (5~8) & L/h & (80~100)& 时为薄板,可选2D实体或壳单元&&&&&&& 当 L/h&& (80~100)& 时为薄膜,可采用薄膜单元。&&& 壳类结构按曲率半径与壳厚度之比划分:&&&&&&& 当 R/h &= 20 时为薄壳结构,可选择薄壳单元。&&&&&&& 当 6 & R/h & 20 时为中厚壳结构,选择中厚壳单元。',
blogTag:'理论,横向剪切,厚板,板壳,薄板',
blogUrl:'blog/static/',
isPublished:1,
istop:false,
modifyTime:4,
publishTime:4,
permalink:'blog/static/',
commentCount:0,
mainCommentCount:0,
recommendCount:1,
bsrk:-100,
publisherId:0,
recomBlogHome:false,
currentRecomBlog:false,
attachmentsFileIds:[],
groupInfo:{},
friendstatus:'none',
followstatus:'unFollow',
pubSucc:'',
visitorProvince:'',
visitorCity:'',
visitorNewUser:false,
postAddInfo:{},
mset:'000',
remindgoodnightblog:false,
isBlackVisitor:false,
isShowYodaoAd:true,
hostIntro:'',
hmcon:'0',
selfRecomBlogCount:'0',
lofter_single:''
{list a as x}
{if x.moveFrom=='wap'}
{elseif x.moveFrom=='iphone'}
{elseif x.moveFrom=='android'}
{elseif x.moveFrom=='mobile'}
${a.selfIntro|escape}{if great260}${suplement}{/if}
{list a as x}
推荐过这篇日志的人:
{list a as x}
{if !!b&&b.length>0}
他们还推荐了:
{list b as y}
转载记录:
{list d as x}
{list a as x}
{list a as x}
{list a as x}
{list a as x}
{if x_index>4}{break}{/if}
${fn2(x.publishTime,'yyyy-MM-dd HH:mm:ss')}
{list a as x}
{if !!(blogDetail.preBlogPermalink)}
{if !!(blogDetail.nextBlogPermalink)}
{list a as x}
{if defined('newslist')&&newslist.length>0}
{list newslist as x}
{if x_index>7}{break}{/if}
{list a as x}
{var first_option =}
{list x.voteDetailList as voteToOption}
{if voteToOption==1}
{if first_option==false},{/if}&&“${b[voteToOption_index]}”&&
{if (x.role!="-1") },“我是${c[x.role]}”&&{/if}
&&&&&&&&${fn1(x.voteTime)}
{if x.userName==''}{/if}
网易公司版权所有&&
{list x.l as y}
{if defined('wl')}
{list wl as x}{/list}【图文】杆梁结构的有限元分析原理_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
杆梁结构的有限元分析原理
上传于|0|0|暂无简介
大小:2.01MB
登录百度文库,专享文档复制特权,财富值每天免费拿!
你可能喜欢

我要回帖

更多关于 ansys mesh网格划分 的文章

 

随机推荐