求PLC是怎样传感器输出信号类型控制信号的

PLC输入信号 输出信号 有哪些_百度知道
PLC输入信号 输出信号 有哪些
我有更好的答案
输入信号有数字量输入信号和模拟量输入信号。输出信号也有数量信号和模拟信号之分数字输入信号,比如按钮开关,限位开关等,总之是你需要控制条件信号。模拟输入信号,一般为电压信号或电流信号.数字输出信号,一般用来控制执行元件,比如气缸的电磁阀,电动机的交流接触器等模拟量输出信号。一般为电压信号或电流信号.
采纳率:22%
PLC输入信号主要是两种:1、开关信号(数字信号)。2、模拟量信号(AD)。 输出信号 也一样。
数字量 模拟量
PLC 输入信号有开关量,模拟量,如开关的断开、闭合信号,传感器的信号输出一般有开关量,模拟量
一般情况下都是4-20MA的模拟量和开关量。
开关量和模拟量输入输出都是这些信号
其他3条回答
为您推荐:
其他类似问题
您可能关注的内容
输出信号的相关知识
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。plc是什么意思,plc编程是什么(详细讲解)
互联网 & 03-16 15:17:33 & 作者:佚名 &
它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程
PLC(Programmable Logic Controller),是可编程逻辑控制器。它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程
1、PLC的基本概念早期的可编程控制器称作可编程逻辑控制器(Programmable Logic Controller,PLC),它主要用来代替继电器实现逻辑控制。随着技术的发展,这种采用微型计算机技术的工业控制装置的功能已经大大超过了逻辑控制的范围,因此,今天这种装置称作可编程控制器,简称PC。但是为了避免与个人计算机(Personal Computer)的简称混淆,所以将可编程序控制器简称PLC,PLC自1969年美国数据设备公司(DEC)研制出现,现行美国,日本,德国的可编程序控制器质量优良,功能强大。
2、PLC的基本结构PLC实质是一种专用于工业控制的计算机,其硬件结构基本上与微型计算机相同,基本构成为:a、电源 PLC的电源在整个系统中起着十分重要的作用。如果没有一个良好的、可靠的电源系统是无法正常工作的,因此PLC的制造商对电源的设计和制造也十分重视。一般交流电压波动在+10%(+15%)范围内,可以不采取其它措施而将PLC直接连接到交流电网上去b. 中央处理单元(CPU) 中央处理单元(CPU)是PLC的控制中枢。它按照PLC系统程序赋予的功能接收并存储从编程器键入的用户程序和数据;检查电源、存储器、I/O以及警戒定时器的状态,并能诊断用户程序中的语法错误。当PLC投入运行时,首先它以扫描的方式接收现场各输入装置的状态和数据,并分别存入I/O映象区,然后从用户程序存储器中逐条读取用户程序,经过命令解释后按指令的规定执行逻辑或算数运算的结果送入I/O映象区或数据寄存器内。等所有的用户程序执行完毕之后,最后将I/O映象区的各输出状态或输出寄存器内的数据传送到相应的输出装置,如此循环运行,直到停止运行。为了进一步提高PLC的可靠性,近年来对大型PLC还采用双CPU构成冗余系统,或采用三CPU的表决式系统。这样,即使某个CPU出现故障,整个系统仍能正常运行。 c、存储器 存放系统软件的存储器称为系统程序存储器。存放应用软件的存储器称为用户程序存储器。d、输入输出接口电路1.现场输入接口电路由光耦合电路和微机的输入接口电路,作用是PLC与现场控制的接口界面的输入通道。2.现场输出接口电路由输出数据寄存器、选通电路和中断请求电路集成,作用PLC通过现场输出接口电路向现场的执行部件输出相应的控制信号。e、功能模块如计数、定位等功能模块。f、通信模块如以太网、RS485、Profibus-DP通讯模块等
3、PLC的工作原理一. 扫描技术 当PLC投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。完成上述三个阶段称作一个扫描周期。在整个运行期间,PLC的CPU以一定的扫描速度重复执行上述三个阶段。(一) 输入采样阶段 在输入采样阶段,PLC以扫描方式依次地读入所有输入状态和数据,并将它们存入I/O映象区中的相应的单元内。输入采样结束后,转入用户程序执行和输出刷新阶段。在这两个阶段中,即使输入状态和数据发生变化,I/O映象区中的相应单元的状态和数据也不会改变。因此,如果输入是脉冲信号,则该脉冲信号的宽度必须大于一个扫描周期,才能保证在任何情况下,该输入均能被读入。(二) 用户程序执行阶段 在用户程序执行阶段,PLC总是按由上而下的顺序依次地扫描用户程序(梯形图)。在扫描每一条梯形图时,又总是先扫描梯形图左边的由各触点构成的控制线路,并按先左后右、先上后下的顺序对由触点构成的控制线路进行逻辑运算,然后根据逻辑运算的结果,刷新该逻辑线圈在系统RAM存储区中对应位的状态;或者刷新该输出线圈在I/O映象区中对应位的状态;或者确定是否要执行该梯形图所规定的特殊功能指令。即,在用户程序执行过程中,只有输入点在I/O映象区内的状态和数据不会发生变化,而其他输出点和软设备在I/O映象区或系统RAM存储区内的状态和数据都有可能发生变化,而且排在上面的梯形图,其程序执行结果会对排在下面的凡是用到这些线圈或数据的梯形图起作用;相反,排在下面的梯形图,其被刷新的逻辑线圈的状态或数据只能到下一个扫描周期才能对排在其上面的程序起作用。在程序执行的过程中如果使用立即I/O指令则可以直接存取I/O点。即使用I/O指令的话,输入过程影像寄存器的值不会被更新,程序直接从I/O模块取值,输出过程影像寄存器会被立即更新,这跟立即输入有些区别。(三) 输出刷新阶段 当扫描用户程序结束后,PLC就进入输出刷新阶段。在此期间,CPU按照I/O映象区内对应的状态和数据刷新所有的输出锁存电路,再经输出电路驱动相应的外设。这时,才是PLC的真正输出。4、PLC内部运作方式虽然PLC所使用之阶梯图程式中往往使用到许多继电器、计时器与计数器等名称,但PLC内部并非实体上具有这些硬件,而是以内存与程式编程方式做逻辑控制编辑,并借由输出元件连接外部机械装置做实体控制。因此能大大减少控制器所需之硬件空间。实际上PLC执行阶梯图程式的运作方式是逐行的先将阶梯图程式码以扫描方式读入CPU 中并最后执行控制运作。在整个的扫描过程包括三大步骤,&输入状态检查&、&程式执行&、&输出状态更新&说明如下:步骤一&输入状态检查&:PLC首先检查输入端元件所连接之各点开关或传感器状态(1 或0 代表开或关),并将其状态写入内存中对应之位置Xn。步骤二&程式执行&:将阶梯图程式逐行取入CPU 中运算,若程式执行中需要输入接点状态,CPU直接自内存中查询取出。输出线圈之运算结果则存入内存中对应之位置,暂不反应至输出端Yn。步骤三&输出状态更新&:将步骤二中之输出状态更新至PLC输出部接点,并且重回步骤一。此三步骤称为PLC之扫描周期,而完成所需的时间称为PLC 之反应时间,PLC 输入讯号之时间若小于此反应时间,则有误读的可能性。每次程式执行后与下一次程式执行前,输出与输入状态会被更新一次,因此称此种运作方式为输出输入端&程式结束再生&。
5、PLC的特点plc 具有以下鲜明的特点。(1) 系统构成灵活,扩展容易,以开关量控制为其特长;也能进行连续过程的PID回 路控制;并能与上位机构成复杂的控制系统,如 DDC 和 DCS 等,实现生产过程的综合自动化。(2) 使用方便,编程简单,采用简明的梯形图、逻辑图或语句表等编程语言,而无需计算机知识,因此系统开发周期短,现场调试容易。另外,可在线修改程序,改变控制方案而不拆动硬件。(3) 能适应各种恶劣的运行环境,抗干扰能力强,可靠性强,远高于其他各种机型。6、PLC目前的主要品牌美国AB,比利时ABB,松下,西门子,汇川,三菱,欧姆龙,台达,富士,施耐德,信捷 创研等。7、PLC的选型方法因每种品牌配置不一样,所以它的选型方式也有所差异,下面着重介绍大家常用的大众品牌三菱plc的选型方法,大家可以做一个参考来选择使用plc。(一)分析被控对象并提出控制要求详细分析被控对象的工艺过程及工作特点,了解被控对象机、电、液之间的配合,提出被控对象对三菱PLC控制系统的控制要求,确定控制方案,拟定设计任务书。(二)如何确定三菱plc的输入/输出设备根据系统的控制要求,确定系统所需的全部输入设备(如:按纽、位置开关、转换开关及各种传感器等)和输出设备(如:接触器、电磁阀、信号指示灯及其它执行器等),从而确定与三菱PLC有关的输入/输出设备,以确定PLC的I/O点数。(三)如何选择三菱PLC三菱 PLC选择包括对三菱PLC的机型、容量、I/O模块、电源等的选择,详见本章第二节。(四)三菱plc分配I/O点并设计三菱PLC外围硬件线路1.分配I/O点画出PLC的I/O点与输入/输出设备的连接图或对应关系表,该部分也可在第2步中进行。2.设计PLC外围硬件线路画出系统其它部分的电气线路图,包括主电路和未进入PLC的控制电路等。由PLC的I/O连接图和PLC外围电气线路图组成系统的电气原理图。到此为止系统的硬件电气线路已经确定。(五)三菱plc程序设计1. 程序设计根据系统的控制要求,采用合适的设计方法来设计三菱PLC程序。程序要以满足系统控制要求为主线,逐一编写实现各控制功能或各子任务的程序,逐步完善系统指定的功能。除此之外,程序通常还应包括以下内容:1)初始化程序。在三菱PLC上电后,一般都要做一些初始化的操作,为启动作必要的准备,避免系统发生误动作。初始化程序的主要内容有:对某些数据区、计数器等进行清零,对某些数据区所需数据进行恢复,对某些继电器进行置位或复位,对某些初始状态进行显示等等。2)检测、故障诊断和显示等程序。这些程序相对独立,一般在程序设计基本完成时再添加。3)保护和连锁程序。保护和连锁是程序中不可缺少的部分,必须认真加以考虑。它可以避免由于非法操作而引起的控制逻辑混乱。2. 程序模拟调试程序模拟调试的基本思想是,以方便的形式模拟产生现场实际状态,为程序的运行创造必要的环境条件。根据产生现场信号的方式不同,模拟调试有硬件模拟法和软件模拟法两种形式。1)硬件模拟法是使用一些硬件设备(如用另一台PLC或一些输入器件等)模拟产生现场的信号,并将这些信号以硬接线的方式连到PLC系统的输入端,其时效性较强。2)软件模拟法是在三菱PLC中另外编写一套模拟程序,模拟提供现场信号,其简单易行,但时效性不易保证。模拟调试过程中,可采用分段调试的方法,并利用编程器的监控功能。(六)三菱plc硬件实施硬件实施方面主要是进行控制柜(台)等硬件的设计及现场施工。主要内容有:1) 设计控制柜和操作台等部分的电器布置图及安装接线图。2)设计系统各部分之间的电气互连图。3)根据施工图纸进行现场接线,并进行详细检查。由于程序设计与硬件实施可同时进行,因此三菱PLC控制系统的设计周期可大大缩短。(七)三菱plc联机调试联机调试是将通过模拟调试的程序进一步进行在线统调。联机调试过程应循序渐进,从三菱PLC只连接输入设备、再连接输出设备、再接上实际负载等逐步进行调试。如不符合要求,则对硬件和程序作调整。通常只需修改部份程序即可。全部调试完毕后,交付试运行。经过一段时间运行,如果工作正常、程序不需要修改,应将程序固化到EPROM中,以防程序丢失。8、PLC程序设计方法1、分析控制系统的控制要求 熟悉被控对象的工艺要求,确定必须完成的动作及动作完成的顺序,归纳出顺序功能图。2、选择适当类型的PLC根据生产工艺要求,确定I/O点数和I/O点的类型(数字量、模拟量等),并列出I/O点清单。进行内存容量的估计,适当留有余量。根据经验,对于一般开关量控制系统,用户程序所需存储器的容量等于I/O总数乘以8;对于只有模拟量输入的控制系统,每路模拟量需要100个存储器字;对于既有模拟量输入又有模拟量输出的控制系统,每路模拟量需要200个存储器字。确定机型时,还要结合市场情况,考察PLC生产厂家的产品及其售后服务、技术支持、网络通信等综合情况,选定性能价格比好一些的PLC机型。3、硬件设计根据所选用的PLC产品,了解其使用的性能。按随机提供的资料结合实际需求,同时考虑软件编程的情况进行外电路的设计,绘制电气控制系统原理接线图。4、软件设计(1)软件设计的主要任务是根据控制系统要求将顺序功能图转换为梯形图,在程序设计的时候最好将使用的软元件(如内部继电器、定时器、计数器等)列表,标明用途,以便于程序设计、调试和系统运行维护、检修时查阅。(2)模拟调试。将设计好的程序下载到PLC主单元中。由外接信号源加入测试信号,可用按钮或小开关模拟输入信号,用指示灯模拟负载,通过各种指示灯的亮暗情况了解程序运行的情况,观察输入/输出之间的变化关系及逻辑状态是否符合设计要求,并及时修改和调整程序,直到满足设计要求为止。5、现场调试在模拟调试合格的前提下,将PLC与现场设备连接。现场调试前要全面检查整个PLC控制系统,包括电源、接地线、设备连接线、I/O连线等。在保证整个硬件连接正确无误的情况下才可送电。将PLC的工作方式置为&RUN&。反复调试,消除可能出现的问题。当试运一定时间且系统运行正常后,可将程序固化在具有长久记忆功能的存储器中,做好备份。9、PLC可编程磨刀机DMSQ-K系列机型简介PLC可编程磨刀机又称CNC磨刀机或数控磨刀机。PLC可编程磨刀机DMSQ-K系列采用步进电机,PLC编程控制系统;砂轮自动进给,能自动调节粗磨、精磨次数;可记忆、储存和动态跟踪。有效节省生产准备时间,减轻劳动强度。PLC可编程磨刀机DMSQ-K系列是小型磨刀中心、中小型印刷包装等行业用户的最佳选择。主要功能配置● 燕尾式导轨● 集中加油装置● PLC编程控制系统● 防尘罩装置● 进口电器元件(选配装置) ● 刮刀夹具(选配装置)
备注:PLC可编程磨刀机DMSQ-K型系列有磨刀长度为1.73米、2.2米、2.4米、2.6米、2.8米、3米、3.2米、3.5米、4米、4.5米、5米,共计10种规格。10、PLC的日常维护保养PLC的日常维护和保养比较简单,主要是更换保险丝和锂电池, 基本没有其它易损元器件。由于存放用户程序的随机存储器(RAM)、计数器和具有保持功能的辅助继电器等均用锂电池保护,锂电池的寿命大约为5年,当锂电池的电压逐渐降低到一定程度时,PLC基本单元上电池电压跌落到指示灯亮,提示用户注意有锂电池所支持的程序还可保留一周左右,必须更换电池,这是日常维护的主要内容。调换锂电池的步骤为:■在拆装前,应先让PLC通电15秒以上(这样可使作为存储器备用电源的电容器充电,在锂电池断开后,该电容可对PLC做短暂供电,以保护RAM 中的信息不丢失);■断开PLC的交流电源;■打开基本单元的电池盖板;■取下旧电池,装上新电池;■盖上电池盖板。注意更换电池时间要尽量短,一般不允许超过3分钟。如果时间过长,RAM中的程序将消失。此外,应注意更换保险丝时要采用指定型号的产品。I/O模块的更换若需替换一个模块,用户应确认被安装的模块是同类型。有些I/O系统允许带电更换模块,而有些则需切断电源。若替换后可解决问题,但在一相对较短时间后又发生故障,那么用户应检查能产生电压的感性负载,也许需要从外部抑制其电流尖峰。如果保险丝在更换后易被烧断,则有可能是模块的输出电流超限,或输出设备被短路。PLC的故障诊断是一个十分重要的问题,是保证PLC控制系统正常、可靠运行的关键。本文对常用的故障诊断方法进行了探讨。在实际工作过程中,应充分考虑到对PLC的各种不利因素,定期进行检查和日常维护,以保证PLC控制系统安全、可靠地运行。
大家感兴趣的内容
12345678910
最近更新的内容循环水和污水等公用工程,买什么书看好呢?
请教各位大神,DN250、DN125的氢气管路(0.35MPa)应使用什么哪种阀门?
查看: 538|回复: 0
变频器MM440的模拟量控制
阅读权限30
积分帖子主题
加入海川与三百六十万化工人交流互动(支持手机号、微信一键注册)
才可以下载或查看,没有帐号?
我想用西门子 S7 300 PLC的模拟量输出模块控制MM440变频器,请高手指教,小弟先谢谢了。
求plc的信号形式,变频器的设定方法及接线方法。。
这个话题好!
-& &在线QQ客服&&
网站事务& 0& 广告投放& &
大讲堂& 6-3& &大连总部& 6-2& 研究院(山东)&
&海川天化云&
&(座机工作日09:00--17:00,其它时间可致信在线QQ客服咨询)
三百六十万海川人欢迎您的参与 化工技术交流第一社区,共同学习 共同提高!
版权所有 海川网-海川化工论坛
Discuz!---
本站法律顾问 : 辽宁好谋律师事务所 谢晨曦 主任律师
&&&&&&&&&&PLC的控制信号
添加时间:
来源:www.aitmy.com/news | 阅读量:2213
提示: PLC的信号主要有模拟信号,数字信号组成。1.输入生产过程检测信号有两大类:一类是电压或电流模拟信号:另一类是开关量或数字脉冲量 。开关量 、脉冲量都属于数字
PLC的信号主要有模拟信号,数字信号组成。
1.输入生产过程检测信号有两大类:一类是电压或电流模拟信号:另一类是开关量或数字脉冲量 。开关量 、脉冲量都属于数字信号
2.数字量,是二进制编码的离散量,指得是分散开来的、不存在中间值的量。 打个比方,一个开关所能够取的值是离散的,只能是开或者关,不存在中间的情况。但是音量旋钮的取值是连续的,在最大和最小之间有无数种取值。比如12%的音量,13%的音量,或者12.5%的音量。
数字量(离散量)是与模拟量(连续量)相对应的。后者常见于自然世界中,并且用一般的数学方法就可以进行分析。而数字量则用于计算机处理的信息中。因为计算机的基本工作状态只有0和1两种,并且数字计算机系统对外界信息的采样也不可能是严格连续的,必然是在一个周期内只完成一次采样,故此数字系统中处理的都是数字量。并且,数字量不能完全依靠普通的数学方法进行分析,对他的分析有专门的数学方法。
对各种信号的分类应从时间和从幅值上分类。
从时间上分,信号分为
1 连续时间信号:时间轴上任何时候都存在的信号
2 离散时间信号:时间轴上断续出现的信号
从幅值上分,信号分为
1 模拟量:幅值连续变化,可取任意值的信号
2 离散量:具有最小量化单位的模拟量。也就是只能取离散值的信号
3 数字量:对离散量进行二进制编码,这个编码才是严格意义上的数字量
连续量可以等同模拟量,但数字量不可以等同离散量,因为数字量只有
0,1两个状态量,而离散量可以有无限多个量,如1,3,5,43,等.离散量包括数字量.
3.模拟量,开关量,数字量的区分
先说我个人的理解: 1、开关量:为通断信号,无源信号,电阻测试法为电阻0或无穷大; 也可以是有源信号,专业叫法是阶跃信号,就是0或1,可以理解成脉冲量 2、数字量:有0和1组成的信号类型,通常是经过编码后的有规律的信号。和模拟量的关系是量化后的模拟量。 3、模拟量:连续的电压,电流等信号量,模拟信号是幅度随时间连续变化的信号,其经过抽样和量化后就是数字量。 4、脉冲量:在瞬间电压或电流由某一值跃变到另一值的信号量。在量化后,其连续规律的变化就是数字量,如果其由0变成某一固定值并保持不变,其就是开关量。
这里先讲开关量
在PLC中数字量与开关量划为一类。
对于开关量元件,通常分为无源元件和有源元件两大类,如按钮开关、行程开关、位置开关、干簧管为无源元件,采用这类输入元件时,使用外接24V直流电源。光敏类接近开关和磁敏类接近开关属于有源元件,当然也要接电源。
在选用开关量输入时注意:有源元器件的输出的电压应符合开关量的工作的电压的范围之内。注意电源的极性。开关量输入的响应时间应与开关的动作频率相适应。限制同时接通的接点数,因为过热会导致内部元件过早的损坏。
开关量3种输出形式:晶体管,继电器,晶闸管(可控硅)。晶体管的负载能力最小,用于直流输出负载,PLC通常每点为0.5A。ON响应时间在0.1到1.5ms范围内。OFF响应时间在0.3到2ms范围内。不同的负载有不同的电源接法,不同的晶体管输出电路有PNP输出和NPN输出之分。继电器触点输出方式 即可用于直流、又可交流,有很大的负载能力,一般3-5A。但继电器输出不宜用在频繁动作的场合,反应速度相对其他形式慢些。当负载为感性负载时,应采用浪涌吸收器。(电阻,电容串联电路就是最基本的浪涌吸收器),不同类型的负载有不同的电源,限制同时接通的接点数。晶闸管用于交流输出负载,晶闸管响应也很快,ON响应时间在1到2ms范围内。OFF响应时间为1/2负载频率+1ms或更小,一般为10ms。(摘自 杨公源主编的 可编程控制器PLC原理与应用)
模拟量信号有有很多如电流、电压、温度、流量、压力、转速、湿度、亮度、液位、酸碱度、位移等,对于PLC主要使用的是电流、电压。(电流0-20mA,4-20mA,-10-10mA,直流电压0-10V,-10-10V,0-5V等)。最常用的是4-20mA,0-10V,这些信号常用于远距离传输。电压信号在传输过程中要受到诸如传输距离等条件的限制,而电流信号在传输过程中干扰对它的影响较小,因此应尽量采用电流信号。不过电压信号可以经由A/D转换器件转换成数字信号然后采集,但是电流不能直接由A/D 转换器转换。在应用中,先将电流转变成电压信号,然后进行转换。
下面是其他前辈解释电流信号的好处:
模拟量电流信号为什么要取4-20mA?
1. 电流信号抗干扰能力好,可以传输比较远。双芯1平方的导线100M才3.4欧,和负载电阻250欧或500欧比较可以忽略
2. 接250欧或500欧采样电阻,很容易得到1-5V或2-10V信号
3. 电流很小,可以直接接采样电阻,功耗小,简化了采样电路
4. 4mA作为零点可以区分是信号为0,还是信号断开没有输出
5&& 把不同的传感器的0点和满量程都设置为同样的信号,这样过去的模拟调节仪表才不用考虑其输入信号该是什么,输出该是什么模拟量输入在过程控制中的应用很广,如温度、压力、速度、流量、酸碱度、位移的各种工业检测都是对应于电压、电流的模拟量值,再通过一定运算(PID)后,控制生产过程达到一定的目的。模拟量输入电平大多是从传感器通过变换后得到的。
模拟量输入单元的作用是把现场连续变化的模拟量标准信号转换成PLC内部处理的、由若干位表示的数字信号。模拟量输入单元一般由滤波、A/D转换器、光耦合器隔离等部分组成。
模拟量输出作用是把PLC运算处理后的若干位数字量信号转换成相应的模拟量信号然后输出,以满足生产过程现场连续信号的控制要求。模拟量输出单元一般由光耦合器隔离、D/A转换器和信号转换等部分组成。
模拟量输出模块是将中央处理器的二进制数字信号转换成4~20 mA的电流输出信号或0~10 V、0~5 V的电压输出信号,以提供给执行机构。因此模拟量输出模块又叫D/A转换输出模块。
模拟量控制单元的性能主要由A/D、D/A转换器决定。
A/D转换是指将模拟输入信号转换成N位二进制数字输出信号的过程。伴随半导体技术、数字信号处理技术及通信技术的飞速发展,A/D转换器近年也呈现高速发展的趋势。人类数字化的浪潮推动了A/D转换器不断变革,现在,在通信产品、消费类产品、工业医疗仪器乃至军工产品中无一不显现A/D转换器的身影,可以说,A/D转换器已经成为人类实现数字化的先锋。自1973年第一只集成A/D转换器问世至今,A/D、D/A转换器在加工工艺、精度、采样速率上都有长足发展,现在的A/D转换器的精度可达26位,采样速度可达1GSPS,今后的A/D转换器将向超高速、超高精度、集成化、单片化发展。不管怎么发展,A/D转换的原理和作用都是不变的。
A/D转换技术 现在的软件无线电、数字图像采集都需要有高速的A/D采样保证有效性和精度,一般的测控系统也希望在精度上有所突破,人类数字化的浪潮推动了A/D转换器不断变革,而A/D转换器是人类实现数字化的先锋。A/D转换器发展了30多年,经历了多次的技术革新,从并行、逐次逼近型、积分型ADC,到近年来新发展起来的&-&D型和流水线型ADC,它们各有其优缺点,能满足不同的应用场合的使用。
逐次逼近型、积分型、压频变换型等,主要应用于中速或较低速、中等精度的数据采集和智能仪器中。分级型和流水线型ADC主要应用于高速情况下的瞬态信号处理、快速波形存储与记录、高速数据采集、视频信号量化及高速数字通讯技术等领域。此外,采用脉动型和折叠型等结构的高速ADC,可应用于广播卫星中的基带解调等方面。&-&D型ADC主应用于高精度数据采集特别是数字音响系统、多媒体、地震勘探仪器、声纳等电子测量领域。下面对各种类型的ADC作简要介绍。
1.逐次逼近型
逐次逼近型ADC是应用非常广泛的模/数转换方法,它包括1个比较器、1个数模转换器、1个逐次逼近寄存器(SAR)和1个逻辑控制单元。它是将采样输入信号与已知电压不断进行比较,1个时钟周期完成1位转换,N位转换需要N个时钟周期,转换完成,输出二进制数。这一类型ADC的分辨率和采样速率是相互矛盾的,分辨率低时采样速率较高,要提高分辨率,采样速率就会受到限制。
优点:分辨率低于12位时,价格较低,采样速率可达1MSPS;与其它ADC相比,功耗相当低。
缺点:在高于14位分辨率情况下,价格较高;传感器产生的信号在进行模/数转换之前需要进行调理,包括增益级和滤波,这样会明显增加成本。
2.积分型ADC
积分型ADC又称为双斜率或多斜率ADC,它的应用也比较广泛。它由1个带有输入切换开关的模拟积分器、1个比较器和1个计数单元构成,通过两次积分将输入的模拟电压转换成与其平均值成正比的时间间隔。与此同时,在此时间间隔内利用计数器对时钟脉冲进行计数,从而实现A/D转换。
积分型ADC两次积分的时间都是利用同一个时钟发生器和计数器来确定,因此所得到的D表达式与时钟频率无关,其转换精度只取决于参考电压VR。此外,由于输入端采用了积分器,所以对交流噪声的干扰有很强的抑制能力。能够抑制高频噪声和固定的低频干扰(如50Hz或60Hz),适合在嘈杂的工业环境中使用。这类ADC主要应用于低速、精密测量等领域,如数字电压表。
优点:分辨率高,可达22位;功耗低、成本低。
缺点:转换速率低,转换速率在12位时为100~300SPS。
3.并行比较A/D转换器
并行比较ADC主要特点是速度快,它是所有的A/D转换器中速度最快的,现代发展的高速ADC大多采用这种结构,采样速率能达到1GSPS以上。但受到功率和体积的限制,并行比较ADC的分辨率难以做的很高。
这种结构的ADC所有位的转换同时完成,其转换时间主取决于比较器的开关速度、编码器的传输时间延迟等。增加输出代码对转换时间的影响较小,但随着分辨率的提高,需要高密度的模拟设计以实现转换所必需的数量很大的精密分压电阻和比较器电路。输出数字增加一位,精密电阻数量就要增加一倍,比较器也近似增加一倍。
并行比较ADC的分辨率受管芯尺寸、输入电容、功率等限制。结果重复的并联比较器如果精度不匹配,还会造成静态误差,如会使输入失调电压增大。同时,这一类型的ADC由于比较器的亚稳压、编码气泡,还会产生离散的、不精确的输出,即所谓的&火花码&。
优点:模/数转换速度最高。
缺点:分辨率不高,功耗大,成本高。
4.压频变换型ADC
压频变换型ADC是间接型ADC,它先将输入模拟信号的电压转换成频率与其成正比的脉冲信号,然后在固定的时间间隔内对此脉冲信号进行计数,计数结果即为正比于输入模拟电压信号的数字量。从理论上讲,这种ADC的分辨率可以无限增加,只要采用时间长到满足输出频率分辨率要求的累积脉冲个数的宽度即可。
优点:精度高、价格较低、功耗较低。
缺点:类似于积分型ADC,其转换速率受到限制,12位时为100~300SPS。
5.&-&D型ADC
&-&D转换器又称为过采样转换器,它采用增量编码方式即根据前一量值与后一量值的差值的大小来进行量化编码。&-&D型ADC包括模拟&-&D调制器和数字抽取滤波器。&-&D调制器主要完成信号抽样及增量编码,它给数字抽取滤波器提供增量编码即&-&D码;数字抽取滤波器完成对&-&D码的抽取滤波,把增量编码转换成高分辨率的线性脉冲编码调制的数字信号。因此抽取滤波器实际上相当于一个码型变换器。
优点:分辨率较高,高达24位;转换速率高,高于积分型和压频变换型ADC;价格低;内部利用高倍频过采样技术,实现了数字滤波,降低了对传感器信号进行滤波的要求。
缺点:高速&-△型ADC的价格较高;在转换速率相同的条件下,比积分型和逐次逼近型ADC的功耗高。
6.流水线型ADC
流水线结构ADC,又称为子区式ADC,它是一种高效和强大的模数转换器。它能够提供高速、高分辨率的模数转换,并且具有令人满意的低功率消耗和很小的芯片尺寸;经过合理的设计,还可以提供优异的动态特性。
流水线型ADC由若干级级联电路组成,每一级包括一个采样/保持放大器、一个低分辨率的ADC和DAC以及一个求和电路,其中求和电路还包括可提供增益的级间放大器。快速精确的n位转换器分成两段以上的子区(流水线)来完成。首级电路的采样/保持器对输入信号取样后先由一个m位分辨率粗A/D转换器对输入进行量化,接着用一个至少n位精度的乘积型数模转换器(MDAC)产生一个对应于量化结果的模/拟电平并送至求和电路,求和电路从输入信号中扣除此模拟电平。并将差值精确放大某一固定增益后关交下一级电路处理。经过各级这样的处理后,最后由一个较高精度的K位细A/D转换器对残余信号进行转换。将上述各级粗、细A/D的输出组合起来即构成高精度的n位输出。
优点:有良好的线性和低失调;可以同时对多个采样进行处理,有较高的信号处理速度,典型的为Tconv&100ns;低功率;高精度;高分辨率;可以简化电路。
缺点:基准电路和偏置结构过于复杂;输入信号需要经过特殊处理,以便穿过数级电路造成流水延迟;对锁存定时的要求严格;对电路工艺要求很高,电路板上设计得不合理会影响增益的线性、失调及其它参数。
目前,这种新型的ADC结构主要应用于对THD和SFDR及其它频域特性要求较高的通讯系统,对噪声、带宽和瞬态相应速度等时域特性要求较高的CCD成像系统,对时域和频域参数都要求较高的数据采集系统。
确定A/D转换器件
在确定设计方案后,首先需要明确A/D转换的需要的指标要求,包括数据精度、采样速率、信号范围等等。
1.确定A/D转换器的位数
在选择A/D器件之前,需要明确设计所要达到的精度。精度是反映转换器的实际输出接近理想输出的精确程度的物理量。在转化过程中,由于存在量化误差和系统误差,精度会有所损失。其中量化误差对于精度的影响是可计算的,它主要决定于A/D转换器件的位数。A/D转换器件的位数可以用分辨率来表示。一般把8位以下的A/D转换器称为低分辨率ADC,9~12位称为中分辨率ADC,13位以上为高分辨率。A/D器件的位数越高,分辨率越高,量化误差越小,能达到的精度越高。理论上可以通过增加A/D器件的位数,无止境提高系统的精度。但事实并非如此,由于A/D前端的电路也会有误差,它也同样制约着系统的精度。
比如,用A/D采集传感器提供的信号,传感器的精度会制约A/D采样的精度,经A/D采集后信号的精度不可能超过传感器输出信号的精度。设计时应当综合考虑系统需要的精度以及前端信号的精度。
2.选择A/D转换器的转换速率
在不同的应用场合,对转换速率的要求是不同的,在相同的场合,精度要求不同,采样速率也会不同。采样速率主要由采样定理决定。确定了应用场合,就可以根据采集信号对象的特性,利用采样定理计算采样速率。如果采用数字滤波技术,还必须进行过采样,提高采样速率。
3.判断是否需要采样/保持器
采样/保持器主要用于稳定信号量,实现平顶抽样。对于高频信号的采集,采样/保持器是非常必要的。如果采集直流或者低频信号,可以不需要采样保持器。
4.选择合适的量程
模拟信号的动态范围较大,有时还有可能出现负电压。在选择时,待测信号的动态范围最好在A/D器件的量程范围内。以减少额外的硬件付出。
5.选择合适的线形度
在A/D采集过程中,线形度越高越好。但是线形度越高,器件的价格也越高。当然,也可以通过软件补偿来减少非线性的影响。所以在设计时要综合考虑精度、价格、软件实现难度等因素。
&过程控制系统process control systems
以表征生产过程的参量为被控制量使之接近给定值或保持在给定范围内的自动控制系统。这里&过程&是指在生产装置或设备中进行的物质和能量的相互作用和转换过程。表征过程的主要参量有温度、压力、流量、液位、成分、浓度等。通过对过程参量的控制,可使生产过程中产品的产量增加、质量提高和能耗减少。一般的过程控制系统通常采用反馈控制的形式,这是过程控制的主要方式。
过程控制在石油、化工、电力、冶金等部门有广泛的应用。20世纪50年代,过程控制主要用于使生产过程中的一些参量保持不变,从而保证产量和质量稳定。60年代,随着各种组合仪表和巡回检测装置的出现,过程控制已开始过渡到集中监视、操作和控制。70年代,出现了过程控制最优化与管理调度自动化相结合的多级计算机控制系统。80年代,过程控制系统开始与过程信息系统相结合,具有更多的功能。&
目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能 控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接 口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。不同的控制系统,其传感器、 变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器 (仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器 (intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。 可编程控制器(PLC) 是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现 PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。
1、开环控制系统
开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。
2、闭环控制系统
闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系 统给定值信号相反,则称为负反馈( Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈 的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。
3、阶跃响应
阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。稳态误差是指系统的响应进入稳态后,系统的期望输出与实际输出之差。控制系统的性能可以用稳、准、快三个字 来描述。稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的;准是指控制系统的准确性、控 制精度,通常用稳态误差来(Steady-state error)描述,它表示系统输出稳态值与期望值之差;快是指控制系统响应的快速性,通常用上升时间来定量描述。
4、PID控制的原理和特点
在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它 以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的 其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或 不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、 积分、微分计算出控制量进行控制的。
比例(P)控制
比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。
积分(I)控制
在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的 或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入&积分项&。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积 分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳 态误差。
微分(D)控制
在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用, 其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化&超前&,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入 &比例&项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是&微分项&,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能 够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在 调节过程中的动态特性。
5、PID控制器的参数整定
PID控制器的参数整定是控制系统设计的核心内容。它是根据被 控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是 依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主 要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应 曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需 要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡, 记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。
在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。
对于温度系统:P(%)20--60,I(分)3--10,D(分)0.5--3
对于流量系统:P(%)40--100,I(分)0.1--1
对于压力系统:P(%)30--70,I(分)0.4--3
对于液位系统:P(%)20--80,I(分)1--5
参数整定找最佳,从小到大顺序查
先是比例后积分,最后再把微分加
曲线振荡很频繁,比例度盘要放大
曲线漂浮绕大湾,比例度盘往小扳
曲线偏离回复慢,积分时间往下降
曲线波动周期长,积分时间再加长
曲线振荡频率快,先把微分降下来
动差大来波动慢。微分时间应加长
理想曲线两个波,前高后低4比1
一看二调多分析,调节质量不会低
PID与自适应PID的区别:
首先弄清楚什么是自适应控制
在生产过程中为了提高产品质量,增加产量,节约原材料,要求生产管理及生产过程始终处于最优工作状态。因此产生了一种最优控制的方法,这就叫自适应控制。在这种控制中要求系统能够根据被测参数,环境及原材料的成本的变化而自动对系统进行调节,使系统随时处于最佳状态。自适应控制包括性能估计(辨别)、决策和修改三个环节。它是微机控制系统的发展方向。但由于控制规律难以掌握,所以推广起来尚有一些难以解决的问题。
加入自适应的pid控制就带有了一些智能特点,像生物一样能适应外界条件的变化。
还有自学习系统,就更加智能化了。
数字信号情况只有2种:电平信号与脉冲信号,一般都是高电平代表1,低电平代表0,输出时或高或低,图像上是方波。脉冲信号就是一个个的脉冲电流,图像上可以是方波,也可以是锯齿波等。脉冲信号是以电信号的突变来表示信号的(电压或电流的由低变高或是由高变低,当然也可以电磁的变化)。
PLC对于脉冲的控制:高速计数器输入,高速脉冲输出,PWM控制。
高速计数器应用还是很多的,如纤维设备、防止机械等主轴控制,建材制造机器、石材切割机等搬运定位。
高速计数器顾名思义是用来对较高频率的信号计数的计数器。这是和普通计数器比较而言的,普通计数器的工作受扫描频率的限制,只能对低于扫描频率的信号计数。这对于许多工业控制计数场合是不能胜任的。PLC的高速计数器分为三种:1、单相单计数输入高速计数器,2、单相双计数输入高速计数器,3、双相双计数输入高速计数器.
软高速计数器有两种工作方式。第一种利用自身触点的动作为信号,和普通32位增减计数器一样,在增计数到达设定值时,触点动作并保持,在做减计数达到设定值时(如触点已置位)触点复位。这种方式的缺点是控制受扫描周期的影响。高速计数器的第二种工作方式为中断方式,不受扫描周期的影响。这需使用高速计数器的专用指令。普通计数器工作时,一般是达到设定值,其触电动作,再通过程序安排其触电实现对其他器件的控制。高速计数器除了普通计数器的这一工作方式外,可不通过本身的触电,以中断工作方式直接完成对其他器件的控制。从计数器的工作要求来说,高速计数器的工作设置比较灵活。高速计数器除了具有普通计数器通过软件完成启动、复位、使用特殊辅助继电器改变计数方向等功能外,还可通过机外信号实现对其工作状态的控制,如启动、复位、改变计数方向等。一般高速计数器均为 32 位加减计数器。最高计数频率一般可达到 10KHz 。
&由于待计量的高频信号都是来自机外,可编程控制器都设有专门的输入端子及控制端子。一般是在输入口中设置一些带有特殊功能的端子,它们即可完成普通端子的功能,又能接受高频信号。
CPU芯片的中断服务:PLC 所需执行的工作复杂众多, 有用户程序要解析, I/O 状
态要抓取或更新, 有通讯断口要服务& , 但CPU 只有一个, 故人一个时间只能执行一
项工作, 因此PLC 只能按照顺序将上述所有的工作由第一项开始逐一地执行到最后一项位
置,再循环回到第一项工作重复同样的工作循环,这样周而复始地作扫描( Scan)服务工作,
每一项工作在一次扫描循环中都被执行一次, 每一次被执行的间隔时间即所谓PLC 的扫描
时间( Scan Time)。因为CPU 的工作速度和人类的反应相比, 可以说是极端快速的, 上述
庞大的工作量通常在数毫秒到数十毫秒(mS) 就可以完成, 因此就人类的感觉, PLC 几乎
是在同一时间完成所有工作, 而能达到实用的控制效果。
对于大部分的应用,上述按照顺序扫描的控制方式都已经足够了,但对某些需要高速反
应的应用场合( 例如定位控制& 等), 扫描时间的延时即代表误差的扩大, 其反应时间甚至
要求到微妙( uS) 的速度, 才能达到精度要求。在这种情况下, 只有利用中断( Interrupt)
功能才能达到。
所谓中断是指PLC 在平常按照顺序执行的扫描循环中, 当有需要立即反应的需求发生
时, 马上对CPU 发出中断要求( Interrupt Request);CPU 在收到中断要求后, 立即停止其
正在执行的扫描工作, 优先地去执行该中断要求所指定的服务工作; 等该服务工作完成后,
再回到刚才被中断的地方( 称为中断返回: Return f rom Interrupt, 简称RTI), 继续执行未
完成的扫描工作。
上述所谓的& 中断要求所指定的服务工作&,即所谓& 中断服务程序&( Interrupt Service
Routine)。它是由一连串在中断发生时& 所需要执行动作的梯形图程序& 所组成的副程序。
放在副程序区, 并用其中断信号名称为它的标记( LABEL) 名称。
因为其放置在副程序区, 故在正常的PLC 扫描循环中是不会被执行到( PLC 只扫描主程序
区, 不扫描副程序区)。
虽然CPU 能在中断要求发生时, 在数十秒内立即去执行对应的控制动作, 但当中断输
入不只1 个时( PLC 通常会有多个中断), 只有在其所对应的中断发生时, 才会跳入执
行, 因为CPU 任一个时间只能执行一次动作, 因此同样的问题仍将出现, 必须等一个中断
服务程序执行完毕后,才能执行下一个中断服务程序;这样可能造成数百微妙甚至毫秒的反
应延时,因此在多重中断输入结构时,会将各个中断输入按照其重要性给予其不同的中断优
先顺序( Interrupt Prior ity)。当PLC 接受某一个中断要求而正执行该中断的服务程序的当
时, 如果有另一个中断要求发生, 而且其优先顺序低于正在执行的中断, CPU 将不理会该
中断, 必须等CPU 执行完副程序返回后才会接受, 但其优先顺序高于正在执行的, CPU 将
立即停止其正在执行的中断服务程序的执行,而立即跳入该更高优先级中断的中断服务程序
去执行, 等其完成后, 再回到刚才被中断的较低优先级服务程序中去继续完成未完成的工
作, 这种中断执行中又被中断的情形称为巢式中断( Nested Interrupt)(此段介绍来自永宏PLC的介绍)
一般PLC 软件计数器的计数频率只能达到数十Hz( 视扫描时间而定), 如果超过将产
生漏数甚至完全无法计数, 此时必须使用高速计数器( High-Speed Counter 简称HSC) 才
能胜任。PLC 的高速计数器一般有两种, 一为使用专用硬件电路作成的硬件高速计数器
( Hardware High-Speed Counter 简称HHSC), 另一种是利用计数脉冲正/负缘变化时发生
中断, 而由CPU 来判断加减, 来做计数的软件高速计数器( Software High-Speed Counter
简称SHSC)。一般都为32 位高速计数器。(此段介绍来自永宏PLC的介绍)
使用高速计数器
一般来说高速计数器被用作驱动鼓形计时器设备该设备有一个安装了增量轴式编码器的轴以恒定的速度转动轴式编码器每圈提供一个确定的计数值和一个复位脉冲来自轴式编码器的时钟和复位脉冲做为高速计数器的输入高速计数器装入一组预置值中的第一个值当前计数值小于当前预置值时希望的输出有效计数器设置成在当前值等于预置值和有复位时产生中断 随着每次当前计数值等于预置值的中断事件的出现一个新的预置值被装入并重新设置下一个输出状态当出现复位中断事件时设置第一个预置值和第一个输出状态这个循环又重新开始 由于中断事件产生的速率远低于高速计数器的计数速率用高速计数器可实现精确控制而与 PLC 整个扫描周期的关系不大采用中断的方法允许在简单的状态控制中用独立的中断程序装入一个新的预置值这样使得程序简单直接并容易读懂当然也可以在一个中断程序中处理所有的中断事件。
高速脉冲两种脉冲输出类型:双脉冲或脉冲/ 方向,用于控制步进电机或伺服电机,实现定位任务。
PLC发送脉冲有两种方法:1.在程序流程中由程序控制产生脉冲;2.由专用部件产生高速脉冲。前者和扫描周期有关,后者只是按要求设置好工作方式后启动就可以了,运行过程可以不干预,不受PLC扫描周期的影响。
PWM控制技术一直是变频技术的核心技术之一。1964年A.Schonung和H.stemmler首先提出把这项通讯技术应用到交流传动中,从此为交流传动的推广应用开辟了新的局面。
从最初采用模拟电路完成三角调制波和参考正弦波比较,产生正弦脉宽调制SPWM信号以控制功率器件的开关开始,到目前采用全数字化方案,完成优化的实时在线的PWM信号输出,可以说直到目前为止,PWM在各种应用场合仍在主导地位,并一直是人们研究的热点。
由于PWM可以同时实现变频变压反抑制谐波的特点。由此在交流传动及至其它能量变换系统中得到广泛应用。PWM控制技术大致可以为为三类,正弦PWM(包括电压,电流或磁通的正弦为目标的各种PWM方案,多重PWM也应归于此类),优化PWM及随机PWM。正弦PWM已为人们所熟知,而旨在改善输出电压、电流波形,降低电源系统谐波的多重PWM技术在大功率变频器中有其独特的优势(如ABB& ACS1000系列和美国ROBICON公司的完美无谐波系列等);而优化PWM所追求的则是实现电流谐波畸变率(THD)最小,电压利用率最高,效率最优,及转矩脉动最小以及其它特定优化目标。
在70年代开始至80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般最高不超过5kHz,电机绕组的电磁噪音及谐波引起的振动引起人们的关注。为求得改善,随机PWM方法应运而生。其原理是随机改变开关频率使电机电磁噪音近似为限带白噪音(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱。正因为如此,即使在IGBT已被广泛应用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值(DTC控制即为一例);别一方面则告诉人们消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,因为随机PWM技术提供了一个分析、解决问题的全新思路。
脉宽调制的基本原理及其应用实例
&脉宽调制(PWM)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。
模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V, 5V}这一集合中取值。
模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制。在简单的模拟收音机中,音量旋钮被连接到一个可变电阻。拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小。与收音机一样,模拟电路的输出与输入成线性比例。
尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。其中一点就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。
通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。
简而言之,PWM是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。
图1显示了三种不同的PWM信号。图1a是一个占空比为10%的PWM输出,即在信号周期中,10%的时间通,其余90%的时间断。图1b和图1c显示的分别是占空比为50%和90%的PWM输出。这三种PWM输出编码的分别是强度为满度值的10%、50%和90%的三种不同模拟信号值。例如,假设供电电源为9V,占空比为10%,则对应的是一个幅度为0.9V的模拟信号。
图2是一个可以使用PWM进行驱动的简单电路。图中使用9V电池来给一个白炽灯泡供电。如果将连接电池和灯泡的开关闭合50ms,灯泡在这段时间中将得到9V供电。如果在下一个50ms中将开关断开,灯泡得到的供电将为0V。如果在1秒钟内将此过程重复10次,灯泡将会点亮并象连接到了一个4.5V电池(9V的50%)上一样。这种情况下,占空比为50%,调制频率为10Hz。
大多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz。设想一下如果灯泡先接通5秒再断开5秒,然后再接通、再断开&&。占空比仍然是50%,但灯泡在头5秒钟内将点亮,在下一个5秒钟内将熄灭。要让灯泡取得4.5V电压的供电效果,通断循环周期与负载对开关状态变化的响应时间相比必须足够短。要想取得调光灯(但保持点亮)的效果,必须提高调制频率。在其他PWM应用场合也有同样的要求。通常调制频率为1kHz到200kHz之间。
硬件控制器
许多微控制器内部都包含有PWM控制器。例如,Microchip公司的PIC16C67内含两个PWM控制器,每一个都可以选择接通时间和周期。占空比是接通时间与周期之比;调制频率为周期的倒数。执行PWM操作之前,这种微处理器要求在软件中完成以下工作:
* 设置提供调制方波的片上定时器/计数器的周期
* 在PWM控制寄存器中设置接通时间
* 设置PWM输出的方向,这个输出是一个通用I/O管脚
* 启动定时器
* 使能PWM控制器
虽然具体的PWM控制器在编程细节上会有所不同,但它们的基本思想通常是相同的。
通信与控制
PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。
对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。
PWM广泛应用在多种系统中。作为一个具体的例子,我们来考察一种用PWM控制的制动器。简单地说,制动器是紧夹住某种东西的一种装置。许多制动器使用模拟输入信号来控制夹紧压力(或制动功率)的大小。加在制动器上的电压或电流越大,制动器产生的压力就越大。
可以将PWM控制器的输出连接到电源与制动器之间的一个开关。要产生更大的制动功率,只需通过软件加大PWM输出的占空比就可以了。如果要产生一个特定大小的制动压力,需要通过测量来确定占空比和压力之间的数学关系(所得的公式或查找表经过变换可用于控制温度、表面磨损等等)。
例如,假设要将制动器上的压力设定为100psi,软件将作一次反向查找,以确定产生这个大小的压力的占空比应该是多少。然后再将PWM占空比设置为这个新值,制动器就可以相应地进行响应了。如果系统中有一个传感器,则可以通过闭环控制来调节占空比,直到精确产生所需的压力。
总之,PWM既经济、节约空间、抗噪性能强,是一种值得广大工程师在许多设计应用中使用的有效技术。
运动控制技术
1.什么是运动控制技术?
  运动控制主要用于机械传动装置的计算机控制,对机械传动装置中电机的位置、速度进行实时的控制管理,使运动部件按照预期的轨迹和规定运动参数完成相应的动作。
2.运动控制技术的构成?
  运动控制技术包括轨迹控制、伺服控制两大基本技术。是计算机、微电子、传感器与测试、自动控制、电力电子和机电一体化等技术综合应用的产物。
3.什么是运动控制器?
  所谓运动控制器,就是利用高性能微处理器(如DSP)及大规模可编程器件实现多个伺服电机的多轴协调控制,具体就是将实现运动控制的底层软件和硬件集成在一起,使其具有伺服电机控制所需的各种速度、位置控制功能。这些功能能通过计算机方便地调用。
4.传统的机电装置是如何实现运动控制的?
  显然,传统的机电装置也有运动控制的问题,但是在传统的机电装置中,实现运动控制的功能需要针对具体的装置设计专用的硬件和软件,通用性不强。作为开发者而言,需要花大量时间研制底层的电机控制电路和软件,开发效率低。
5.运动控制技术的产生原因?
  随着自动化技术的发展,为实现计算机控制的设备轨迹运动,伺服电机控制装置(步进、交流、直流)已越来越多地用于工业自动化设备的控制。过去这类伺服电机控制装置的制造一直为少数大公司所垄断。由于各公司的控制策略不同,造成各公司的数控设备开放性差,升级、扩展和维护困难。随着CNC技术更多地进入分布式控制系统和FMS,这种相对封闭的数控系统构成方式已不能适应用户对设备开放性、互换性和扩展性方面的需要,运动控制技术就是在这种情况下为解决这些问题而提出的。
6.应用运动控制器有什么优越性?
  运动控制器为实现运动控制提供了一个基础平台,在这个平台上可以方便地实现对多个电机的控制。作为机电新产品的开发者,要做的主要工作一是进行方案设计,二是控制器、电机等硬件的系统集成,三是编制应用程序,给运动控制器发送相应的速度、位置指令,实现机电装置所需要的运动功能。这样,有了运动控制器,开发者不再需要进行复杂的硬件和控制算法设计,而可以把精力集中在上层的管理软件和机械结构的设计上。所以,使用运动控制器开发新产品时具有高的效率。
由于开放式控制系统结构灵活,可利用第三方的软硬件技术,其开发和更新换代的速度非常迅速,有取代传统式控制系统的趋势。
7.为什么说运动控制器是计算机与和伺服电机之间的桥梁?
  &PC+运动控制器+伺服电机&的开放式结构是机电产品的发展方向,在这种结构中,计算机(PC)的主要功能是根据具体装置的运动控制类型,优化指令形式,属于上层控制,其软件是通用的。而伺服电机是主要的执行部件,具体完成运动控制。运动控制器就是根据上层计算机给出的指令,结合具体的伺服系统类型,将其指令转化为伺服电机的运动。所以运动控制器是计算机与伺服电机的连接桥梁。
8.用运动控制器开发机电控制装置的工作步骤?
 (1)需要确定方案,根据装置的运动和力学要求进行计算,确定伺服电机、减速器、位置检测装置的类型和规格。
 (2)选择合适的MC系列运动控制器,通常根据伺服电机、编码器类型和数量进行选择。
 (3)开发应用程序,根据装置在工作时的运动轨迹和速度、位置等运动参数,通过对运动控制器API函数的调用实现所需的运动要求。
9. 运动控制器的应用领域有哪些?
  运动控制器是军民用机电一体化产品与系统中的关键部件,可以说有伺服电机的场合就需要运动控制器。它可以直接用于电子机械设备、机器人、数控机床、医疗设备、液压控制设备、印刷机械等设备上。特别是最适用于非标准设备的快速开发,具有非常好的发展和经济效益前景。
其应用领域包括:
航天: 天线定位控制 空间摄像控制 激光跟踪控制 天文望远镜
食品加工:食品包装 家禽修整加工机 精密切肉机
机床: 无心磨床 EDM机床 激光切割机床 铣床 冲压机床
    快速成型机 靠模铣床 螺纹机床 超声焊接机 水射流切割
(责任编辑: 佚名 )
本文关键字:
免责声明:本文章仅代表作者个人观点,与艾特贸易网无关。本站大部分技术资料均为原创文章,文章仅作为读者参考使用,请自行核实相关内容,如若转载请注明来源:
直流电桥是一种用来测量较......
MOV传送指令的编号为FNC12......
为了反映竭染法染色中活性......
从流延薄膜挤出机生产线设......
新闻热点排行

我要回帖

更多关于 压力传感器输出信号 的文章

 

随机推荐