结合涤纶电容读数变换器电原理分析,为什么读数会过零

豆丁微信公众号
君,已阅读到文档的结尾了呢~~
实验一 金属箔式应变片单臂电桥实验二 金属箔式应变片双臂电桥(半桥)实验三、金属箔式应变片全桥静态性能实验四 热电偶的温度效应实验五、电涡流式传感器的静态位移性能实验六、 变面积式电容传感器的性能实验七、差动变面积式电容传感器的性能实验八、霍耳式传感器直流激励的静态位移性能
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
检测与转换技术指导书
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='http://www.docin.com/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口晶闸管控制感性负载,电流过零关断时的自感电动势 - 电源技术论坛 -
中国电子技术论坛 -
最好最受欢迎电子论坛!
后使用快捷导航没有帐号?
晶闸管控制感性负载,电流过零关断时的自感电动势
高级工程师
20:48:57  
这是很早以前的一个帖子。
  原帖的内容大致是:双向晶闸管控制感性负载通断,晶闸管电流过零关断时,负载上自感电动势多大?
  蚂蚁的回复大致是:自感电动势为零,因为电流为零。记忆中好像还有“哈哈”或“呵呵”的感叹。
  这句话当然不对,自感电动势与电流的变化率成正比,与电流大小无关。电流为零,自感电动势未必为零。
  当时想回一帖的。不过,指出这句话错误容易,要说明此瞬间及以后的自感电动势大小却需要画图,于是便放下了。这一放,就再也没有拿起来。直到看见大蚂蚁宣布找出他一个错,吃饭时他就加个菜,才又想起这件事。
  原帖无图,根据原帖叙述,电路应该是如图(1)那样。
  实际电路当然没有这么简单,理想电感是不存在的,绕组总有电阻和分布电容。这样,电路应该如图(2)所示,图中R为绕组的电阻,还包括铁芯的损耗和其它损耗,C为绕组的分布电容。
  对理想电感来说,电压与电流的相位差为90度,电流落后,如图(3)。对实际电感来说,因电阻和电容的存在,电流落后于电压不到90度,但距离90度不会太远,因为电感的电阻以及电路中其它损耗还有分布电容的数值都不会很大,否则就不能说是电感性负载了。说电感性负载,实际上就是将电阻和分布电容都忽略掉不考虑的近似。
  现在回到原题。原题条件是双向晶闸管电流过零关断,那么电流如图(4),蓝色圈显示了晶闸管中电流过零关断。自此瞬间之后,晶闸管中电流始终为零。
  蓝色圈中电流曲线放大后如图(5)。
  使原帖作者困惑的大概就是图(5)这条电流曲线。图中可以看到:在电流过零之前,曲线的斜率完全确定,自感电动势与电流的变化率成正比,也完全可以确定。电流过零后,始终为零,电流的变化率为零,自感电动势当然也为零。问题就在电流过零瞬间(箭头所指处)。这一点是曲线上的一个尖点,在这一点曲线没有切线,也就没有斜率,数学上叫做“不可导”或“不可微”。
  蚂蚁的回复,大概也是因为看到了图(5)电流过零之后始终为零,没有变化,所以导数为零,自感电动势当然就是零。
  回到原问题:既然电流在这一点(瞬间)不存在导数,那么如何确定电感负载的自感电动势?
  原帖作者可能是把晶闸管中电流与负载电感中电流混淆了:图(5)是晶闸管中电流,而不是负载电感中的电流。
  见图(2)。这是考虑到绕组电阻和分布电容的比图(1)更准确一些的电路。图中可见,考虑到电路中损耗和分布电容,晶闸管中电流包括电感中电流和分布电容中电流。晶闸管中电流过零,电感中电流并非是零(但很小,毕竟分布电容不大,其中电流很小)。晶闸管中电流过零,分布电容两端电压近似是交流电源电压峰值(前面已经说过,电压电流之间相位差接近90度)。
  双向晶闸管关断后,电感包括其电阻以及分布电容已经与交流电源没有关系,如图(6)所示(图中仅表示绝对值)。
  再考虑到电容两端电压不能突变,电感中的电流不能突变,我们可以有把握地说:分布电容C在晶闸管电流过零关断之后瞬间(时间间隔趋于零)两端电压等于晶闸管关断前瞬间两端电压(近似为交流电源峰值Um),电感在晶闸管电流过零关断之后瞬间(时间间隔趋于零)其中电流等于晶闸管关断前瞬间其中电流(近似为零)。
  这样,问题就转化成一个没有电源的RLC电路,其初始条件是电容两端电压U近似为Um,电感中电流近似为零(所以电感中的电动势绝对值也不会超过Um)。
  这样的问题,在电路分析或电路原理教材中称为“零激励二阶电路”,参见,例如,《电路原理》江缉光主编 清华大学出版社,第7章,第2节,“二阶电路的零输入响应”。
  对于这样的RLC电路和初始条件,随后的电流电压变化可以求解一个常系数二阶微分方程得到。当电路中损耗很小时,电容两端电压大致如图(7)所示,是一个阻尼振荡波形,幅度逐渐减小。当电路中损耗较大时,电容两端电压波形如图(8)所示,幅度衰减得较快。当电路中损耗很大时,电容两端电压波形如图(9)所示,失去振荡特征。
  但无论是哪一种情况,电容两端电压都不会超过初始值,也就是说,不会超过Um。由此可见,电感中的电动势也不会超过Um。
  从能量角度看可能更清楚。晶闸管电流过零关断瞬间,电感中电流近似为零,所以电感中并没有储存能量,分布电容中倒是储存了一定能量,大小是(C*Um^2)/2。其后能量在电感与电容之间来回交换。而每交换一次,电阻中都会损耗掉一部分。每交换一次,电容两端电压都要降低一些。损耗大时,甚至一次交换之后就全部损耗掉(图9情况)。因此关断后电感中的电动势总不会超过晶闸管电流过零关断瞬间电感中的电动势。
本帖子中包含更多资源
才可以下载或查看,没有帐号?
15:27:25  
08:49:17  
分析的不错~!可是这东西有可用性吗?
高级工程师
08:41:16  
学习!!!!!!!!!!!!!!!!!!!!!11
08:45:59  
看看,好好学习
Powered by
供应链服务
版权所有 (C) 深圳华强聚丰电子科技有限公司 上传我的文档
 下载
 收藏
粉丝量:33
该文档贡献者很忙,什么也没留下。
 下载此文档
检测与转换技术新指导
下载积分:1000
内容提示:检测与转换技术新指导
文档格式:DOCX|
浏览次数:18|
上传日期: 18:17:08|
文档星级:
全文阅读已结束,如果下载本文需要使用
 1000 积分
下载此文档
该用户还上传了这些文档
检测与转换技术新指导
关注微信公众号电磁炉工作原理与故障分析上篇(多图)
目录第一章 电磁炉的基本工作原理的介绍第二章 电磁炉组装结构图第三章 电磁炉的基本加热功能及保护功能介绍第四章 电磁炉的原理图各功能部分的分析第五章 电磁炉常见异常故障分析之“葵花宝典”第六章 电磁炉元器件的认别及其测量方式第七章 电磁炉上元器件的规格与作用简介电磁炉由于具有热效率高、使用方便、无烟熏、无煤气污染、安全卫生等优点,非常适合现代家庭使用 第一章 电磁炉的基本工作原理的介绍 电磁炉的加热原理 电磁炉又称电磁灶,分为工频(低频)和高频两种。其中,工频电磁炉工作简单可靠,但躁声大,热效率低,这里所说的电磁炉指高频电磁炉。 电磁炉是利用电磁感应原理将电能转换为热能的工作原理。由整流电路将50/60Hz的交流电压转换成直流电压(AC-DC-AC、交流-直流-交流),再经过控制电路将直流电压转换成频率为20~35KHz的高频电压,高速变化的电流流过线圈产生高速变化的磁场,当磁场内的磁力线通过金属器皿底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西,达到用户使用的结果。&&&& 如图1图2如图2。电磁感应加热的基本过程,至少需要整流单元、功率开关管、功率开关管驱动控制单元、加热线圈单元及锅具等部件。电磁炉是运用高频电磁感应原理加热。它将市电整流滤波后得到的脉动直流转换为高频电流,通过加热线圈建立高频磁场,磁力线经线圈与金属器皿底部构成的磁回路穿透炉面作用于锅底,利用小电阻大电流的短路热效应产生热量,在锅底形成涡流而发热,起到加热器皿中的食物的作用。 一般来讲,器皿一般是用钢质、铁质材料来加热,铝、铜由于表面电阻率太小,而不易被加热,陶瓷、木等又由于表面电阻率太大,使产生电流太小,所以也不易被加热。第二章 电磁炉组装结构图电磁炉整机零件一般包括如下: 1、陶瓷板: 又叫微晶玻璃板,位于电磁炉顶部,用于锅具的垫放,具有足够机械强度,耐酸碱腐蚀,耐高低温冲击。 2、上& 盖: 用耐温塑料制成,作为电器的外保护壳。 3、面& 膜: 用塑料薄膜制成,用于功能显示及按键操作指示。 4、灯& 板: 又叫显示控制板,位于壳内,进行功能显示及功能按键操作。 5、炉面传感器组件:位于壳内,嵌在发热盘的中间,用橡胶头或其它方式顶住陶瓷板,用于控制炉面锅具的温度。 6、加热线盘:位于壳内,主工作器件,发射磁力线,自身也会发热。 7、主 控 板:又叫电源板、主板,位于壳内,作为电转换的控制的主工作部分。 8、电源线及线卡:连接市电与电磁炉,提供电源通道。 9、电 风 扇:位于壳内,通过吸风将炉内热量带出壳外,起降温作用。 10、下& 盖: 用耐温塑料制成,作为电器的下保护壳,及支撑内部器件及锅具作用。 第三章 电磁炉的基本控制功能及保护功能介绍 电磁炉分显示部分和主板控制部分 1、一般功能说明 1)、显示介面有LED发光二极管显示模式、数码管、LCD液晶、VFD荧光屏显示模式几种。 2)、操作方式有轻触按键、薄膜按键、触摸按键、编码器、电位器等模式。 3)、操作功能有加热火力调节、自动恒温设定、定时开机、预约开/关机、电量电压查询、自动功能和半自动功能(蒸煮、煮粥、煲汤、煮饭)、手动功能(煎、炸、抄、烤、火锅)等料理功能。 4)、使用电压范围分两个不同电压段,220VAC~240VAC机种在100VAC~280VAC或100VAC~120VAC机种在85VAC~144VAC之间可连续工作,适用于50/60Hz的电压频率。使用环境温度在-20℃~45℃。 注明: a)、功率输出:输出范围120W~2200W之间 b)、温度控制: 即定温控制。 c)、定时控制: 可进行时间设置关机或开机。 d)、大小物检测:小于一定面积的金属将不被加热。Φ60~Φ100、Φ80~Φ120 2、保护功能 具有锅具超温保护、锅具干烧保、炉面传感器开短路保护、炉面失效保护,IGBT测温传感器开短路保护,IGBT温度限制控制和超温保护、高低压保护、&&&& 2小时无按键保护、浪涌电压/电流保护、高低温环境工作模式,VCE过压保护、过零检测、大小物检测,锅具材质检测。 注明:& a)无锅报警,无锅或锅具材质不对,小物件:停止加热。若在1分钟内检测到有锅,则自动退出报警状态,并恢复原来工作状态。&& b)高/低压保护,当市电电网电压波动超出工作范围时,应能停止功率输出并报警,例如超出100~280V时出“低‘E1’”或“高‘E2’”;&& c)炉面传感器开路时,开机1分钟后检测,停止功率输出及报警,显示“E3”;&& d)炉面传感器短路时,停止功率输出及报警,显示“E4”;&& e)IGBT传感器开路时,开机1分钟后检测,停止功率输出及报警,显示“E5”;&& f)IGBT传感器短路时,停止功率输出及报警,显示“E6”;&& g)主传感器失效,停止功率输出及报警,显示“E7”;& h)干扰保护,当电网上产生瞬间高压或浪涌电流时,电路停止功率输出,暂停工作2S,当干扰去除后能回复功能输出。&& i)过温保护/干烧保护,由于电磁炉为加热电器,内部很多器件在工作时会发出热量,当温度过高时因能报警并停止功率输出,电源指示灯闪烁,待温度下降后恢复加热&& j)IGBT温度过热,当高电压低功率自动提高功率以减小IGBT温升,如果出现异常温升,则温度达到95℃~110℃则停止加热保护,待温度低于65℃左右恢复加热。 [Page]以艾美特电磁炉为例 3、电路控制上,除有上述功能的电路外,还应有如下动作电路:&a) 交流转直流,通过整流桥堆进行转换; &b) 电源转换,将强电转换成弱电,提供18V,5V。&c) 过零电路(同步电路),当IGBT的反压降到最低时才打开IGBT;&d) IGBT驱动电路 &e) 谐振电路,& &f) 功率控制电路,将PWM进行积分处理,进行不同档下的功率控制; &g) 检锅电路;& &h) 反压保护电路,将IGBT工作反压控制在合理范围内;&& &I) 高压保护电路& &J) 功率校准电路,通过可调电阻进行& &K) 蜂鸣器驱动电路,风扇驱动电路,热敏电阻取样电路& &L) 主芯片电路 &m) 显示及按键控制电路 第四章 电磁炉的原理图各功能部分的分析 电磁炉主板原理方框图主板分成10大部分: 1、主回路的主谐振电路分析 2、IGBT驱动电路分析:(推挽式电路,高电平驱动有效) 3、电流取样电路 4、干扰保护电路 5、电压AD取样电路 6、同步电路和压控/自激电路 7、反压保护与PWM控制电路 8、炉面传感器与IGBT热敏电阻取样电路 9、风扇控制电路 10、开关电源电路 一、主回路的主谐振电路分析 由电力电子电路组成的电磁炉(Inductioncooker)是一种利用电磁感应加热原理,对锅体进行涡流加热的新型灶具。主电路是一个AC/DC/AC变换器,由桥式整流器和电压谐振变换器构成,当电磁炉负载(锅具)的大小和材质发生变化时,负载的等效电感会发生变化,将造成电磁炉主电路谐振频率变化,导致电磁炉的输出功率不稳定,就会使功率管IGBT过压损坏。在此先分析电磁炉主谐振电路拓扑结构和工作过程是怎样的。 1)电磁炉主电路拓扑结构 电磁炉的主电路如图1所示,市电经桥式整流器变换为直流电,再经电压谐振变换器变换成频率为20~35kHz的交流电。电压谐振变换器是低开关损耗的零电压型(ZVS)变换器,功率开关管的开关动作由单片机控制,并通过驱动电路完成。电磁炉的加热线圈盘与负载锅具可以看作是一个空心变压器,次级负载具有等效的电感和电阻,将次级的负载电阻和电感折合到初级,可以得到图2所示的等效电路。其中R*是次级电阻反射到初级的等效负载电阻;L*是次级电感反射到初级并与初级电感L相叠加后的等效电感。 2)电磁炉主电路的工作过程&&&& 电磁炉主电路的工作过程可以分成3个阶段,各阶段的等效电路如图3所示。分析一个工作周期的情况,定义主开关开通的时刻为t0。时序波形如图4所示。 2.1 [t0,t1]主开关导通阶段&&&&& 按主开关零电压开通的特点,t0时刻,主开关上的电压uce=0,则Cr上的电压uc=uce-Udc=-Udc。如图3(a)所示,主开关开通后,电源电压Udc加在R*及L*支路和Cr两端。由于Cr上的电压已经是-Udc,故Cr中的电流为0。电流仅从R*及L*支路流过。流过IGBT的电流is与流过L*的电流iL相等。由图3(a)得式(1)。 可见,iL按照指数规律单调增加。流过R*形成了功率输出,流过L*而储存了能量。到达t1时刻,IGBT关断,iL达到最大值Im。这时,仍有uc=-Udc,uce=0。iL换向开始流入Cr,但Cr两端的电压不能突变,因此,IGBT为零电压关断。 2.2 [t1,t2]谐振阶段&&&&& IGBT关断之后,L*和Cr相互交换能量而发生谐振,同时在R*上消耗能量,形成功率输出。等效电路如图3(b)及图3(c)所示,我们也将其分为两个阶段来讨论。波形如图4中的iL和uc。 由图3(b)、图3(c)的等效电路可得到式(3)方程组。& L*(di/dt)+iLR*+uc=0& Cr(duc/dt)=iL&& (3)& 由初始条件iL(t1)=Im,uc(t1)=-Udc,& 解微分方程组式(3)并代入初始条件,可得下列结果:IGBT上的电压 式中:δ=R*/2L*为衰减系数; φ是由电路的初始状态和电路参数决定的初相角,β是仅由电路参数决定的iL滞后于uc的相位角。&&&& 由上面的结果可以看到,当IGBT关断之后,uc和iL呈现衰减的正弦振荡,uce是Udc与uc的叠加,它呈现以Udc为轴心的衰减正弦振荡,其第一个正峰值是加在IGBT上的最高电压。首先是L*释放能量,Cr吸收能量,iL正向流动,部分能量消耗在R*上。在t1a时刻,ω(t-t1a)= +β,iL=0,L*的能量释放完毕,uc达到最大值Ucm,于是,IGBT上的电压也达到最大值uce=Ucm+Udc。这时Cr开始放电,L*吸收能量,当ω(t-t1)=φ时,uc=0,Cr的能量释放完毕,L*又开始释放能量,一部分消耗在R*上,一部分向Cr充电,使uc反向上升,如图4所示。&&&& 然后,Cr开始释放能量,使iL反向流动,一部分消耗在R*上,一部分转变成磁场能。在uc接近0之前,ω(t-t1)=φ+2β之时,iL达到负的最大值。当ω(t-t1)=π+φ时,uc=0,Cr的能量释放完毕,转由L*释放能量,使iL继续反向流动,一部分消耗在R*上,一部分向Cr反向充电。由于Cr左端的电位被电源箝位于Udc,故右端电位不断下降。当ω(t-t1)=ω(t2-t1),即t=t2时,uc=-Udc,uce=0,二极管D开始导通,使Cr左端电位不能再下降而箝位于0。于是,uc不再变化,充电结束。但是,L*中还有剩余能量,iL并不为0,t2时刻iL(t2)=-I2。这时,在主控制器的控制下,主开关开始导通。因此,是零电压开通。 [Page]2.3 [t2,t3]电感放电阶段&&&&& 如图3(d)所示,可得方程:L*+iLR*=Udc初始条件为:iL(t2)=-I2。 解此微分方程并代入初始条件,可得:& L*中的剩余能量,一部分消耗在R*上,一部分返回电源,iL的绝对值按指数规律衰减,在t3时刻,iL=0,L*中的能量释放完毕,二极管自然阻断。在uc=-Udc即uce=0时,主开关已经开通,在电源Udc的激励下,iL又从0开始正向流动,重复[t0,t1]阶段的过程。二、IGBT驱动电路分析:(推挽式电路,高电平驱动有效)作用:保护IGBT可靠导通与关断。 IGBT驱动电压至少需要16V,Q1(PNP管)、Q2(NPN管)组成推挽式驱动电路,它们的工作原理是: 1、当输入信号为高电平时,Q2导通,Q1截止,18VDC电压流通,给IGBT的G极提供门极电压,IGBT导通。线盘开始储能。 2、当输入信号为低电平时,Q2截止,Q1导通,IGBT的G极接地,IGBT关断。此时线盘感应电压对谐电容放电,形成了LC振荡。 3、R6电阻在三极管截止时,把IGBT的G极残余电压快速拉低。C11电容作为高频旁路,另外作为平缓驱动电路波形作用,ZD1稳压管,稳定IGBT的G极电压,预防输入电压过高时,损坏IGBT。 在检锅时,如图2.1所示,波形不是很理想,有点变形。当检到锅工作后,如图2.2所示,控制推挽电路的波形与驱动IGBT波形很相似,功率越大,波形的高电平的宽度越大,B点的波形底部平,原因是LM339控制的一路内部三极管导通接地。而A点的波形底部比地略高一点。再回到零电压。 此电路容易出现的问题为上电烧机,为驱动电路输出高电平导致,温升高、瓷片电容有问题。三、电流取样电路&作用:判断有无锅具、恒定电流、稳定调节功率提供反馈输入电流 电流互感器T1的次级测得的交流(AC)电压.经D9~D12组成的桥式整流电路整流,EC3电解电容滤波平滑、由电阻R15、RJ41、RJ16分压后,所获得的电流电压送到CPU,该电压越高表示电源输入的电流越大,待机时电流取样基本为零,如图3.1所示, 电流越大,A点的电流电压波形幅值越高,B点的取样点就越高,表示功率越大。电容EC3选值时不应太大,如果太大了,会造成电容充放电时间太长,影响读取电流AD时间,从而会导致开机时,功率上升的时间很慢。 VR1电位器作校准功率用,通过VR1电阻的大小,就可以调节B点的输出电压,电阻越小,功率越大,反之就功率越小,一般调节电位器在中间位置。 CPU根据监测电压AD的变化,作出各种动作指令 1判断是否放入合适的锅具。(锅具是否小于Φ80(或Φ60)、是否有偏锅,电流过小,再判PWM是否最大,两者满足则判为无锅) 2、限定最大电流,在低电压时保证电流恒定或不超过。保护关键器件工作在规格要求范围内,以及防止输入电源线或线路板走线过电流不够造成烧断。 3、配合电压AD取样电路及电调控PWM的脉宽,令输出功率保持稳定。 此电路易出现的现象:功率压死、功率飘移、无功率输出、断续加热四、干扰保护电路&& 1、电流保护电路 作用:浪涌保护电路,监控输入电网的异常变化,在有异常时,关断IGBT进行保护 1、正常工作时,LM339的1脚内部三极管截止,电阻R19把1脚电压变为高电平,当电源输入端出现大电流时,1脚内部三极管导通,输出低电平,CPU连接的中断口经过二极管D18被拉低,CPU检测到低电平时发出命令,让IGBT关断,起安全保护作用,此保护属于软件保护,另外还有硬件保护,当1脚内部三极管导通,输出低电平,直接拉低驱动电路的输入电压,从而关断IGBT的G极电压,保护了IGBT不被击穿,通常要判断是软件保护还是硬件保护方法是:通常软件保护时,软件会设置2秒才起动,硬件起动时间很快不超过2秒钟。& 2、C点电压由于选择的参考点是地,静态时,C 点的电压由RJ28、R27、R14电阻分压所得,当正常工作起来后,互感器感应输入端的电流,C点的电压会下降,电流越大,C点电压越低,如图4.1所示,所以A点电压也会下降,B点为LM339负端RJ29、RJ25分压后的基准电压,当A点电压下降到B点以下时,LM339反转,D点输出低电平拉低中断口。通过调节输入正负端的参数来改变干扰的灵敏。 用工具查看两输入端在最大功率工作时,比较电压越接近越好,但仿止出现太过灵敏而导致中断间隙。(变频器上(不一定,但是比较能体现)一般干扰比较大,在最大档功率最大电流时(190~210V之间电流最大)最容易出现,) 3、CPU根据中断口检测电源输入端的浪涌电流,程序检测到有低电平,停止工作,起保护IGBT不受浪涌电流所击穿。 [Page]此电路异常出现:检锅不工作、不保护爆机 2、电压保护电路 作用:高压保护电路,监控输入电网的异常变化,在有异常时,关断IGBT进行保护 1、电路的双重保护(电流和电压保护),由R53、R54、RJ55电阻组成分压电路,如果输入电压超过正常设定电压值, A点的电压就会升高,达到或超过三极管Q5的基极导通电压0.7V以上,则Q5一直导通,由于三极管的C极接到LM339的1脚,即中断口,所以程序检测到低电平后会关闭输出,保护IGBT及主回路上面的器件不被烧掉。2、当有电压浪涌时,R53并联的电容C28起作用,因为电容两端电压不能突变,所以在瞬间电压起变化,电容就相当短路(耦合),A点的电压会瞬间变的很高,使Q5导通而让CPU中断口检测到。正常情况下A点的波形如图4.2所示。 此电路异常出现:检锅不工作、不保护爆机。 未完,请继续浏览下篇....
目前还没有网友评论

我要回帖

更多关于 电容变换器 的文章

 

随机推荐