zigbee技术工作原理采用了哪些方法来保障数据传输的安全性

503 Service Temporarily Unavailable
503 Service Temporarily UnavailableZIGBEE的解析
ZIGBEE的设计应用
ZIGBEE解决方案
ZIGBEE常用电路
Zigbee的起源
  Zigbee, 在中国被译为"紫蜂",它与蓝牙相类似.是一种新兴的短距离无线技术.
  用于传感控制应用(sensor and ctrol).
  此想法在IEEE 802.15工作组中提出,于是成立了TG4工作组,并制定规范IEEE 802.15.4.
  年,zigbee 成立.
  年,zigbee 诞生.它是zigbee的第一个规范.但由于推出仓促,存在一些错误.
  年,推出zigbee ,比较完善.
  年底,zigbee PRO推出
  zigbee的底层技术基于 IEEE 802.15.4.
  物理层和MAC层直接引用了IEEE 802.15.4
  在蓝牙技术的使用过程中,人们发现蓝牙技术尽管有许多优点,但仍存在许多缺陷。对工业,家庭自动化控制和工业遥测遥控领域而言,蓝牙技术显得太复杂,功耗大,距离近,组网规模太小等,而工业自动化,对无线数据通信的需求越来越强烈,而且,对于工业现场,这种必须是高可靠的,并能抵抗工业现场的各种电磁干扰。因此,经过人们长期努力,Zigbee协议在2003年正式问世。另外,Zigbee使用了在它之前所研究过的面向家庭网络的通信协议Home RF Lite。
  长期以来,低价、低传输率、短距离、低功率的无线通讯市场一直存在着。自从Bluetooth出现以后,曾让工业控制、家用自动控制、玩具制造商等业者雀跃不已,但是Bluetooth的售价一直居高不下,严重影响了这些厂商的使用意愿。如今,这些业者都参加了IEEE802.15.4小组,负责制定ZigBee的物理层和媒体介入控制层。IEEE802.15.4规范是一种经济、高效、低数据速率(&250kbps)、工作在2.4GHz和868/928MHz的无线技术,用于个人区域网和对等网络。它是ZigBee应用屋和网络层协议的基础。ZigBee是一种新兴的近距离、低复杂度、低功耗、低数据速率、低成本的无线网络技术,它是一种介于无线标记技术和蓝牙之间的技术提案。主要用于近距离无线连接。它依据802.15.4标准,在数千个微小的之间相互协调实现通信。这些传感器只需要很少的能量,以接力的方式通过无线电波将数据从一个传感器传到另一个传感器,所以它们的通信效率非常高。
Zigbee无线数据传输网络描述
  简单的说,Zigbee是一种高可靠的无线数传网络,类似于和网络。Zigbee类似于移动网络基站。通讯距离从标准的75m到几百米、几公里,并且支持无限扩展。
  Zigbee是一个由可多到65000个组成的一个无线数传网络平台,在整个网络范围内,每一个Zigbee网络数传模块之间可以相互通信,每个网络节点间的距离可以从标准的75m无限扩展。
  与移动通信的CDMA网或GSM网不同的是,Zigbee网络主要是为工业现场自动化控制数据传输而建立,因而,它必须具有简单,使用方便,工作可靠,价格低的特点。而移动通信网主要是为语音通信而建立,每个基站价值一般都在百万元人民币以上,而每个Zigbee“基站”却不到1000元人民币。每个Zigbee网络节点不仅本身可以作为监控对象,例如其所连接的直接进行数据采集和监控,还可以自动中转别的网络节点传过来的数据资料。除此之外,每一个Zigbee网络节点(FFD)还可在自己信号覆盖的范围内,和多个不承担网络信息中转任务的孤立的子节点(RFD)无线连接。
Zigbee采用的自组织网通信方式
  ZigBee技术所采用的自组织网是怎么回事?举一个简单的例子就可以说明这个问题,当一队伞兵空降后,每人持有一个ZigBee终端,降落到地面后,只要他们彼此间在网络模块的通信范围内,通过彼此自动寻找,很快就可以形成一个互联互通的ZigBee网络。而且,由于人员的移动,彼此间的联络还会发生变化。因而,模块还可以通过重新寻找通信对象,确定彼此间的联络,对原有网络进行刷新。这就是自组织网。
  ZigBee技术为什么要使用自组织网来通信?
  网状网通信实际上就是多通道通信,在实际工业现场,由于各种原因,往往并不能保证每一个无线通道都能够始终畅通,就像城市的街道一样,可能因为车祸,道路维修等,使得某条道路的交通出现暂时中断,此时由于我们有多个通道,车辆(相当于我们的控制数据)仍然可以通过其他道路到达目的地。而这一点对工业现场控制而言则非常重要。
  为什么自组织网要采用动态路由的方式?
  所谓动态路由是指网络中数据传输的路径并不是预先设定的,而是传输数据前,通过对网络当时可利用的所有路径进行搜索,分析它们的位置关系以及远近,然后选择其中的一条路径进行数据传输。在我们的网络管理软件中,路径的选择使用的是“梯度法”,即先选择路径最近的一条通道进行传输,如传不通,再使用另外一条稍远一点的通路进行传输,以此类推,直到数据送达目的地为止。在实际工业现场,预先确定的传输路径随时都可能发生变化,或者因各种原因路径被中断了,或者过于繁忙不能进行及时传送。动态路由结合网状拓扑结构,就可以很好解决这个问题,从而保证数据的可靠传输。
Zigbee自身的技术优势
  ①低功耗。在低耗电待机模式下,2 节5 号干可支持1个节点工作6~24个月,甚至更长。这是Zigbee的突出优势。相比较,蓝牙能工作数周、WiFi可工作数小时。
  现在,公司和德国的Micropelt公司共同推出新能源的Zigbee节点。该节点采用Micropelt公司的热电发电机给TI公司的Zigbee提供。
  ②低成本。通过大幅简化协议(不到蓝牙的1/10) ,降低了对通信控制器的要求,按预测分析,以的8位测算,全功能的主节点需要32KB代码,子功能节点少至4KB代码,而且Zigbee免协议专利费。每块的价格大约为2 美元。
  ③ 低速率。Zigbee工作在20~250 kbps的较低速率,分别提供250 kbps(2.4GHz)、40kbps (915 MHz)和20kbps(868 MHz) 的原始数据吞吐率,满足低速率传输数据的应用需求。
  ④近距离。传输范围一般介于10~100 m 之间,在增加RF 发射功率后,亦可增加到1~3 km。这指的是相邻节点间的距离。如果通过路由和节点间通信的接力,传输距离将可以更远。
  ⑤短时延。Zigbee 的响应速度较快,一般从睡眠转入工作状态只需15 ms ,节点连接进入网络只需30 ms ,进一步节省了电能。相比较,蓝牙需要3~10 s、WiFi 需要3 s。
  ⑥高容量。Zigbee 可采用星状、片状和网状网络结构,由一个主节点管理若干子节点,最多一个主节点可管理254 个子节点;同时主节点还可由上一层网络节点管理,最多可组成65000 个节点的大网。
  ⑦高安全。Zigbee 提供了三级安全模式,包括无安全设定、使用接入控制清单(ACL) 防止非法获取数据以及采用高级加密标准(AES 128) 的对称密码,以灵活确定其安全属性。
  ⑧免执照频段。采用直接序列扩频在工业科学医疗( ISM) 频段,2. 4 GHz (全球) 、915 MHz(美国) 和868 MHz(欧洲) 。
Zigbee的频带
  1) 868MHZ 传输速率为20KB/S 适用于欧洲
  2) 915MHZ 传输速率为40KB/S 适用于美国
传输速率为250KB/S 全球通用
  由于 此三个频带物理层并不相同,其各自信道带宽也不同,分别为
  0.6MHZ,2MHZ和5MHZ.分别有1个10个和16个信道.
  不同频带的扩频和调制方式有区别.虽然都使用了直接扩频(DSSS)的方式,但从比特到码片的变换方式有较大的差别.
  调制方式都用了调相技术,但868MHZ和915MHZ频段采用的是BPSK
  而频段采用的是OQPSK
  在发射功率为0dBm的情况下,BLUETOOTH通常能用10M的作用范围.
  而基于IEEE 802.15.4的zigbee在室内通常能达到30-50米作用距离,在室外如果障碍物少,甚至可以达到100米作用距离.
  所以zigbee可归为低速率的短距离无线通信技术.
Zigbee性能分析
  1.数据速率比较低 在的频段只有250Kb/S,而且只是链路上的速率,除掉信道竞争应答和重传等消耗,真正能被应用所利用的速率可能不足100Kb/S,并且余下的速率可能要被邻近多个节点和同一个节点的多个应用所瓜分.因此不适合做视频之类事情.
  适合的应用领域--------传感和控制
  2.可靠性 在可靠性方面,zigbee有很多方面进行保证.物理层采用了扩频技术,能够在一定程度上抵抗干扰
  MAC应用层(APS部分)有应答重传功能.
  MAC层的CSMA机制使节点发送前先监听信道,可以起到避开干扰的作用.
  当zigbee网络受到外界干扰,无法正常工作时,整个网络可以动态的切换到另一个工作信道上.
  3.时延 由于zigbee采用随机接入MAC层,且不支持时分复用的信道接入方式,因此不能很好的支持一些实时的业务.
  4.能耗特性 能耗特性是zigbee的一个技术优势.
  通常zigbee节点所承载的应用数据速率都比较低,在不需要通信时,节点可以进入很低功耗的休眠状态,此时能耗可能只有正常工作状态下的千分之一.由于一般情况下,休眠时间占总运行时间的大部分,有时正常工作的时间还不到百分之一,因此达到很高的节能效果.
  5.组网和路由性------网络层特性
  zigbee大规模的组网能力--------每个网络60000个节点
  bluetooth-------每个网络8个节点.
  因为zigbee底层采用了直扩技术,如果采用非信标模式,网络可以扩展得很大,因为不需同步而且节点加入网络和重新加入网络的过程很快,一般可以做到1秒以内,甚至更快.
  bluetooth通常需要3秒
  在路由方面,zigbee支持可靠性很高的网状网的路由,所以可以布置范围很广的网络,并支持多播和广播特性,能够给丰富的应用带来有力的支持.
Zigbee的应用前景
  Zigbee 并不是用来与蓝牙或者其他已经存在的标准竞争,它的目标定位于现存的系统还不能满足其需求的特定的市场,它有着广阔的应用前景。Zigbee 联盟预言在未来的四到五年,每个家庭将拥有50 个Zigbee 器件,最后将达到每个家庭150 个。据估计,到2007 年,Zigbee 市场价值将达到数亿美元。其应用领域主要包括:
  ◆家庭和楼宇网络:空调系统的温度控制、照明的自动控制、窗帘的自动控制、煤气计量控制、家用电器的远程控制等;
  ◆工业控制:各种、的自动化控制;
  ◆商业:智慧型标签等;
  ◆公共场所:等;
  ◆农业控制:收集各种土壤信息和气候信息;
  ◆医疗:老人与行动不便者的紧急呼叫器和医疗传感器等。
ZigBee联盟
  ZigBee联盟是一个高速成长的非盈利业界组织,成员包括国际著名半导体生产商、技术提供者、技术集成商以及最终使用者。联盟制定了基于IEEE802.15.4,具有高可靠、高性价比、低功耗的网络应用规格。
  ZigBee联盟的主要目标是以通过加入无线网络功能,为消费者提供更富有弹性、更容易使用的产品。ZigBee技术能融入各类电子产品,应用范围横跨全球的民用、商用、公共事业以及工业等市场。使得联盟会员可以利用ZigBee这个标准化无线网络平台,设计出简单、可靠、便宜又节省电力的各种产品来。
  ZigBee联盟所锁定的焦点为制定网络、安全和应用软件层;提供不同产品的协调性及互通性测试规格;在世界各地推广ZigBee品牌并争取市场的关注;管理技术的发展。
  ZigBee联盟对ZigBee标准的制定:IEEE802.15.4的物理层、MAC层及数据链路层,标准已在2003年5月发布。ZigBee网络层、加密层及应用描述层的制定也取得了较大的进展。V1.0版本已经发布。其他应用领域及其相关的设备描述也会陆续发布。由于ZigBee不仅只是802.15.4的代名词,而且IEEE仅处理低级MAC层和物理层协议,因此ZigBee联盟对其网络层协议和API进行了标准化。完全协议用于一次可直接连接到一个设备的基本节点的4K字节或者作为Hub或的协调器的32K字节。每个协调器可连接多达255个节点,而几个协调器则可形成一个网络,对路由传输的数目则没有限制。ZigBee联盟还开发了安全层,以保证这种便携设备不会意外泄漏其标识,而且这种利用网络的远距离传输不会被其它节点获得。
基于ZigBee技术的温度监测系统的研究
&&& 目前我国北方大部分地区都有温室大棚,而且温室大棚也随着自动化监测技术的进步来到了现代化远程监控的时代,农产品价格的提升使得温室大棚采用进一步的先进技术成为可能,我们在此背景下将ZigBee技术用于温室大棚的温、湿度的数据采集,使得系统能够实现分布式监测,并且降低了成本,将数据汇总后通过PTR2000远程传送至大棚管理者的上,并通过后台机的智能化软件处理给出管理者实时的数据和及时的建议,从而让蔬菜品质更好,产量更高。
&&& 要进行分布式监测就要首先建立分布式网络,网络通信方式的选择是很重要的,根据系统中所传输数据的特点以及系统节点多,通信节点价格要低,并且不能布线的要求我们选择了一个很新的技术——ZigBee技术来作为我们无线网络的通信方式。在数据通信方面选择了性价比最好的通信方式。
&&& 1 ZigBee简介
&&& ZigBee是一种无线连接技术的商业化命名,该无线连接技术主要解决低成本、低功耗、低复杂度、低传输速率、近距离的设备联网应用。
&&& ZigBee标准基于802.15.4协议栈而建立,具备了强大的设备联网功能,它支持三种主要的自组织无线网络类型,即星型结构、网状结构(Mesh) 和簇状结构(Cluster tree),特别是网状结构,具有很强的网络健壮性和系统可靠性。ZigBee是一种强调极低耗电、极低成本的短距离无线网络技术,传输速度为20 k~250 kbps,ZigBee采用DSSS技术。功耗更低,依ZigBee网站公布,以一般电力而言,ZigBee产品可使用数月至数年之久。它非常适用于那些需要一年甚至更长时间才需更换电池的设备。这一点非常适合抄表系统。
&&& 2 温室大棚分布式监测系统的工作原理及zigBee网络在系统中的工作架构
&&& 温室大棚分布式监测系统的工作原理为:由网状分布的ZigBee节点通过温度和采集数据然后将数据传送至主节点,由主节点再将汇总的数据通过PTR2000传送至上位机,上位机将数据存入ACCESS数据库表中,上位机的软件可以显示实时数据,历史数据,并对数据进行处理理者提出合理的建议,并分析历史数据做出智能化的管理。
&&& 其中网状网络是基于ZigBee网络的,其网络架构如图1所示。
&&& 基于ZigBee无线网络平台的温室大棚分布式监测系统具有以下几个特点:
&&& (1)无须布设通信线路,各设备之间实现无线自动组网连接,即降低了系统安装成本。
&&& (2)由于整个通信系统的各个模块具有高集成度,高可靠性和低功耗,低成本,体积小等优点,维护保养十分方便。
&&& (3)卓越的物理性能,整个网络所使用的无线频率是国际通用的免费频段(2.4~2.48 GHz ISM),传输的方式是抗干扰能力强的直序扩频方式(DSSS)。
&&& (4)网络的自组织、自愈能力强,ZigBee的自组织功能:无需人工干预,网络节点能够感知其他节点的存在,并确定连接关系,组成结构化的网络。
&&& 3 基于CC2430的网络节点设计
&&& CC2430是ChipconAs公司最新推出的符合2.4 GIEEE802.15.4标准的射频。利用此芯片开发的无线通信设备支持数据传输率高达250 kbps可以实现多点对多点的快速组网。
&&& CC2430芯片只需少量外围部件配合就能实现信号的收发功能。图2为该温度检测终端的硬件结构。
&&& 使用一个非平衡,连接非平衡可使天线性能更好。电路中的非平衡变压器由电容C1和L1、L2、L3以及一个PCB(印制板)微波传输线组成,整个结构满足RF输入/输出匹配(50 Q)的要求。内部T/R交换电路完成LNA和PA之问的交换。R1和R2为偏置电阻,R1主要用来为32 MHz的提供一个合适的工作电流。用1个32 MHz的(xTAL1)和2个电容(C2和C3)构成一个32 MHz的晶振电路。用1个32.768 kHz的石英谐振器(XTAL2)和2个电容(C4和C5)构成一个32.768 kHz的晶振电路。为所有要求1.8 V电压的引脚和内部供电,电容C6和C7是去耦电容,用来为电源滤波,以提高芯片工作的稳定性。DS18B20的数据输入/输出端DQ接 P0-0引脚,该引脚具有4 mA的输出驱动能力。
&&& 数据传输节点采用PTR2000芯片进行无线远程传输,PTR2000是一种新型的单片无线收发数传MODEM模块,该器件为超小型模块器件,具有超低功耗、高速率(19.2 kb-ps)无线收发数传功能,且性能优异,使用方便,PTR2000与组成的数据传输节点硬件连接如图3所示。
&&& 上位机软件采用VB6.0,界面友好,可以显示历史数据,实时数据以及温度、湿度曲线等。监测界面如图4所示。
&&& 4 结束语
&&& 通过系统的设计和对于CC2430芯片的使用,感觉到ZigBee无线传感网络应用前景非常广阔,CC2430芯片是真正意义上的SOC芯片,使得我们开发ZigBee无线传感网络会更加方便,产品开发周期会大大缩短。
基于ZigBee的技术的特点及应用
 一、引言
  近年来,各种无线通信技术迅猛发展,极大提高了人们的工作效率和生活质量。然而,在日常生活中,我们仍然被各种所束缚,能否在近距离范围内实现各种设备之间的无线通信?纵观目前发展较成熟的几大无线通信技术,往往比较复杂,不但耗费较多资源,成本也比较高,并不适用于短距离无线通信的场合。蓝牙技术的出现使得短距离无线通信成为可能,但是其协议较复杂、功耗高、成本高等特点不太适用于要求低成本、低功耗的工业控制和家庭网络。本文介绍了一种复杂度、成本和功耗都很低的低速率短距离无线接入技术——ZigBee。该技术主要针对低速率网络而提出,它能够满足小型化、低成本设备(如温度调节装置、照明控制器、环境等)的无线联网要求,能广泛地应用于工业、农业和日常生活中。
  二、ZigBee技术的特点及应用
  ZigBee技术主要用于无线个域网(WPAN),是基于IEEE802.15.4无线标准研制开发的。IEEE802.15.4定义了两个底层,即物理层和媒体接入控制(MediaAccess TROL,MAC)层;ZigBee联盟则在IEEE 802.15.4的基础上定义了网络层和应用层。ZigBee联盟成立于年8月,该联盟由Invensys、三菱、、飞利浦等公司组成,如今已经吸引了上百家公司、无线设备公司和开发商的加入,其目标市场是工业、家庭以及医学等需要低功耗、低成本、对数据速率和QoS(服务质量)要求不高的无线通信应用场合。
  ZigBee这个名字来源于蜂群的通信方式:蜜蜂之间通过跳Zigzag形状的舞蹈来交互消息,以便共享食物源的方向、位置和距离等信息。与其它无线通信协议相比,ZigBee无线协议复杂性低、对资源要求少,主要有以下特点:
  低功耗:这是ZigBee的一个显著特点。由于工作周期短、收发信息功耗较低、以及采用了休眠机制,ZigBee终端仅需要两节普通的五号干就可以工作六个月到两年。
  低成本:协议简单且所需的存储空间小,这极大降低了ZigBee的成本,每块芯片的价格仅2美元,而且ZigBee协议是免专利费的。
  时延短:通信时延和从休眠状态激活的时延都非常短。设备搜索时延为30ms,休眠激活时延为15ms,活动设备信道接入时延为15ms。这样一方面节省了能量消耗,另一方面更适用于对时延敏感的场合,例如一些应用在工业上的传感器就需要以毫秒的速度获取信息,以及安装在厨房内的也需要在尽量短的时间内获取信息并传输给网络控制者,从而阻止火灾的发生。
  传输范围小:在不使用的前提下,ZigBee节点的有效传输范围一般为10-75m,能覆盖普通的家庭和办公场所。
  数据传输速率低:2.4GHz频段为250kb/s,915MHz频段为40kb/s,868MHz频段只有20kb/s。
  数据传输的可靠性由于ZigBee采用了碰撞避免机制,同时为需要固定带宽的通信业务预留了专用时隙,从而避免了发送数据时的竞争和冲突。MAC层采用完全确认的数据传输机制,每个发送的数据包都必须等待接收方的确认信息,保证了节点之间传输信息的高可靠性。
  ZigBee的出现将给人们的工作和生活带来极大的方便和快捷,它以其低功耗、低速率、低成本的技术优势,适合的应用领域主要有:
  家庭和建筑物的自动化控制:照明、空调、窗帘等家具设备的远程控制以使其更加节能、便利,烟尘、有毒等可自动监测异常事件以提高安全性;
  消费性设备:电视、、CD机等电器的*(含ZigBee功能的就可以支持主要功能)。
  PC外设:无线键盘、鼠标、游戏等;
  工业控制:利用传感器和ZigBee网络使数据的自动采集、分析和处理变得更加容易;
  医疗设备控制:医疗传感器、病人的紧急呼叫按钮等;
  交互式玩具。
  三、ZigBee协议栈
  ZigBee协议栈结构(图1)是基于标准OSI七层模型的,包括高层应用规范、应用汇聚层、网络层、媒体接入层和物理层。
  图1 ZigBee协议栈
  IEEE802.15.4定义了两个物理层标准,分别是2.4GHz物理层和868/915MHz物理层。两者均基于直接序列扩频(DirectSequenceSpread Spectrum,DSSS) 技术。868MHz只有一个信道,传输速率为20kb/s;902MHz~928MHZ频段有10个信道,信道间隔为2MHz,传输速率为40kb/s。以上这两个频段都采用BPSK调制。2.4GHz~2.4835 GHz频段有16个信道,信道间隔为5MHz,能够提供250kb/s的传输速率,采用O-QPSK调制。为了提高传输数据的可靠性,IEEE 802.15.4定义的媒体接入控制(MAC)层采用了CSMA-CA和时隙CSMA-CA信道接入方式和完全握手协议。应用汇聚层主要负责把不同的应用映射到ZigBee网络上,主要包括安全与鉴权、多个业务数据流的会聚、设备发现和业务发现。
  四、ZigBee网络配置
  低数据速率的WPAN中包括两种无线设备:全功能设备(FFD)和精简功能设备(RFD)。其中,FFD可以和FFD、RFD通信,而RFD只能和 FFD通信,RFD之间是无法通信的。RFD的应用相对简单,例如在传感器网络中,它们只负责将采集的数据信息发送给它的协调点,并不具备数据转发、路由发现和路由维护等功能。RFD占用资源少,需要的存储容量也小,成本比较低。
  在一个ZigBee网络中,至少存在一个FFD充当整个网络的协调点,即PAN协调点,ZigBee中也称作ZigBee协调点。一个ZigBee 网络只有一个PAN协调点。通常,PAN协调点是一个特殊的FFD,它具有较强大的功能,是整个网络的主要控制者,它负责建立新的网络、发送网络信标、管理网络中的节点以及存储网络信息等。FFD和RFD都可以作为终端节点加入ZigBee网络。此外,普通FFD也可以在它的个人操作空间(POS)中充当协调点,但它仍然受PAN协调点的控制。ZigBee中每个协调点最多可连接255个节点,一个ZigBee网络最多可容纳65535个节点。五、ZigBee网络的拓扑结构
  ZigBee网络的拓扑结构主要有三种,星型网、网状(mesh)网和混合网。
  星型网(图2-a)是由一个PAN协调点和一个或多个终端节点组成的。PAN协调点必须是FFD,它负责发起建立和管理整个网络,其它的节点(终端节点)一般为RFD,分布在PAN协调点的覆盖范围内,直接与PAN协调点进行通信。星型网通常用于节点数量较少的场合。
  Mesh网(图2-b)一般是由若干个FFD连接在一起形成,它们之间是完全的对等通信,每个节点都可以与它的无线通信范围内的其它节点通信。Mesh网中,一般将发起建立网络的FFD节点作为PAN协调点。Mesh网是一种高可靠性网络,具有“自恢复”能力,它可为传输的数据包提供多条路径,一旦一条路径出现故障,则存在另一条或多条路径可供选择。
  图2 ZigBee拓扑结构
  Mesh网可以通过FFD扩展网络,组成Mesh网与星型网构成的混合网(图2-C)。混合网中,终端节点采集的信息首先传到同一子网内的协调点,再通过网关节点上传到上一层网络的PAN协调点。混合网都适用于覆盖范围较大的网络。
  六、ZigBee组网技术
  ZigBee中,只有PAN协调点可以建立一个新的ZigBee网络。当ZigBeePAN协调点希望建立一个新网络时,首先扫描信道,寻找网络中的一个空闲信道来建立新的网络。如果找到了合适的信道,ZigBee协调点会为新网络选择一个PAN标识符(PAN标识符是用来标识整个网络的,因此所选的PAN标识符必须在信道中是唯一的)。一旦选定了PAN标识符,就说明已经建立了网络,此后,如果另一个ZigBee协调点扫描该信道,这个网络的协调点就会响应并声明它的存在。另外,这个ZigBee协调点还会为自己选择一个16bit网络地址。ZigBee网络中的所有节点都有一个 64bitIEEE扩展地址和一个16 bit网络地址,其中,16bit的网络地址在整个网络中是唯一的,也就是802.15.4中的MAC短地址。
  ZigBee协调点选定了网络地址后,就开始接受新的节点加入其网络。当一个节点希望加入该网络时,它首先会通过信道扫描来搜索它周围存在的网络,如果找到了一个网络,它就会进行关联过程加入网络,只有具备路由功能的节点可以允许别的节点通过它关联网络。如果网络中的一个节点与网络失去联系后想要重新加入网络,它可以进行孤立通知过程重新加入网络。网络中每个具备功能的节点都维护一个路由表和一个路由发现表,它可以参与数据包的转发、路由发现和路由维护,以及关联其它节点来扩展网络。
  ZigBee网络中传输的数据可分为三类:周期性数据,例如传感器网中传输的数据,这一类数据的传输速率根据不同的应用而确定;间歇性数据,例如电灯传输的数据,这一类数据的传输速率根据应用或者外部激励而确定;反复性的、反应时间低的数据,例如无线鼠标传输的数据,这一类数据的传输速率是根据时隙分配而确定的。为了降低ZigBee节点的平均功耗,ZigBee节点有激活和睡眠两种状态,只有当两个节点都处于激活状态才能完成数据的传输。在有信标的网络中,ZigBee协调点通过定期地广播信标为网络中的节点提供同步;在无信标的网络中,终端节点定期睡眠,定期醒来,除终端节点以外的节点要保证始终处于激活状态,终端节点醒来后会主动询问它的协调点是否有数据要发送给它。在ZigBee网络中,协调点负责缓存要发送给正在睡眠的节点的数据包。
  七、结束语
  ZigBee技术还在不断完善,它所具有的低功耗、低成本、使用便捷等显著的技术优势,使它必将有着广阔的应用前景。ZigBee联盟预言在未来的四到五年内,每个家庭将拥有50个ZigBee器件,最后将达到每个家庭150个。相信在不久的将来,基于ZigBee技术的产品会走进全球每家每户,在提高我们的生活质量方面作出突出的贡献。
基于ZigBee的工业无线网关研究
摘要 为实现无线网络与外部有线控制网络的互联,开发了一种用于接入工业以太网的无线网关。通过对无线网关应用需求进行分析,设计了基于ZigBee无线通信技术的网关通信模型,重点研究了无线网关实现中的相关关键技术,如网络管理、系统管理以及协议转换等。最后,介绍了测试ZigBee无线网关的方法并给出了相应测试界面。测试结果表明,ZigBee无线网关能较好地实现模型设计中提出的各项功能,为工业无线网络与有线网络的互操作性提供了一种有效解决途径。
引 言&&& 基于对监控数据传输的实时性、数据的开放性以及数据链接的安全性的要求,国内外许多公司和研究机构开始研究并组建工业无线测控系统。ZigBee短程无线网通信技术以其数据传输安全可靠、组网简易灵活、设备成本低、寿命长等优势,成为近年来业界的研究热点之一。美国系统和自动化学会已成立工业无线标准委员会(ISA1OO)。该委员会专门致力于工业无线技术的标准化进程,预计年底出台正式标准。ISA100标准的制定目的是让工业无线设备以低复杂度、合理的成本和低功耗、适当的数据通信速率去支持工业现场应用。标准主要内容包括工业无线的网络构架、共存性、健壮性、与有线现场网络的互操作性等。本设计项目为一种工业无线网关,主要用于解决工业无线网络与有线网络的互操作性问题。
1 ZigBee无线通信技术简介&&& ZigBee技术是一个具有统一技术标准的短距离无线通信技术,该标准把低功耗、低速率传输、低成本、低复杂度作为重要目标。其物理层(PHY)和媒体访问控制层(MAC)协议基于IEEE802.15.4协议标准,网络层(NWK)和应用层(APS)由ZigBee联盟来制定。ZigBee技术定义其工作在*基金项目:国家863计划项目,基于802.15.4的(编号-2)。2.4 GHz的ISM频段上,传输速率为20 kb/s~250 kb/s。基于ZigBee技术的通信设备有几十米的覆盖范围,也可以增加路由节点扩展覆盖范围,因此比较适用于工业控制,远程控制等相关领域。ZigBee通信设备可自由灵活地加入和离开网络,自身的低功耗和低成本延长了设备的工作时间,降低了系统整体成本。
2 工业无线网关模型设计2.1 需求分析&&& 目前工业中使用的无线网关主要采用802.11b、GPRS、蓝牙等通信技术,成本高、功耗高、移动性差以及安全性差等限制了这类传统网关的应用,采用ZigBee无线通信技术可以较大程度上改进这些性能。ZigBee无线网关因其技术优势在工业应用中可逐渐取代传统网关,目前已开始在小范围搭建工业测控系统进行测试应用。在功能上,传统网关主要完成协议转换及部分系统管理功能,而ZigBee无线网关作为无线网络接入有线网络的接入部件,除了具备传统网关的功能外,还应具备一些特有的功能:具备对无线网络的管理功能,包括无线网络形成、无线设备加入和断开等管理功能;在协议转换方面,必须同时开发无线、有线协议,数据包在无线和有线间转换;为实现对无线网络的监测和控制,在无线和有线协议开发中必须考虑为上层提供相应服务及服务接口。2.2 通信模型设计&&& 基于以上分析,针对工业应用设计了一种用于接人工业以太网的无线网关。无线网关的通信模型如图1所示。
&&&&&&&&&&&&&&&&&&&&
通信模型主要包括以下3个方面:&&& ①无线通信机制。现场设备与无线网关之间数据通信采用了ZigBee无线通信技术。ZigBee无线通信技术采用CSMA—CA接入方式,有效避免了无线电载波之间的冲突,保证了数据传输的可靠性。其MAC层和PHY层由IEEE802.15.4工作小组制定,NwK和APS则由ZigBee联盟来制定,其他部分——ZDO(ZigBee设备对象)和ZAO(ZigBee应用对象),由用户根据不同应用来完成。&&& ②以太网协议转换。无线网关的接入功能主要体现在协议转换,即将ZigBee无线通信协议转换为以太网有线协议,通过以太网接入控制网络。IEEE802.3 PHY和IEEE802.3 MAC为标准的以太网物理层和介质访问层,IEEE802.2 LLC提供以太网帧与IP层接口,传输层为标准TCP./UDP协议。&&& ③上层服务接口(high layer service interface)。针对工业应用,无线网关要求提供上层服务及接口,使用户可以通过无线网关对现场设备进行组态、调校。上层服务接口位于ZigBee APS层与TCP/IP层之间,为系统实现各种服务提供通用接口。
3 工业无线网关关键技术研究3.1 网络管理功能&&& (1)网络形成&&& 无线网关上电后,无线协议栈各层首先进行初始化,然后通过网络请求原语来启动一个新的网络,仅当具有协调器能力且当前还没有与网络连接的网关设备才可以建立一个新的网络。图2所示为网络形成流程。组网开始时,网络层首先向MAC层请求分配协议所规定的信道,或者由PHY层进行有效信道扫描,网络层管理实体等待信道扫描结果,然后根据扫描结果选择可允许能量水平的信道。找到合适的信道后,为这个新的网络选择一个个域网标识符(PANID)。PANID可由网络形成请求时指定,也可以随机选择一个PANID(除广播PANID固定为0xFFFF外),PANID在所选信道中应该是唯一的。PANID一旦选定,无线网关将选择16位网络地址0x0000作为自身短地址,同时进行相关设置。完成设置后,通过MAC层发出网络启动请求,返回网络形成状态。&&& (2)网络维护网络维护主要包括设备加入网络和离开网络过程。当网络形成后,通过网络管理实体设定MAC层连接许可标志来判断是否允许其他设备加设备初始化为协调器入网络。加入方式有联合方式和直接方式,在协议实现中采取直接加入网络方式。这种方式下由待加入的设备发送请求加入信标帧,网关接收到后,网络管理实体首先判断这个设备是否已存在于网络。存在,则使其加入网络;若不存在,则向设备发送信标帧,为这个设备分配一个网络中唯一的16位的短地址。这里的信标帧是由网关无线协议MAC层生成作为PHY层载荷,它包含PANID、加入时隙分配等信息。网内设备也可以请求断开网络。当网关收到设备断开连接请求后,MAC层向网络层发送报告,开始执行断开流程,从设备列表中删除该设备相关信息。
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
3.2 系统管理&&& (1)地址映射&&& 在无线传输中,网关主要根据地址信息来进行数据的发送和转发。ZigBee通信协议中规定了两种地址:64位的IEEE长地址和16位的短地址(SA)。IEEE长地址作为全局地址,可在大范围内调用;短地址作为个域网地址,仅限于小范围局域网内通信使用。为了方便设备间的信息传送,在协议转换过程中进行了地址映射。通过建立地址表存储现场设备的短地址(网关通信短地址固定为0000H),表中每个短地址对应一个设备对象标识符(Ob-jecD),控制网络协议根据ObjectID来对不同设备进行操作。如需实现组播功能,只须定义一组ObjectID作为网关目的地址,地址映射示例如表1所列。
&&&&&&&&&&&&&&&&&&&&&&&
&128.128.2.202为网关在工业以太网内分配的IP地址,用于有线网络设备信息交换;0x、0x等为无线网络IEEE64位长地址,0x1347为16位的个域网标识符(PANI)ID),0xl699、0x169A为16位设备短地址(SADDR)。无线设备间通信可采用两种方式:长地址或PANID+SADDR。两种方式均对应于一个ObjeetID,地址映射减少了通信传输的字节数,从而提高了通信效率。&&& (2) 进程通信机制&&& 为了提高系统的实时性,进程间通信采用消息触发的方式,在有线协议(以太网)的开发中移植了嵌入式实时操作系统μc/OS-II。进程间通信主要通过调用μC/0S—II的消息函数——消息请求0SQrequest()和消息触发OSQpost()来实现。在协议开发中,根据不同协议堆栈中不同层完成的功能进行进程任务划分,根据任务优先级来确定任务调用次序,未被触发的任务始终处于消息请求状态。如果同一时刻两个任务被触发,则根据优先级触发优先级高的任务,而优先级低的任务处于等待状态。3.3 无线/以太网协议转换&&& ZigBee无线网关协议转换主要是实现ZigBee数据报文与以太网报文双向转换。图3所示为两种协议报文格式转换图。图中给出了协议开发中定义每一层的字节数,其中PAYLD字节数可变,最大不超过127 B。当无线网关射频部分(PHY层)接收到数据报文,根据ZigBee通信协议从PHY到APS解出其中有效载荷,然后将有效载荷加载TCP(UDP)/IP(42 B)的报文格式,交由满足IEEE802.3以太网通信协议的处理,从而实现将无线接收到的信息传输到外部控制网络中。
&&&&&&&&&&&&&&&&
3.4 服务定义及实现&&& 为实现有线网络与无线网络的信息交互及控制功能,无线网关须完成相应的服务功能。无线网关提供的基本服务主要有:读/写服务、信息分发服务、设备上线服务。服务功能在网络连接成功后开始实现,不同服务对应不同的服务号。读写服务主要是针对设备参数的读取和设置;信息分发服务是将无线通信设备采集到的数据周期性地分发到网关,网关再转发到控制网络;设备上线服务是标示设备当前状态,即上线、掉线,该服务的服务类型为周期性,其他服务必须在此服务之后才能执行。各种服务虽然完成不同的功能,但都通过同一服务接口,因此在实现中设计了一套相同的服务报文格式:
&&&&&&&&&&&&&&&&&&&&&&
&&& 服务报文主要包含以下几个关键部分:短地址、服务号、参数索引。CRC为安全校验,LQI为链接质量,PHYheader、MAC header、NwK header和APS header分别为物理层、媒体访问控制层、网络层和应用层头字节,字节数与图3中的规定相同。
4 功能测试&&& 无线网关硬件设计采用双模式,即AT91R40008+CC2430模式。AT91R40008是一款基于7内核的,在网关开发中用于承载以太网协议;CC2430是一款基于IEEE802.15.4协议的无线通信,它包括1个2.4 GHz的射频和1颗工业级小巧高效的8051控制器,用于承载无线通信协议。这种能够提高系统性能并满足以ZigBee为基础的2.4GHz的ISM波段应用需求。4.1 测试方法&&& 对无线网关的测试主要采用两款软件——TI公司的Packet Sniffer forCC2430和免费开源的Ethereal,主要测试无线网关数据的收发功能、协议转换正确性以及无线网络管理功能等。Packet Sniffel for CC2430为无线通信协议分析软件,配合C51RF一3无线网络协议可以捕获空中ZigBee无线数据报文;Ethereal为专用于通过网口捕获以太网报文的以太网协议分析软件。测试时,可通过两款协议分析软件分别捕获无线和以太网数据报文,对这两种报文进行分析比较,从而完成对无线网关相关功能的验证;同时也可通过无线网关建立无线测控系统,通过专用无线组态软件对系统进行相关功能测试,从而验证无线网关功能。4.2 测试界面及分析&&& (1)数据收发及协议转换功能验证&&& 图4所示为Packet Sniffer for CC2430捕获空中的无线数据报文。无线数据报文包括接收时问(Time)、帧长度(Length)、帧控制域(Frame controlfield)、序列号(Sequence number)、个域网标识符(PANID)、目的地/源地址(Dest/Source Address)等信息。画线部分(16 99
01 OO 01 09 08 02 00)为无线报文中的实时数据。此数据为无线设备发送出的无线报文有效载荷,由无线网关CC2430射频部分接收。
&&& 图5为上位机通过Ethereal协议分析软件抓包获取的以太网数据报文,包括以太网头帧、IP报文头字段以及UDP头字段等。画线部分(16 99 14 01 00 04 01 00 01 )为TCP/IP协议数据域。数据域载荷与图5中无线数据载荷相同,从而验证了网关数据收发功能以及协议转换的正确性。
&&&&&&&&&&&&&&&&&&&&&&&
&&& (2)网络管理功能验证&&& 通过无线网搭建无线测控系统验证无线网关的无线网络管理功能。图6所示为无线组态软件监测无线测控系统示意图。图中无线测控系统为实验环境中组建的一树型拓扑结构,由无线网关、路由设备、现场设备组成,无线网关负责完成无线网络的形成、维护以及地址分配等功图6 通过无线网关组建无线测控系统组态示意图能。实验环境中经过长时间运行,无线测控系统运行稳定,无线网络通信正常,从而可以验证无线网关的网络管理功能的完备性。
&&&&&&&&&&&&&&&&&&&&&&&&&&
结 语&&& 随着无线通信技术逐渐进入工业领域,无线通信系统在工业通信网络中应用逐渐增加,而目前工业通信网络通信协议繁多,多种通信标准并存,因此不同传输介质、不同速率、不同通信协议的网络之间互联问题也逐渐成为人们关注的重点。本文介绍了一种采用ZigBee无线通信技术的工业无线网关,无线网关在实现工业无线测控系统与工业以太网互联的同时也可以完成对无线网络的管理。工业无线网关的实现优化了整个工业通信网络,为工业控制领域从有线向无线延伸提供了一种有效的解决途径。
如何开发更具鲁棒性的ZigBee解决方案
  ZigBee在无线网络领域中受到了人们的密切关注,主要是由于ZigBee承诺能为可靠、高性价比和低功率的无线通信提供全球性统一规范。并且在目前的无线设备市场中,ZigBee联盟经过不懈地努力已经将ZigBee的地位提升了一大步。仅仅用了几年的时间,该联盟就发展了200多家联盟成员。ZigBee组和协议栈已经可以很容易地从许多供货商那里得到。去年市场上已经出现第一套ZigBee终端产品。
  通过精心地定义ZigBee规范中的网络和应用层,ZigBee联盟希望独立的设备制造商能够开发出可以互操作的优秀终端产品。成员们对ZigBee芯片组给予了很高的期望,希望能够帮助OEM制造商进一步降低成本,从而为系统集成商和终端用户提供低成本的终端产品。
  随着市场需求的增长以及大量的志愿者投入研究ZigBee规范,现在已经到了将一个低成本、低功率的无线网络的可行性方案提供给人们的时候了。本文将讨论设计和集成一个ZigBee方案时应该考虑的一些重要因素。文中的许多内容来自MaxStream公司在研发其首套ZigBee认证产品——XBee OEM过程中所获取的经验。
  1. ZigBee网络
  ZigBee定义了三种节点类型:协调器、和终端设备。协调器可以通过选择网络的工作信道和个域网识别标志(PAN ID)来启动一个ZigBee网络。一旦网络启动,路由器和终端设备就能加入网络。协调器和路由器都能通过网络发射和路由数据,并且允许其它的路由器和终端设备加入。终端设备不能参与路由数据,因此在不发射和接收数据时可以休眠。当设备加入ZigBee PAN时,设备间的父子关系即形成,加入的设备为子,允许加入的设备为父。一个简单的ZigBee网络如图1所示。
  2. ZigBee寻址
  ZigBee设备支持两种地址类型:一种是64位IEEE地址,另一种是16位网址。64位地址在所有ZigBee设备之中是唯一,其中包含一个由IEEE分配、也是全球唯一的24位制造商特定组织识别符(OUI)。
  当设备加入ZigBee个域网时,它可以从允许其加入的父设备上获取16位网址。该网址在个域网内被规定为唯一。该网址用于数据传输和数据包路由。用于路由数据包的路由表存放着各个目标设备和下一跳设备的网络地址。因此个域网的各设备都必须有明确且唯一的网络地址,以保证数据能到达正确的设备。
  然而,在有些条件下一个设备的地址可能会改变,或者是多个节点可能接收到同一个地址。例如,如果终端设备被移除或失去与父设备的联系,它就必须重新连接网络,这可能导致它接收到一个新的地址。另外,如果协调器被一台新设备所替换,新协调器会不知道哪些地址是之前的协调器分发的。新协调器分发给设备的地址很容易与已有的网址重叠。
  ZigBee联盟正在加紧研究解决这些地址问题的对策,并将整合到ZigBee规范中去。但是,一些协议栈和模块提供者,譬如MaxStream公司已经研发出解决这些问题的方法。
  3. ZigBee路由
  ZigBee包括一个用于AODV网状路由的基本框架。如果一个设备需要向其它设备发送数据,它首先需要发现一条可能要经过多台路由器才能到达目标设备的路由。网状路由允许动态地建立、修改或替换传输路径,从而保持设备间有一条可靠的路径。
  然而,除网状路由之外,ZigBee规范还经常依赖树状路由。在树状路由中,数据将在源设备和目标设备之间的“树”状路由上严格地按照从父到子或从子到父的路径传输。
  当节点移动或删除时路由可能出现问题。这时如果单个节点无法从一条路由中隔离开来,那么整个树状路由就无法定位故障点。而网状网络就能在现有路由发生故障时发现一条新路由。
  ZigBee协议栈按照规范采用树状和网状路由的ZigBee 1.0标准而建立。两种路由之间的交互是相当复杂的,而且协议栈之间的交互也是不断变化的。但是,增强型ZigBee规范(2006)增加了一个nwkUseTreeRouting功能,该功能可以使整个树状路由彻底断开,再由(NLME)路由发现请求(route-discovery-request)原语根据需要强制进行路由发现。这些功能可以解决与树状路由相关的问题,并且允许开发商充分发挥网状路由的优势。
  4. ZigBee互操作性
  ZigBee规范包括一些可以用来定义各种网络的配置功能。开发商可以很容易地配置以下参数:目标系统中的路由器和/或终端设备数量;安全级别;路由表和邻居表规模;网络最大深度(从协调器到最远派生设备的连接深度);协调器/父路由器允许的子路由器和终端设备的最大数量。
  ZigBee联盟研发出了为这些不同协议栈建立通用设置的公共框架-可配置参数表。为了完成框架(如家庭控制协议栈框架就定义了开灯、关灯、或切换一个灯光的簇ID)内的共同任务,该框架还定义了一些称作簇ID的。
  终端设备必须围绕可互操作的同一框架来设计。因此,应用开发商必须设置他们的协议栈参数以匹配公共框架所规定的参数值,从而确保与采用同一框架的其它解决方案的互操作性。另外,开发商也可以为了满足其设计而通过采用专用(定制)的框架来自由修改协议栈参数。不过,在专用框架中所定义的簇ID不具备与基于公共框架的设备互操作的能力。
  由于开发商具有选择框架的灵活性,从而并非所有的ZigBee设备都能互操作。虽然这种灵活性一开始会在市场上引起一些混乱,但允许开发商决定其产品是否要与其他供应商的设备进行互操作。在不需要互操作性的场合,功能强大的ZigBee可以围绕一个专用框架进行开发,并剪裁协议栈参数来满足特殊应用需求。
  5. ZigBee认证
  经认证的ZigBee硬件平台(芯片组和模块)和软件层(PHY层、MAC层和网络层)必须做ZigBee验证平台(ZCP)测试。通过ZCP认证的硬件平台和软件协议栈表明适用于ZigBee终端产品的研发。
ZigBee定位解决方案
设想一下,您冲进购物中心,急切地想为您的另一半选购他(她)称心如意的生日礼物。在这种情况下,该从何下手?您会很自然地掏出或 PDA 来选择选购生日礼物的最佳方案。此时,您的移动手持终端设备将显示出购物中心的导购图,并在图上标明您需前往的采购区。当您在购物中心转悠时,移动手持终端设备上将显示出您可能会感兴趣的商品。
当今的射频 (RF) 技术有望使上述设想成为现实。 ZigBee RF 设备中内嵌的定位引擎可以与室内
系统相媲美,其内嵌的定位引擎使用 ZigBee 网络的 RF 基础设施来计算事物或人们所处的位置。与 GPS 相比较而言,定位引擎在单 RF 中与
集成在一起,成本也不及 GPS 硬件的十分之一,功耗也只是 GPS 硬件的一小部分。该定位引擎既可用于室内,也可用于室外,而且只要有现成的 ZigBee 网络,就无需安装移动的接收。
典型的应用包括:  遥控开/关房屋中所有房间的灯具;  跟踪码头仓库的集装箱起运情况;  跟踪网站的设备。
另外,当新设备接入网络时,该定位引擎能够确定其物理位置,因此定位引擎还能用于简化无线网络的设置。
大多数的无线网络都要求具备一种确定网络节点位置的方法。因此在设备安装期间,您需要弄清楚哪些节点相互之间直接进行数据交换,或者确定哪些节点直接与中央数据采集点进行数据交换。
当通过基于软件的计算方法来确定网络节点位置时,我们就会考虑到市场化 (market solution)。这些具体的计算方法是:节点首先读取计算节点位置的参数,然后将相关信息传送到中央数据采集点对节点位置进行计算,最后,又将节点位置的有关参数传回至该节点。这就是典型的数据密集型计算,并且需要配置一台 PC 或高性能的 MCU。
这种计算节点位置的方法之所以只适用于小型的网络和有限的节点数量,是因为进行相关计算所需的流量将随着节点数量的增加而呈指数级速度增加。因此,高流量负载加上带宽的不足限制了这种方法在以供电的网络中的应用。
针对上述问题, 采用了一种分布式定位计算方法。这种计算方法根据从距离最近的参考节点(其位置是已知的)接收到的信息,对节点进行本地计算,确定相关节点的位置。因此,网络流量的多少将由待测节点范围中节点的数量决定。另外,由于网络流量会随着待测节点数量的增加而成比例递增,因此,
还允许同一网络中存在大量的待测节点。
本文中所提供的结果是根据对 ZigBee 网络的测量得出的,然而,这些测量结果同样适用于基于 IEEE 802.15.4.构建的更简单的网络。
定位引擎技术
定位引擎根据无线网络中临近射频的接收信号强度指示 (RSSI),计算所需定位的位置。在不同的环境中,两个射频之间的 RSSI 信号会发生明显的变化。例如,当两个射频之间有一位行人时,接收信号将会降低 30dBm。为了补偿这种大的差异以及出于对定位结果精确性方面的考虑,定位引擎将根据来自多达 16 个射频的 RSSI 值,开展有关的定位计算。其依据的理论是:当采用大量的节点后,RSSI 的变化最终将达到平均值。  在 RF 网络中,具有已知位置的定位引擎射频称为参考节点,而需要计算定位位置的节点称为待测节点。
要求在参考节点和待测节点之间传输的唯一信息就是参考节点的 X 和 Y 坐标。定位引擎根据接收到的 X 和 Y 坐标,并结合根据参考节点的数据测量得出的 RSSI 值,计算位置进行定位。
将定位技术纳入网络协议
一些采用定位引擎的应用可能要求,放置若干个参考节点作为基础设施设置不可或缺的一部分。ZigBee 技术能够实现对家庭、办公以及工业等应用的无线控制。人们期望,随着 ZigBee 设备在楼宇基础设施中的安装数量不断增多,ZigBee 将会在家庭和办公自动化方面拥有更为广阔的应用前景。
典型的办公场所都会配置 ZigBee 设备,通过各办公室和会议室中的,控制温度调节装置以及 A/C 导管。同时,每个房间还会安装由& ZigBee 控制的灯具和设备,而这些设备又易于作为定位引擎的参考节点。将 ZigBee 射频作为 ZigBee 协议栈上的参考节点所需的代码容量通常小于 1 Kb。
定位引擎从 3 至 16 个参考节点采集数据,并使用这些数据对应定位的位置进行计算。如果定位引擎从 16 个以上的节点接收到数据时,它则会将接收到的参考节点位置进行分类,然后采用 16 个参 考节点中信号最强的 RSSI 值。
基于ZigBee技术的传感器网络构建与应用
  无线网络的市场发展在逻辑上可分为而向语音的市场和面向数据的市场两类。在许多以数据传输为主的无线网络中,小型、低成本、低复杂度的无线网络的应用场合十分广泛。ZigBee是其中一种具有代表性的短距离无线通信技术,其网络标准由IEEE802.15.4规定。ZigBee协议比蓝牙、高速率PAN(个人局域网)或者IEEE802.11x无线局域网更加简单实用。&&&  1、IEEE802.15.4标准和ZigBee技术&&&  IEEE的无线PAN工作组制定的IEEE802.15.4技术标准是ZigBee技术的基础,目的是为低能耗的简单设备提供有效覆盖范围在10m左右的低速连接。&&&  1.1IEEE802.15.4协议架构及其技术特点&&&  IEEE802.15.4满足ISO(国际标准化组织)OSI(开放系统互连)参考模式。它定义了单一的MAC(媒体访问控制)层和多样的物理层,所示。&&&  IEEE802.15.4的MAC层能支持多种LLC标准,通过SSCS(业务相关的会聚子层)协议承载IEEE802.2类型1的LLC标准,同时允许其他LLC标准直接使用IEEE802.15.4的MAC层服务。&&& IEEE802.15.4定义了2.4GHz物理层和868/915MHz物理层2个标准,它们都基于DSSS(直接序列扩频),使用相同的物理层数据包格式,区别在于工作频率、调制技术、扩频码片长度和传输速率。915/868MHz频段是基于差分编码的BPSK(二进制相移键控),2.4GHz频段采用十六进制正交调制。2.4CHz频段共有16个不同的信道为全球统一的无需申请的ISM(工业、科学、医疗)频段,采用高阶调制技术能提供250kbit/s的传输速率,有助于获得更高的吞吐量、更小的通信时延和更短的工作周期,从而更省电。868MHz是欧洲的ISM频段,只有1个信道,915MHz是美国的ISM频段,有10个信道,引入这2个频段避免了2.4GHz附近各种无线通信设备的相互干扰。868MHz传输速率为20kbit/s,916MHz传输速率为40kbit/s。这2个频段上无线信号传播损耗较小,因此可降低对灵敏度的要求,获得较远的有效通信距离,从而可以用较少的设备覆盖给定的区域。&&&  1.2ZigBee技术&&&  ZigBee技术是一种近距离、低复杂度、低功耗、低数据速率、低成本的双向无线通信技术,主要适合于自动控制和远程控制领域,可以嵌入各种设备中,同时支持地理定位功能。相对于现有的各种无线通信技术,ZigBee技术将是最低功耗和成本的技术。&&&  ZigBee协议套件由高层应用规范、应用会聚层、网络层、数据链路层和物理层组成,所示。&&&  a)物理层:遵循IEEE802.15.4协议,是协议的最底层,承担着与外界直接作用的任务,控制RF工作,采用扩频通信,信号传输距离为室内50m,室外150m。&&  b)MAC层:遵循IEEE802.15.4协议,负责设备间无线数据链路的建立、维护和结束,确认模式的数据传送和接收,可选时隙,实现低延迟传输,支持各种网络拓扑结构,网络中每个设备为16位地址寻址。
  c)网络层:建立新的网络,处理节点的进入和离开网络,根据网络类型设置节点的协议堆栈,使网络协调器对节点分配地址,保证节点之间的同步,提供网络的路由,保证数据的完整性,使用可选的AES-128对通信加密。&&&  d)应用层:应用支持层维持器件的功能属性,发现该器件工作空间中其他器件的工作,根据服务和需求使多个器件之间进行通信,根据具体应用由用户开发。&&  2、ZigBee的网络结构&&&  Zigbee支持星形网、对等网和混合网3种网络拓扑结构。图3是混合型ZigBee组网。每种网络都有各自的优点。星形网以一个功能强大的主器件作为网络的中心,负责协调全网的工作,其他的主器件或从器件分布在其覆盖范围内。这种网络的控制和同步都比较简单,适用于设备数量比较少的场合。对等网又分为点对点和簇树形2种,是由主器件连接而成的。这种网络能提供更高的可靠性。星形网和对等网相结合形成了混合网,各子网内部以星形连接,主器件又以对等方式相连。这种网络适用于对网络要求最复杂的情况。一般在现实的应用环境中,混合型具有更大的实用性。&&&  在无线网中的节点是由软件层和硬件层共同配合来实现功能的。在应用ZigBee建立网时,ZigBee芯片硬件内置物理层和MAC层的一部分功能,其他高层由外而的MPU解决,通过对MPU的写入,来实现ZigBee的高层协议。图4为节点内部结构图。&&&  节点应用部分装置根据监控的不同位置(比如温度、声音、振动、压力、运动或泻染物)起不同的作用。通常这些装置很小、很便宜,可以大量制造和部署,因此它们的资源(能源、存储、计算速度和带宽)严重受限。每个节点都具备一个无线电收发器、一个很小的和一个能源(通常为)。这些装置互相帮助,将数据传输到一台监控计算机。&&  由于大部分的节点只需要有数据传输的功能,不需要有控制能力,ZigBee技术将节点从器件上分为3类:
&&& a)RFD(简化功能器件)。RFD小,功耗低,在网络中作为源节点,只发送与接收信号,并不起转发器/的作用。&&& b)FFD(全功能器件)。在网络中,FFD是具有转发与路由能力的节点,拥有足够的存储空间来存放路由信息,并且处理控制能力也相应得增强。&&& c)网络主机或网关。ZigBee还支持第3种节点,即网络主机或网关节点,起到与外部系统或协调与其他网络的路由作用。FFD有时起网关的作用。
  一个网络只需要一个网络协调者,其他终端设备可以是RFD,也可以是FFD。RFD的价格要比FFD便宜得多,其占用系统资源仅约为4kB,因此网络的整体成本比较低。&&&  通常,底层FFD和RFD将由(微控制器)控制,该MCU通过队列QSPI(串行外设接口)与ZigBee收发器相连。MCU的选择取决于该设备是否作为一个其下仍辖有ZigBee网络层的FFD。基础的RFD通常由一个8位MCU控制,但对FFD来说,根据其复杂程度及所连接的网络,其可以是8位、16位或低端的32位MCU。
  PAN协调器负责协调整个网络以及与中央控制点的通信,所以它是构建一个ZigBee网络的关键所在。对PAN协调器的关键要求包括:&&  a)在更大更复杂的系统(如一个制造场所),其中央控制点很可能超出ZigBee网络的覆盖范围,甚至可能被安放在另一幢建筑中。所以,PAN协调器可能需通过有线连接与中央控制点进行通信。因为以太网在工业市场的应用越来越普及,所以在大多数场合,以太网是最可能的选择。系统中以太网的应用为网络设计带来两个潜在影响:一是要考虑处理以太网接口所需的带宽;二是为驱动以太网接口,网络将需要相应的底层驱动程序和协议栈,这就增加了系统内PAN控制器对程序的需求。  b)驱动整个PAN网络的通信。因为一个大的PAN网络将使通信量增加,所以PAN协调器需要更高的带宽。  c)标记整个ZigBeePAN。PAN协调器必须存储整个网络的“地图”,并识别网络内哪些节点是FFD或RFD以及各部分的功能。对复杂的大型工业系统来说,为存储这样一张图将需要更多的存储器。  d)具备与网络中的新节点建立动态链接的能力。在大型系统的使用周期中,系统可能需要添加新节点。PAN协调器必须能容易地与这些新节点建立连接,无论它们在网络中的任何一点,也无论它们是FFD还是RFD。此外,PAN协调器要能确定这些新节点在网络中的职责。为使PAN协调器有效地履行这种任务,它需要更大的小地程序存储器,因而也必须具备访问这些存储器的能力。&&  一个基于ZigBee的WPAN(无线个域网)能支持高达254个节点,外加一个全功能器件,即可实现双向通信完全协议用于一次可直接连接到一个设备的基本节点的4kB或者作为Hub或路由器的协调器的32kB。每个协调器可连接多达255个节点,而几个协调器则可形成一个网络,对路由传输的数目则没有限制。&&&  3、基于ZigSee芯片构建无线传感器网&&&  基于ZigBee芯片构建的无线传感器网是由一组ZigBee节点以AdHoc方式构成的无线网络,其目的是协作地感知、采集和处理网络覆盖的地理区域中感知对象的信息,并发布给观察者传感器、感知对象和观察者,它们是传感器网络的3个基本要素;传感器与观察者之间的通信方式是无线,用于存传感器与观察者之间建立通信路径;协作地感知、采集、处理、发布感知信息是传感器网络的基本功能。一组功能有限的传感器协作地完成大的感知任务是传感器网络的重要特点,传感器网络中的部分或全部节点可以移动,传感器网络的拓扑结构也会随着节点的移动而不断地动态变化。节点问以AdHoc方式进行通信。每个节点都可以充当路由器的角色,并且每个节点都具备动态搜索、定位和恢复连接的能力。&&&  基于ZigBee芯片构建的无线传感器网可以利用(全球移动通信系统)网络、(码分多址)网络、以太网等来实现数据的传输与控制(见图5),网络可以采用星形或者混合型拓扑和需求时唤醒ZigBee模块的通信方式,有效降低每个ZigBee传感器节点的功耗,减少传感器节点向汇节点上报数据时相互碰撞的概率。&&&  中央控制中心通过网络与多个汇节点连接,汇节点和传感器节点之间通过ZigBee技术实现无线的信息交换,带有射频收发器的无线传感器节点负责对数据的感知和处理并传送给汇节点;控制中心通过网络获取采集到的相关信息,实现对现场的有效控制??收传感器节点的数据上报,并将其进行融合处理,传给无线通信数据,通过网络传递给中央信息控制中心。
  ZigBee模块与MCU之间的连接是通过异步串行口实现的,它们之间的通信速度为38.4kB/s,MCU控制完成汇节点和中央控制中心的通信,由于传感器网络中分布着多个汇节点,因此16位MCU要利用软件中断实现对不同ID汇节点上传数据轮询扫描,使汇节点的数据可以有序、完整地通过MCU处理后传出。汇节点在此传感器网络中充当的是传感器节点和网络之间的网关。&&&  近来旭昂成功开发出一种ZigBee转,这种模块主要是利用ZigBee无线传感器网络采集来的信息通过TCP/IP协议上传到互联网上,无论你身处世界的那个角落,都可以通过ZigBee转以太网模块实时进行远程监控。也可以通过GSM网络,采用Sie-mens公司TC35模块作为数据传输终端,可以快速、可靠地实现传感器网络中数据的传输。利用MSP430MCU控制TC35模块完成汇节点和中央控制中心的通信。&&&  4、结束语&&&  无线传感器网络与ZigBee技术的结合有着广泛的应用前景。本文主要探讨了基于ZigBee技术的无线传感器网络构建与应用。根据ZigBee协议提出Zig-Bee无线传感器网络节点结构,探讨经由GSM网络、CDMA网络或者以太网在更大的范围内通过ZigBee无线传感器网络达到对信息的控制和采集。这种方式在现实中具有很强的应用性。在不远的将来,将有越来越多的内置式ZigBee功能的设备投入应用,并将极大地改善我们的生活方式和体验。
ZigBee管道监测无线数据传输网络
一、应用需求   石油管道、天然气管道、城市热网管道等输送管道的维护监测中,如何保障输送管道的安全是石油、天然气和城市热力部门的一项重要责任。但是近年来针对输油、输气和热力管道的打孔盗油、盗气现象非常严重,各管道储运部门投入大量的人力物力进行管道的安全保障维护工作,很多储运公司都布置了大量的管道巡线人员,但是人工的巡线方式并不能有效保证管网的安全。因此对于管道的储运公司来讲,采用经济合理的方案布置24小时全天候的输油管道,才能够对于管网的安全给与有效的技术支持,从而减少损失。 二、系统概述   由于油气管道的空间跨度很大,一般来讲都要绵延上百上千公里,所以管道监控装置要布置在较大的空间跨度上,各监测节点成链型线性分布,所以数据的传输必须满足这一空间要求,可以考虑采用经济的ZIGBEE方式。  由于油气管道一般都是露天布置、野外无人值守方式工作,所以要求监控设备必须适合野外工作,具有较高的稳定性和环境适应能力,系统供电具有系统和蓄以及,停电时太阳能电池自动供电,确保正常有效工作,对山区和距离较远的监测点,还有遥测中继站,能接受并转发信号,亦由太阳能电池供电,保持长期可靠运行。  需要采集输油管道各个参数采集点的多种参数,比如压力、流量、温度等,数据返回监控中心便于进行综合分析。随着无线通信技术的不断发展,近年来出现了面向低成本设备无线联网要求的技术,称之为zigbee,它是一种近距离、低复杂度、低功耗、低数据速率、低成本的双向无线通信技术,主要适合于自动控制、远程数据采集领域及家用设备联网,我们采用zigbee技术和GPRS/技术结合,可以为管道监控系统的远程数据传输通信提供很好的。 三、Zigbee无线技术优点   设备省电   zigbee技术采用了多种节电的工作模式,可以确保两节五号电池支持长达6个月到2年左右的使用时间;   通信可靠   zigbee采用了CSMA-CA的碰撞避免机制,同时为需要固定带宽的通信业务预留了专用时隙,避免了发送数据时的竞争和冲突;MAC层采用了完全确认的数据传输机制,每个发送的数据包都必须等待接收方的确认信息;   网络的自组织、自愈能力强   zigbee的自组织功能:无需人工干预,网络节点能够感知其他节点的存在,并确定连接关系,组成结构化的网络;   zigbee自愈功能:增加或者删除一个节点,节点位置发生变动,节点发生故障等等,网络都能够自我修复,并对网络拓扑结构进行相应地调整,无需人工干预,保证整个系统仍然能正常工作。   具备自组织、自愈能力的无线通信网络才是自动抄表系统最理想的通信方式。   成本低廉   设备的复杂程度低,且Zigbee协议是免专利费的,这些可以有效地降低设备成本;   Zigbee的工作频段灵活,为免执照频段的2.4GHz,就是没有使用费的无线通信。   网络容量大   一个ZigBee网络可以容纳最多254个从设备和一个主设备,一个区域内可以同时存在200多个ZigBee网络;   数据安全   ZigBee提供了数据完整性检查和鉴权功能,加密算法采用AES-128,同时各个应用可以灵活确定其安全属性。 四、基于ZigBee和GPRS结合的管道监测无线数据传输网络   通过前面道的通信技术要求分析,结合zigbee技术特点和技术优势,我们采用zigbee技术和GPRS相结合的无线数据,来实现管道远程监测是一个非常理想的无线数据通信解决方案。   在实际应用中,我们选择了将zigbee技术与GPRS/CDMA结合起来,根据监测区域监测设备的不同分布,来灵活地构建检测数据传输无线网络。   * 监控点布置在管道的通过的途径上,每隔一段距离就布置一个监控点采集管道中的压力、流量、温度等参数,然后监控点通过ZIGBEE无线网络把采集到的数据传到ZIGBEE中心节点,中心节点的数据通过GPRS上传到监控中心,由监控中心负责分析记录数据,然后通过对数据的分析判断出哪一段的管道发生了泄露,通知管理人员进行处理。   * 所构建的zigbee网络线型发散的网络拓扑,可以根据实际的组网需要,设计合理的网络结构。
基于zigbee的输油管道防盗监测系统
 油田是一个以油气生产为主,集勘探、开发、施工作业、后勤辅助生产、多种经营、社会化服务为一体的,专业门类齐全的国有 特大型企业。油田的勘探、钻井、测井、录井等是野外作业,流动性强,点多、分散、距离长,施工现场与公司之间的信息交流长期以来没有好的。油田管理层十分重视油田信息化建设,明确提出了未来一个时期油田信息化建设的具体目标。
  借助“采油井”,管理人员足不出户就可以通过该系统随时观测到油井的生产状况。油井工作的相关数据每隔一定时期传输一次,机井一旦出现故障,示意图就会标示感叹号,维护人员就能够在最短的时间内赶到现场,及时排除故障。以前,采油测试工要到每个现场进行测试,费时费力不说,对每口井的工作状态也很难把握,有时一口井发生故障,往往许多天后才发现。
  油田工作环境恶劣,雷击、地震及人为破坏等时有发生,怎样把油井运行的相关数据传送到中心控制室一直是个难题。以前,油田曾采用微波、数传电台的方式采集数据,但实际使用过程中,效果不理想,高成本的投入和频繁的维护让采油单位不堪重负。引入了“采油井在线”之后,通过固定在机架上的,管理人员可以及时了解各个 机井的工作压力、采油时电压、蒸汽温度等数据,从而确保了油井的安全运转。
  系统说明  1.在输油管道上,每隔一定距离安装一个流量。  2.每个超声波外接一个zigbee无线节点,读取并传输此传感器数据。  3.每个超声波流量传感器使用外接,在没有的情况下使用太阳能。  4.需确保3天以上的工作时间。  5.如果两个流量检测传感器之间距离比较远,则在两者之间每隔800米使用一个ZigBee中继.
美国伊顿推出采用了ZigBee的家用传感器
美国伊顿(Eaton)推出了采用近距离无线通信标准ZigBee的家用产品“Home Heartbeat”。HomeHeartbeat主要提示用户家中的电气产品、门窗等的状态来确保安全。比如,可以在出门前确认家中的窗户是否已全部关好,或者咖啡机等电器是否已经关闭等。  Home Heartbeat由传感器、存储信息的“Base Station”和通过显示信息的便携式“Home Key”组成,均具备基于ZigBee的通信功能。传感器方面,备有用于检测管道漏水、确认门窗状态、以及状态的产品。Eaton公司计划以149.95美元(约合人民币1240元)的售价,在2005年第2季度上市包括Base Station、Home Key及门窗在内的套件。传感器的单价从30美元到60美元(约合人民币250~500元)不等。  为了便于用户单手操作,Home Key采用了可用大拇指滚动画面的设计。另外,Home Key还具有网络接入设备认证功能。在初次使用时,用户只要将Home Key插入Base Station后,再将Home Key插入设置在家中各处的传感器,即可构成网络。  Base Station的信息发送距离可达约30米。当用户外出时,该设备可向用户的等发送邮件。Base Station中设计有电话调制,基站信息会在接入运行运营商的后、通过服务器向用户发送。
基于ZigBee的无线网络技术及其应用
长期以来,低价、低传输率、短距离、低功率的无线通讯市场一直存在着。自从Bluetooth出现以后,曾让工业控制、家用自动控制、玩具制造商等业者雀跃不已,但是Bluetooth的售价一直居高不下,严重影响了这些厂商的使用意愿。如今,这些业者都参加了IEEE802.15.4小组,负责制定ZigBee的物理层和媒体介入控制层。IEEE802.15.4规范是一种经济、高效、低数据速率(&250kbps)、工作在和868/928MHz的无线技术,用于个人区域网和对等网络。它是ZigBee应用屋和网络层协议的基础。ZigBee是一种新兴的近距离、低复杂度、低功耗、低数据速率、低成本的无线网络技术,它是一种介于无线标记技术和蓝牙之间的技术提案。主要用于近距离无线连接。它依据802.15.4标准,在数千个微小的之间相互协调实现通信。这些传感器只需要很少的能量,以接力的方式通过无线电波将数据从一个传感器传到另一个传感器,所以它们的通信效率非常高。
一般而言,随着通信距离的增大,设备的复杂度、功耗以及系统成本都在增加。相对于现有的种种无线通信技术,ZigBee技术将是最低功耗和成本的技术。同时由于ZigBee技术的低数据速率和通信范围较小的特点,也决定了ZigBee技术适合于承载数据流量较小的业务。所以ZigBee联盟预测的主要应用领域包括工业控制、消费性设备、汽车自动化、农业自动化和医用设备控制等。1 IEEE802.15.4和ZigBee介绍
IEEE无线个人区域网(PAN)工作组的IEEE802.15.4技术标准是ZigBee技术的基础。802.15.4标准旨在为低能耗的简单设备提供有效覆盖范围在10米左右的低速连接,可广泛用于交互玩具、库存跟踪监测等消费与商业应用领域。传感器网络是其主要市场对象。
1.1 802.15.4协议架构及其技术特点
IEEE802.15.4满足国际标准组织(ISO)开放系统互连(OSI)参考模式。它定义了单一的MAC层和多样的物理层(如图1所示)。
IEEE802.185.4的MAC层能支持多种LLC标准,通过SSCS(Service-Specific Convergence Sublayer,业务相关的会聚子层)协议承载IEEE802.2类型一的LLC标准,同时允许其他LLC标准直接使用IEEE802.15.4的MAC层服务。表1列出了IEEE802.15.4的LLC层和MAC层主要功能。表1 IEEE802.15.4的LLC层和MAC层主要功能
LLC子层的主要功能
IEEE802.15.4的MAC协议主要功能:
传输可靠性保障和控制
设备间无线链路的建立、维护和结束
数据包的分段与重组
确认模式的帧传送与接收
数据包的顺序传输
信道接入控制
预留时隙管理
广播信息管理
IEEE802.15.4定义了两个物理层标准,分别是物理层和868/915GHz物理层。它们都基于DSSS(Direct Sequence Spread Spectrum,直接序列扩频),使用相同的物理层数据包格式,区别在于工作频率、调制技术、扩频码片长度和传输速率。波段为全球统一的无需申请的ISM频段,有助于ZigBee设备的推广和生产成本的降低。的物理层通过采用高阶调制技术能够提供250kbps的传输速率,有助于获得更高的吞吐量、更小的通信时延和更短的工作周期,从而更加省电。868MHz是欧洲的ISM频段,915MHz是美国的ISM频段,这两个频段的引入避免了附近各种无线通信设备的相互干扰。868MHz的传输速率为20kb/s,916MHz是40 kb/s。这两个频段上无线信号传播损耗较小,因此可以降低对灵敏度的要求,获得较远的有效通信距离,从而可以用较少的设备覆盖给定的区域。表2中概括了802.15.4的一些特点。
1.2 ZigBee技术概述
ZigBee是一组基于IEEE批准通过的802.15.4无线标准研制开发的,有关组网、安全和应用软件方面的技术标准。它不仅只是802.15.4的名字。IEEE仅处理低级MAC层和物理层协议,ZigBee联盟对其网络层协议和API进行了标准化。完全协议用于一次可直接连接到一个设备的基本节点的4K字节或者作为Hub或的协调器的32K字节。每个协调器可连接多达255个节点,而几个协调器则可形成一个网络,对路由传输的数目没有限制。ZigBee联盟还开发了安全层,以保证这种便携设备不会意外泄漏其标识,而且这种利用网络的远距离传输不会被其它节点获得。
完整的ZigBee协议套件由高层应用规范、应用会聚层、网络层、数据链路层和物理层组成。网络层以上协议由ZigBee联盟制定IEEE802.15.4负责物理层和链路层标准。
应用会聚层将主要负责把不同的应用映射到ZigBee网络上,具体而言包括:
(1) 安全与鉴权;
(2) 多个业务数据流的会聚;
(3) 设备发现;
(4) 业务发现;
网络层将主要考虑采用基于ad hoc技术的网络协议,应包含以下功能:
(1) 通用的网络层功能:拓扑结构的搭建和维护,命名和关联业务,包含了寻址、路由和安全;
(2) 同IEEE802.15.4标准一样,非常省电;
(3) 有自组织、自维护功能,以最大程度减少消费者的开支和维护成本。
相对于常见的无线通信标准,ZigBee协议套件紧凑而简单,其具体实现的要求很低,以下是ZigBee协议套件的需求估计:
(1) 8位,如80C51;
(2) 协议套件软件需要32kbytes的ROM;
(3) 最小协议套件软件大约4kbytes的ROM;
(4) 网络主节点需要更多的RAM,以容纲网络内所有节点的设备信息、数据包转发表、设备关联表、与安全有关的密钥存储等。
1.3 整个协议构架
在标准制定的分工上,由ZigBee 与IEEE802.15.4的任务小组共同制定,其中实体层、MAC层、资料链结层、以及传输过程中的资料加密机制等发展由IEEE所主导,并共同针对ZigBeeProtocol Stack的发展进行研讨,而未来还能依系统客户的需求,为不同应用修正其所需之应用界面。ZigBee从802.15.4标准开始着手,目前正在定义允许不同厂商制造的设备相互对话的应用纲要。
1. 4IPV6 Over802.15.4
ZigBee联盟希望建立一种可连接每个电子设备的无线网。它预言ZigBee将很快成为全球高端的无线技术,到2007年将达到30亿节点。具有几十亿个节点的网络将很快耗尽已压缩的IPv4的地址空间,但是ZigBee的路由选择不依赖于IPv6采用128位地址长度,几乎可以不受限制地提供地址。按保守方法估算,IPv6实际可为整个地球的每平方米面积分配1000多个地址。IPv6在设计过程中,除了一劳永逸地解决了地址短缺问题以外,还考虑了在IPv4中解决不好的其他问题,如端到端IP连接、服务质量(QoS)、安全性、多播、移动性、即插即用等。因此,将IPv6和802.15.4的结合将是以后研究发展的方向,目前IETF也在积极的制定V6over15.4的Draft,其标准也不久将出台。2 ZigBee技术的优势及应用
2.1 ZigBee技术的主要优势及其与蓝牙和Wi-Fi的比较
IEEE802.15.4和ZigBee从一开始就被设计用来构建包括恒温装置,安全装置和煤气读数表等设备的无线网络。这是由其主要技术优势决定的:
(1) 数据传输速率低:只有10k 字节/秒到250k 字节/秒,专注于低传输应用。
(2) 功耗低:在低耗电待机模式下,两节普通5号干可使用六个月到两年,免去了充电或者频繁更换电池的麻烦。这也是ZigBee的支持者所一直引以为豪的独特优势。
(3) 成本低:ZigBee数据传输速率低,协议简单,所以大大降低了成本。且免收专利费。
(4) 网络容量大:每个ZigBee网络最多可支持255个设备。
(5) 时延短:通常时延都在15毫秒至30毫秒之间。
(6) 安全:ZigBee提供了数据完整性检查和鉴权功能,采用AES-128加密算法。
(7) 有效范围小:有效覆盖范围10~75米之间,具体依据实际发射功率的大小和各种不同的应用模式而定,基本上能够覆盖普通的家庭或办公室环境。
(8) 工作频段灵活:使用频段为、868MHz(欧洲)及915 MHz(美国),均为免执照频段。
与之相反,蓝牙技术基本上只是设计作为有线的替代品,经常是为和附近的或PDA联网用的。它可以在不充电的情况下工作几周,但无法工作几个月,更不用说几年了;
一般情况下,蓝牙设备需要人手配置和维护网络连接;它可以用来有效地处理8个设备(一个主设备和7个从设备),如果更多的话,通讯速率则显著下降。
而802.11,也被称作Wi-Fi也有类似的问题。虽然它是将笔记本和桌面接入有线网络的很好的,但它的功耗却非常高。
2.2 可能应用及市场发展
ZigBee的出发点是希望能发展一种易布建的低成本无线网络,同时其低耗电性将使产品的电池能维持6个月到数年的时间。在产品发展的初期,将以工业或企业市场的感应式网路为主,提供感应辨识、灯光与安全控制等功能,再逐渐将目前市场拓展至家庭中的应用。通常符合以下条件之一的应用,就可以考虑采用ZigBee技术。
(1) 设备成本很低,传输的数据量很小;
(2) 设备体积很小,不便放置较大的或者模块;
(3) 没有充足的电力支持,只能使用一次性电池;
(4) 频繁地更换电池或者反复地充电无法做到或者很困难;
(5) 需要较大范围的通信覆盖,网络中的设备非常多,但仅仅使用监测或控制。
根据ZigBee Alliance的观点,一般家庭可将ZigBee应用于以下装置:
(1) 空调系统的,灯光、窗帘的自动控制;
(2) 老年人与行动不便者的紧急呼叫器;
(3) 电视与音响的万用,无线键盘、滑鼠、摇杆,玩具;
(4) 烟雾侦测器;
(5) 智慧型标签。
本文阐述了ZigBee技术及IEEE802.15.4标准及其相关应用,讨论了它们的关系和相对其它技术的优点,并对其在家庭无线通信网中的应用前景进行了分析和展望。ZigBee技术弥补了低成本、低功耗和低速率无线通信市场的空缺,其成功的关键在于丰富而便捷的应用,而不是技术本身。随着正式版本协议的公布,更多的注意力和研发力量将转到应用的设计和实现、互联互通测试和市场推广等方面 。我们有理由相信在不远的将来,将有越来越多的内置式ZigBee功能的设备进入我们的生活,并将极大地改善我们的生活方式和体验。
基于蓝牙和ZigBee技术的可穿戴网络设计
随着微、计算机等技术的进步,促进了新一代小型、可移动、功能强大的计算设备的出现。但是人们已经不满足各设备独立工作,而是希望它们能根据人的需要和追求而工作,也就是要达到“计算以认为本”的概念。因此在小范围内能够将所有的设备互连而组成的网络&&——可穿戴网络[1]便应运而生。
我们认为所谓可穿戴网络是指基于短距离无线通信技术(蓝牙和ZigBee技术等)与可穿戴式计算机(wearcomp)技术的结合,穿戴在人体身上的、具有智能的、能收集人体和周围环境信息的一种新型的个域网概念(PAN)[2]。利用可穿戴计算机为可穿戴网络提供核心计算技术,有Ad Hoc性能的蓝牙和ZigBee等短距离无线通信技术作为其底层传输手段,结合各自优势组建一个无线的、高度灵活的、自组织的、甚至是隐蔽的微型PAN。可穿戴网络具有移动性、持续性和交互性等特点。
2基于蓝牙和ZigBee的可穿戴网络体系结构
可穿戴网络组网灵活、移动性强,对外网的接入方式多种多样:可通过蓝牙网关、蓝牙等由LAN、ADSL等全速接入internet;当其大范围移动时可以蓝牙作为接入手段,使得可穿戴网络具有很强的移动性。目前考虑的可穿戴网络的体系结构如图1所示。系统中的设备包括主机、蓝牙设备、ZigBee设备、Bluetooth/ZigBee网关。
2.1主机部分
可穿戴式计算机由于其可穿戴性,则要求主机的重量轻、体积小。主机芯片采用linux嵌入式操作系统,其上集成蓝牙协议栈。由于头戴显示系统中的多媒体流和GPRS骨干网的带宽限制的矛盾,主机要求较高的存储能力,内部集成10G的硬盘。在主机中集成蓝牙的主要目的是使主机能与其它蓝牙设备进行通信。如果条件允许还可在主机中集成等。
2.2蓝牙设备
可穿戴网络中的蓝牙设备是内嵌了蓝牙模块的小型化设备,把设备采集的数据通过蓝牙链路传输到主机或由主机传输到蓝牙设备。
头戴显示系统:内部集成了微型蓝牙模块、、芯片。首先通过摄像头采集初始图像,送入DSP芯片进行预处理以去除视频和图像信号的冗余,其视频压缩标准可以采用MPEG-4。DSP处理后的信号可直接送入或送入主机以进行进一步处理。
蓝牙耳机:可以实现与其它蓝牙设备的音频信号传输,通过语音命令实现对主机的控制,或者将话音信号通过GPRS、、TD-SCDMA网络传送到远端。
&&& 图1 基于蓝牙和ZigBee的可穿戴网络的体系结构
2.3 ZigBee设备
ZigBee设备可设计为手表式、鞋垫式等。它包括、A/D、ZigBee模块。传感器采集外部信号(心跳、血压、脉搏、温度、干湿度等)并将它们转化为电信号,然后通过A/D转换器转换后送入,最后通过ZigBee收发模块,并经网关送入到主机。经主机处理之后,再传送到其它设备。
2.4 蓝牙/ZigBee网关[3]&&& 蓝牙/ZigBee网关主要针对可穿戴网络无线通信中两种不同标准蓝牙和ZigBee产品之间的相互通信,其协议模型如图2所示
&&& 图2 蓝牙/ZigBee网关的通信协议模型
3 基于蓝牙和ZigBee的可穿戴网络的硬件实现
在本文介绍的可穿戴网络的体系结构中,主要需要实现的是ZigBee节点和网关的硬件平台,下面介绍这两个平台的硬件实现。
3.1 ZigBee节点的硬件实现
ZigBee节点作为一种传感器,其主要的功能是采集人们感兴趣的数据,并将数据发送到蓝牙/ZigBee网关,然后通过GPRS、CDMA或WI-FI等发送到远程控制中心或数据库。ZigBee节点主要由模块、模块、存储单元、ZigBee收发模块和传感单元等组成,如图3所示。
图3 ZigBee节点硬件框图
在我们的系统中我们采用Freescale公司hc(s)08系列的8位MC9S08GB60微控制器[4],MC9S08GB60有丰富的片上存储功能,具有64KB(其中flash占60KB,RAM占4KB)的存储空间。在40MHz的工作频率下,其功率消耗不到1mw。而且该微控制器具有多种省电模式以供选择。除了具有丰富的片上存储功能和多种省电模式以外,MC9S08GB60微控制器还具有8个10bit的A/D转换器、多个I/O数据线、两个串行通信接口(SCI)、四线串行外围接口(SPI),这些使之很容易用软件编程,这些接口同时还可以用作与传感单元的接口。
整个ZigBee节点的通信模块是由ZigBee收发器来实现的。ZigBee收发器我们选用的是Freescale公司的MC13192[5],该收发器工作在2.4GHzISM公用频道。MC13192具有以下一些主要特点:
具有16个信道。
典型的发射功率为0dBm,最大发射功率达到3.6dBm。
采用DSSS扩频通信技术,最大速率为250kbps。
在分组错误率为1%的情况下,其接收灵敏度达到-92dBm(典型值)。
7个通用输入输出端口(GPIO)。
整个ZigBee节点采用AAA供电。
3.2 蓝牙/ZigBee网关的硬件实现
网关在可穿戴网络中起着很重要的作用。蓝牙/ZigBee网关的硬件部分主要由ZigBee模块、蓝牙模块和中央处理单元组成。
网关的中央处理单元主要完成从蓝牙和ZigBee协议的转换工作:对从ZigBee设备发送到带的主机的数据来说,在蓝牙/ZigBee网关它需经过以下处理:从ZigBee设备接收到的数据→去掉物理层的ZigBee分组→去掉MAC层的ZigBee分组→添加L2CAP头的蓝牙分组→添加物理层头的蓝牙分组。对从蓝牙设备发送到ZigBee设备的数据来说,过程相似,这里就不再进行说明。
中央处理单元的主要器件是Freescale的MC68HC908KL8[6],该微处理器具有16种灵活的寻址方式、高效指令集;支持在线可重复编程,这样可达成低成本的编程变更和现场软件升级;编程速度极快,64字节的编码在2ms内完成,极快的编程速度降低了产品编程成本;多达26个双向I/O口,大电流的I/O口可直接驱动和其他,从而省去外部驱动设备,降低系统成本。
ZigBee模块同样采用Freescale的MC13192,这里不再说明。
蓝牙模块主要实现蓝牙HCI层以下的协议,并且提供符合蓝牙规范的空中接口。在本设计中,我们采用BlueCore2-Flash RF PnG(8M)蓝牙单芯片方案,它集成了射频及基带芯片。其UART(可以为二线:RXD、TXD;四线:RXD、TXD、RTS、CTS;八线:完全RS232 方式)连接数据口用于数据传输。
4 基于蓝牙和ZigBee技术的可穿戴网络的软件结构
在我们所设计的可穿戴网络中,软件部分主要集中在网关和ZigBee节点上。网关的主要功能是管理和处理ZigBee节点传输过来的数据。其主要处理两个问题:分组处理和地址处理。
分组处理:要将来自一个网络设备的应用程序的报文发送到另一个网络设备,网关中的协议转换功能单元----管理层就要将报文进行拆装和封装。网关把它从发送设备接收到的分组进行拆装,去掉数据首部和尾部,从分组中提取有用数据信息,再把该有用信息封装成接收设备协议所要求的分组格式,根据目的地址和接口把数据发送到接收设备。蓝牙与ZigBee分组格式的转换式:网关通过射频单元从ZigBee设备(蓝牙设备)收到ZigBee分组(蓝牙分组)对其进行拆装,去掉分组头和分组尾,提取出数据净载荷,再按照蓝牙分组(ZigBee分组)格式进行封装,添加分组头和分组尾,通过射频发送到蓝牙设备(ZigBee设备)。
地址处理:每一个与网关建立连接的蓝牙设备或ZigBee设备都将与网关中的一个端口绑定在一起(通过动态或静态的分配)。这样,就可以通过网关的地址和端口号来唯一地标识该蓝牙设备或ZigBee设备。当蓝牙设备和ZigBee设备交换信息时,网关就负责蓝牙通信协议和ZigBee协议之间的转换工作。从而使蓝牙设备和ZigBee设备透明地进行数据交换。地址映射可使用静态或动态映射两种方法。静态映射使创建一个表,将一个逻辑地址与物理地址关联起来,该表存储在每一个设备上。每当物理地址发生变化,这个表就必须更新,比较麻烦。动态映射是当设备知道两个地址(逻辑地址或物理地址)中的一个时,就可使用协议将另一

我要回帖

更多关于 zigbee技术 的文章

 

随机推荐