石墨烯改性复合材料复合材料有哪些 散热 储能

403 - 禁止访问: 访问被拒绝。
403 - 禁止访问: 访问被拒绝。
您无权使用所提供的凭据查看此目录或页面。热门搜索:
当前位置:
石墨烯复合材料在超级电容器中的研究进展
至2004年石墨烯被发现以来,关于石墨烯复合材料的研究一直炙手可热。本文从聚苯胺/石墨烯和二氧化锰/石墨烯复合材料两方面,综述了这两种材料在超级电容器电极材料的研究进展,展望了以后在超级电容器电极材料上的良好应用前景。
  摘要:至2004年石墨烯被发现以来,关于石墨烯复合材料的研究一直炙手可热。本文从聚苯胺/石墨烯和二氧化锰/石墨烯复合材料两方面,综述了这两种材料在超级电容器电极材料的研究进展,展望了以后在超级电容器电极材料上的良好应用前景。 邢瑞光;李亚男 (内蒙古科技大学稀土学院,包头014010)  碳元素广泛存在于自然界,除了最为人们所熟知的石墨和金刚石外,1985年发现的富勒烯和1991年发现的碳纳米管扩大了碳材料的家族。也使人们对碳元素的多样性有了更深刻的认识。同时,富勒烯和碳纳米管所引发的纳米科技对人类社的发展在未来有着极其重大的意义。作为碳材料中最新的一员&石墨烯是拥有sp2杂化轨道的二维碳原子晶体,由英国曼彻斯特大学的Geim等于2004年发现,并能稳定存在,这是目前世界上最薄的材料&单原子厚度的材料。石墨烯不仅有优异的电学性能(室温下电子迁移率可达V-1s-1),质量轻,导热性好(5000Wm-1K-1),比表面积大(),它的杨氏模量(1100GPa)和断裂强度(125GPa)也可与碳纳米管相媲美,而且还具有一些独特的性能,如量子霍尔效应、量子隧穿效应等。由于以上独特的纳米结构和优异的性能,石墨烯可应用于许多的先进材料与器件中,如薄膜材料、储能材料、液晶材料、机械谐振器等。石墨烯是单层石墨,原料易得,所以价格便宜,不像碳纳米管那样价格昂贵,因此石墨烯有望代替碳纳米管成为聚合物基碳纳米复合材料的优质填料。在石墨烯诸多性质中,其中比表面积高和导电性好,最重要的是石墨烯本身的电容为21&F/cm2,达到了所有碳基双电层电容器的上限,这比其他碳材料都要高,是制造超级电容器的理想材料。  超级电容器(Supercapacitors),也叫电化学电容器(Electrochemical capacitors)是一种能量密度和功率密度介于传统电容器和电池之间的新型储能器件,超级电容器兼具蓄电池和传统电容器的优点,如能量密度高、功率密度高、可快速充放电、循环寿命长、具有瞬时大电流放电及对环境无污染等特性,是近十年来发展起来的新型储能、节能设备。  由于石墨烯是理想的超级电容器填充材料,所以将其与其他材料复合来制备超级电容器材料备受大家关注。  复合材料主要有两类,第一种是石墨烯与高分子导电材料复合,其中研究最多的是石墨烯与聚苯胺复合材料。第二种是石墨烯与金属氧化物复合,其中研究最多的是石墨烯与二氧化锰复合材料。本文主要就这两种复合材料的研究做一简单综述。  石墨烯与聚苯胺复合材料在超级电容器材料方面应用,除了前面提到的石墨烯的特殊性能外,还有就是聚苯胺具有高电导率、易于合成、单体成本低等优点。Zhao等在酸性条件下利用原位聚合法制备了聚苯胺/石墨烯复合材料,发现聚苯胺均匀吸附在石墨烯的表面,或者均匀分散于石墨烯片层之间,在电流密度为0.1A/g时,比电容高达480F/g,并且具有良好的循环性。  Li等在石墨烯片上进行原位阳极电聚合生成聚苯胺,得到的复合材料抗张强度达到12.6MPa,有高而稳定的电化学电容(重量比容为233F/g,体积比容为135F/cm3),超过其他许多现在可用的碳基柔性电极,因此在柔性超级电容器方面有很大前景。  Shi等首先将化学改性的石墨烯与聚苯胺纤维配成稳定混合液,然后通过真空过滤得到石墨烯/聚苯胺纤维薄膜复合材料,在这些薄膜中聚苯胺纤维均匀分散在石墨烯夹层之间,复合材料有稳定的机械性能和高的柔韧性,能够弯曲很大的角度得到想要的形状,当改性石墨烯的含量为44%时电容最大,为210F/g。  Yan等报道了通过一种简单快速的溶液混合,原位聚合的方法获得了聚苯胺与石墨烯的复合纸,这种复合材料有很好的电学性质,值得一提的是这个复合纸在生物领域有着潜在的应用价值。Wei等将官能化的石墨烯和聚苯胺纳米颗粒复合得到1046F/g的电容,这几乎是纯聚苯胺材料的2倍。  第二种是石墨烯与金属氧化物复合,其中研究最多的是石墨烯与二氧化锰的复合材料。Wei等将高锰酸钾与石墨烯混合,利用微波辐射的方法将高锰酸钾还原成二氧化锰,还原成的二氧化锰沉积在石墨烯表面,这样的复合材料做阳极,活性炭做阴极得到电容为114F/g,  循环次数可达到1000次得超级电容器。Yang等通过自组装的方法得到多层聚二烯丙基二甲基氯化铵改性的墨烯石和二氧化锰的复合材料具有较高的电容和较高的循环次数。  综上所述,随着社会不断地进步,资源不断地消耗,经济不断地发展,石墨烯复合材料必将在未来的电子领域发挥极其重要的作用。
本文由入驻OFweek公众平台的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
用户名/邮箱/手机:
忘记密码?
用其他账号登录: QQ
请输入评论
最新活动更多 &&
年后上班第一周,OFweek锂电网继续为大家整理锂电行业的一周要闻。本周行业重大事件有三星SDI天津...
广东省/深圳市
广东省/深圳市
广东省/深圳市
北京市/海淀区
江苏省/无锡市
江苏省/无锡市
北京市/海淀区
北京市/海淀区
浙江省/金华市
浙江省/金华市
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:您所在位置: &
&nbsp&&nbsp&nbsp&&nbsp
石墨烯及其复合材料导热性能的研究现状.pdf 7页
本文档一共被下载:
次 ,您可全文免费在线阅读后下载本文档。
下载提示
1.本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
2.该文档所得收入(下载+内容+预览三)归上传者、原创者。
3.登录后可充值,立即自动返金币,充值渠道很便利
石油、天然气工业
你可能关注的文档:
··········
··········
材 料 开 发 与 应 用
2010年 12月
文章编号:(4437
石墨烯及其复合材料导热性能的研究现状
周春玉,曾 亮,吉 莉 ,张 东
(同济大学材料科学与工程学院,上海 200092)
摘 要:阐述了单层石墨烯、石墨烯带及石墨烯复合材料的导热性能。介绍了各种测试模型,综述了石墨烯的
层数、纵横比、几何结构、边缘粗糙度、衬底耦合作用、温度等因素对其导热性能的影响。提出了石墨烯及其复
合材料导热性能可深入研究的方面。
关键词:石墨烯;复合材料;导热系数
中图分类号:TB34
文献标识码 :A
纯石墨烯是一种仅一个原子厚的结晶体,厚
的热传输理论模拟与分析仍然处于探索中。已
度为0.35nm左右,具有超薄、超坚固和超强导热
知的可行性方法包括 Fourier定律的数解 ,以及
导电性能等特性和优异的力学性能,可望在高性
基于波尔兹曼Boltzmann传输方程和分子动力学
能电子器件、复合材料、场发射材料、气体传感器
Molecular—dynamics(MD)模拟的分析方法都存在
及能量存储等领域获得广泛应用。
各 自局限性。当材料的尺寸降至纳米尺度时,温
石墨烯的基本结构单元为有机材料 中最稳
度也变得较不稳定。在平衡系统中,温度是基于
定的苯六元环,是 目前最理想 的二维纳米材
材料的平均能量做出的定义,对于石墨烯等纳米
料¨ J。超声波剥离氧化石墨(graphiteoxide)得
系统,材料的尺寸太小,很难确定局部温度。所
到的氧化石墨烯 (grapheneoxide)不能稳定存在
以不能将平衡条件下的温度概念运用于纳米材
于正常环境条件下。石墨烯原子在不停的振动,
料,以至于较难进行纳米尺度 的热传导的理论
且振动 的幅度有可能超过其厚度 。Meyer和
Geim等 研究表明石墨烯在第三维上经波动
美国加州大学一项研究显示 【,石墨烯的导
后,结构变得相当稳固,尤其是单层石墨烯为降
热性能优于碳纳米管。普通碳纳米管的导热系
低其表面能,由二维 向三维形貌转换,褶皱是二
数可达3000W/mK以上,各种金属中导热系数相
维石墨烯存在的必要条件。
对较高的有银、铜、金、铝,而单层石墨烯的导热
石墨烯具有极高导热系数,近来被提倡用于
系数可达 5300W/mK,甚至有研究表明其导热系
散热等方面,在散热片中嵌入石墨烯或数层石墨
数高达 6600W/niK。优异的导热性能使得石墨
烯 FLG可使得其局部热点温度大幅下降 』。故
烯有望作为未来超大规模纳米集成 电路的散热
需要对其导热性能进行深入研究。
材料 。与纯石墨烯相 比,还原剥离氧化石墨得
纳米材料导热性的发展很缓慢,部分原因在
到热导率相对较低 (0.14~2.87W/mK)的石墨
于实验测试及纳米尺度上控制热传导存在一定
烯(RGOx)J。其导热系数与氧化石墨被氧化程
的困难。具有纳米尺度高分辨率的原子力显微
度密切相关,原因是 RGOx薄片即使经过热还原
镜已经用于测试纳米结构的热传导,提供了一种
处理后仍然具有氧化性。导热率可能与其中残
探测纳米结构热性能的可行性方法,但纳米结构
余的化学功能团、破坏的碳六元环等缺陷有关,
收稿 日期 :2010一O4—16
基金项目:教育部新世纪优秀人才支持计划
正在加载中,请稍后...滚动新闻:
您所在的位置:&>&&>&
石墨烯在新型储能材料中的应用
12:53:00&&&&
  石墨烯拥有许多一般材料所不具备的优异特性。将石墨烯应用于复合材料,可以开发出许多性能优良新型功能材料,其中最具产业化应用前景的是石墨烯储能复合材料。
  提升锂电池整体性能的关键是开发新的电极材料。石墨烯加入到锂离子电池中能够大幅提高其导电性。石墨烯锂离子电池解决了能量密度和功率密度两者的要求,是石墨烯最有可能实现产业化应用的方向之一。石墨烯在锂离子电池中的应用主要包括3个方面:一是石墨烯复合电极材料,包括正极和负极;二是石墨烯作为锂离子电池的导电添加剂;三是石墨烯功能涂层。石墨烯优异的导电性能可以提高锂离子电池的充放电速度,并增强与集流体间的导电接触。
  研究表明,通过向锂离子充电电池的电极中添加少量石墨烯,不仅可以保持原来的能量密度,还能大幅度提高输出功率密度。石墨烯包覆磷酸铁锂作为锂离子电池正极材料,已多见报道。石墨烯构建包覆磷酸铁锂纳米颗粒的高效三维导电网络,显著提高了磷酸铁锂正极材料的电化学性能,已在宁波艾能锂电材料公司建成相关中试线。此外,采用石墨烯涂层铝箔作为锂离子电池的集流体,代替传统炭黑涂层,在不影响电池容量的前提下,可以降低并稳定电池内阻,同时还能提高电池的散热能力,延长电池寿命。据报道,年产200万m2的石墨烯涂层铝箔中试线已经在宁波墨西新材料有限公司建成。
  石墨烯在超级电容器中也有巨大的市场空间。石墨烯具有极高的比表面积,石墨烯片层的两边均可以富集电荷形成双电层,此外石墨烯皱褶及叠加效果,可以形成纳米孔道和纳米空穴,有利于电解液的扩散,所以石墨烯基超级电容器具有良好的功率特性。石墨烯作为电极制成的超级电容器在性能上有极大的提高。
  美国某公司研制的石墨烯基超级电容器,在室温下可以达到85.6Wh/kg的能量密度,相当于镍氢电池的能量密度,充放电仅需要几分钟,甚至几秒钟。这意味新一代的超级电容器作为储能器件逐步取代具有环境污染的铅酸电池和具有安全隐患的锂离子电池成为了可能,并在储能和动力电池领域带来重大进步。
  据报道,韩国成功研制出大容量、可挠式蓄电池超级电容器。该超级电容器的成功研制是基于石墨烯的应用,它有望在电动汽车和智能电网等领域予以采用。研究小组发现氮掺杂石墨烯后,电解液与离子能够更好地相结合。这种具有可挠性的石墨烯蓄电池,可用于制作携带在衣服或身上的蓄电产品。
  另据报道,美国加州大学的研究人员利用DVD刻录机发明出微型超级电容器。其原理是光盘上的氧化石墨烯被激光照射后还原并剥离,变成多层石墨烯片重叠的状态,从光盘上剥离下来后便可使用于电容器或充电电池。
编辑:宋玉琤&&&&
【1】 凡本网注明&来源:中国冶金报&中国钢铁新闻网&的所有作品,版权均属于中国钢铁新闻网。媒体转载、摘编本网所刊
作品时,请注明来源于《中国冶金报&中国钢铁新闻网》及作者姓名。违反上述声明者,本网将追究其相关法律责任。
【2】 凡本网注明&来源:XXX(非中国钢铁新闻网)&的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网
赞同其观点,不构成投资建议。
【3】 如果您对新闻发表评论,请遵守国家相关法律、法规,尊重网上道德,并承担一切因您的行为而直接或间接引起的法律
【4】 如因作品内容、版权和其它问题需要同本网联系的。电话:010&010-
地址:北京市朝阳区安贞里三区26楼 邮编:100029 电话:(010)0) 传真:(010) 电子邮箱:
中国冶金报/中国钢铁新闻网法律顾问:大成律师事务所 杨贵生律师 电话:010- Email:guisheng.
中国钢铁新闻网版权所有,未经书面授权禁止使用 京ICP备石墨烯和石墨烯基复合材料的制备及其应用_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
石墨烯和石墨烯基复合材料的制备及其应用
阅读已结束,下载本文需要
想免费下载本文?
定制HR最喜欢的简历
你可能喜欢

我要回帖

更多关于 石墨烯复合材料的应用 的文章

 

随机推荐