max17222在什么情况下会进入aes ccm模式式

> 资讯详情
candytang 40700
日前,专注于新产品引入 (NPI) 并提供极丰富产品类型的业界顶级半导体和电子元件分销商贸泽电子(Mouser Electronics),即日起开始分销Maxim Integrated的MAX17222 nanoPower DC-DC升压转换器。MAX17222的能源效率最高达95%,使热损耗降至最低并实现了超低静态电流,能够帮助高集成可穿戴、健康监控器、物联网 (IoT) 器件及其他互联设计延长电池寿命。
贸泽电子备货的Maxim MAX17222 nanoPower DC-DC升压转换器以0.4 V至5.5 V的输入电压运行,可提供1.8 V至5.0 V的输出电压范围和低至300 nA的超低静态电流。在真关断 (True Shutdown(TM)) 模式下,电流消耗只有0.5 nA,几乎不造成任何电池消耗,从而延长了电池寿命并省去了外部断路开关。转换器的500 mA峰值电流限制让设计人员能够灵活地选择电感类型,其启动后使能瞬态保护 (ETP) 功能会根据负载电流的不同,在输入电压降至400 mV以下时,仍保持稳定的输出电压。
MAX17222 非常适合用于必须要求长电池寿命的电池应用,如:
1、光学心律监测 (OHRM) LED 驱动器
2、用于 RTC/警报蜂鸣器的超级电容备份
3、原电池便携式系统
4、小型、低功耗物联网传感器
5、二次电池便携式系统
6、可穿戴设备
7、电池供电医疗设备
8、低功耗无线通信产品
贸泽同时提供配套的Maxim MAX17222评估套件,套件内含两个独立的电路,分别用于评估MAX17222和MAX17225转换器。每个电路都能通过电阻以每步100 mV的幅度,在1.8V至5V的范围内调节输出电压。此外,根据输入/输出电压比值的不同,每个电路的输出电流最高可为100 mA、225 mA或 425 mA 。
如需进一步了解Maxim MAX17222转换器和评估套件,敬请访问/new/maxim-integrated/maxim-max17222-converter/。
后参与评论
candytangsunnycandytangcandytangcywen
sunnycandytangZoeZoecandytang
我是服务商2016第三届物联网大会
智能后视镜产品方案对接会
中国LED智能照明高峰论坛
第三届·无线通信技术研讨会
第二届·中国IoT大会
ETFo智能安防技术论坛
移入鼠标可放大二维码
三相双开关PFC电路分析及在CCM模式下的控制策略
来源:现代电子技术
作者:丁 杨 沈锦飞日 10:22
[导读] &&& APFC(active power factor correction)技术就是用有源开关器件取代整流电路中的无源器件或在整流器与负载之间增加一个功率变换器,将整流输入电流补偿成与电网电压同相的
&&& APFC(active power factor correction)技术就是用有源开关器件取代整流电路中的无源器件或在整流器与负载之间增加一个功率变换器,将整流输入电流补偿成与电网电压同相的正弦波,消除谐波及无功电流,提高了电网功率因数和电能利用率。从解耦的理论来看,三相PFC技术可以分成不解耦三相PFC、部分解耦三相PFC以及完全解耦三相PFC三类。全解耦的三相PFC,如6开关全桥电路,具有优越的性能,但是控制算法复杂,成本高。单开关的三相boost升压型PFC电路工作在DCM模式下,属于不解耦三相PFC,由于它的成本低,控制容易而得到广泛应用,但是开关器件电压应力大,电源容量难以提高,只适用于小功率场合。部分解耦的三相PFC电路具有低成本、高效的特点,具有广阔的应用前景。三相双开关电路就是典型的部分解耦PFC电路。本文针对该电路的工作原理和控制策略进行了仿真和实验。1 三相双开关PFC电路CCM下的工作原理1.1 主电路结构&&& 电路将三相交流电的中性线与2个串联开关管S1,S2的中点以及2个串联电容C1,C2的中点相连接,构成三电平(正、负电压和零电压)结构,2个串联电容分别并联平衡电阻R1,R2,使上、下半桥作用于电容C1,C2的输出电压相等。电路结构如图1所示。
&&& 由于中性线的存在,上下半桥相互独立,形成部分解耦的基础,并且开关器件承受的电压只有输出电压的1/2,降低了对开关管的选型要求。在此基础上提出一些新的双开关拓扑结构,但结构复杂,难以控制。1.2 过程分析&&& 由上述分析,上、下半桥可作为独立结构分析。以上半桥为例,等效电路图如图2所示。
&&& 由三相电压的对称特性,每2π/3的区间里,只有一相正相电压最大,如果能使每相的瞬时电流在2π/3的区间里跟踪其最大相电压,即可实现最大程度的电流校正。根据这样的思路,现分析[π/6~5π/6]中a相电流的变化,因为这段区间Ua最大,可分3个阶段分析。
&&& 第1阶段[π/6~π/3],Ua&Uc&O,在t0时刻开通S1,a相和c相电感同时充电,导通时间ton,这段时间的等效电路如图3所示。由于开关器件载波频率远大于工频,因此对于S1开关周期电路分析可将三相电源等效为对应的直流电压源。基于此假设可知,载波频率越高,电流波形越接近推理结果。此时的a相电流参见式(1):式中:ILc(t0)为c相电流初值。&在t1时刻关断S1,电压源和储能电感共同向负载提供能量,电感电流下降,由于Uc较小,iLc的下降率更大。该段时间的等效电路如图4所示。此时a相的电感电流参见式(3):&&& 式中:ILa(t1)为a相电流初值,U01为上半桥输出电压。&&& 同理,c相电流参见式(4):&&& 式中:ILc(t1)为c相电流初值。
&&& 由以上公式推理可得iLa和iLb的波形如图5所示。由于电流的连续模式,a相电感放电阶段不会回零,且变化斜率由相电压幅值决定,如式(1)、式(3)所示。由于单相电路等效为Boost电路,当电路运行在CCM模式,占空比计算如式(5)所示:&&& 式中:Uo1是上半桥的输出电压。&&& 第2阶段[π/3~2π/3],正相电流只有a相,所以开关的通断只会引起iLa的变化。&&& 第3阶段[2π/3~5π/6],a相和b相电压为正,开关的通断会引起iLa,iLb的变化。电路分析过程均和第一阶段类似。通过上面的分析可知。在[π/6~5π/6]控制a相的电流跟随其最大相电压,既可以使a相的电流得到最大的补偿,又可以使相邻相的电流得到一定补偿。这种控制方法简单,可行性高,但由于电路处于部分解耦状态,在第l(或3)阶段无法对c(或b)相进行独立控制,补偿效果并不理想,如何优化控制以减小c(或b)电流谐波仍有待解决。2 CCM模式下的控制和仿真2.1 控制分析&&& 按电感电流是否连续,APFC电路的工作模式可以分为连续导电模式(CCM)、断续导电模式(DCM)和介于两者之间的临界断续导电模式(DCM boundary)。该电路可以工作在DCM和CCM模式下。工作在DCM模式下,THD仍然较大。本文使用平均电流控制技术,由于平均电流控制电路具有体积小,重量轻,系统噪声小,稳定性高等优点,因而得到了广泛的应用。总控制框图如图6所示。
&&& 结合第1节的分析,它的基本控制原理是:采用双闭环控制策略,即电压外环和电流内环相结合。电压外环的任务是采样输出电压和给定比较,差值经过PI调节和三相交流电压的最大(最小)值相乘作为相位给定,再取样实际输入的三相电流的最大(最小)值,两者的差值和三角载波比较产生驱动信号,驱动MOS管。上、下桥臂的MOS管完全独立,互不影响。这样控制的好处是:在最大程度上(2π/3的区间里)对每相进行最优控制,控制算法简单,采用数字化的控制方法,成本低。性价比高。实际的校正过程是(以正半桥为例):当输出大于400 V,误差为正,经过PI调节,误差被正向放大,经乘法器得到与输入电压同相位的单位正弦电流也相应增大,与实际电流的差值增加,使PWM的占空比增大,输出电压减小。2.2 仿真分析&&& 本文的仿真是基于Matlab/Simulink平台,应用其中SimPowerSystems模块中的元件搭建而成。应用Matlab/Simulink不需要再建立各种模块的模型,可以快速验证系统的可行性和控制算法的有效性。电路的仿真参数为:输入电压:三相交流380 V;输出电压:800 V;开关频率为:10 kHz;Boost电感值:300μH;输出滤波电容:470μF;平衡电阻:100 kΩ;负载电阻:100 Ω;输出功率:6.4 kW。上桥臂的控制模块的仿真电路需要注意:采样三相电压的瞬时值作为给定一般在整流后,但由于电感、电容的存在,使整流后的波形并不是标准的馒头波,所以采整流前端的三相电压作为给定;三角载波模块取自plecs工具箱,设置较为容易,载波频率为10 kHz;使用加减模块和滞环模块组合,通过设置环宽为0,可以实现电压(电流)比较器的功能;下桥臂的电压给定取自负半桥最小电压的绝对值(不是最大电压)。在此基础上,仿真得到的波形如图7所示。观察a相和c相电流波形可知,电路工作在CCM模式下,在[π/6~5π/6],a相电流得到了最大补偿;而在[O~π/6],a相的电流补偿效果是比较差的,因为此时的控制量是c相电流,c相电流得到最大补偿;同理在[5π/6~π],b相电流得到最大补偿,就是说补偿了c相电流,却破坏了a相的电流波形。其中a相电流THD=13.76 %,其中3次和5次谐波的幅值较大,可以考虑用谐波注入法来消除3次与5次谐波。半桥电压的平均值为400.2 V,负载电压平均值为800 V,从仿真结果看,控制的基本思路是正确的。
3 实验分析&&& 该实验的控制芯片使用DSP2407,其内部的事件管理器EV和A/D模块,资源丰富。驱动芯片使用M57962L,它集成过流保护电路和过流保护输出端子。本文实验的硬件控制框图如图8所示。
&&& 实现CCM控制的算法都是在DSP中完成的,外部硬件只需检测控制所需的8个信号,可见采用DSP所需的硬件电路较少,这使得控制系统的修改和维护变得相当容易和方便。实际波形和仿真结论基本吻合,如图9、图10所示。图中,在[0~π/6],a相电流的补偿效果最好;在[π/6~5π/6]和[5π/6~π],电流比较平,补偿的效果比较差,这是由部分解耦的特点决定的。
4 结语&&& 本文提出了三相双开关PFC电路在CCM模式下的控制策略,分析了电路的工作原理,给出了该电路在开关周期内的波形和工作方程表达式,并且通过仿真和试验结果验证了电路分析的正确性。该电路结构简单,控制容易,成本低并且输入电流谐波低、功率因数高,适用于中、大功率应用场合。
三相双开关相关文章
三相双开关相关下载
PFC相关文章
PFC相关下载
技术交流、积极发言! 发表评请遵守相关规定。
蛇口价值工厂举办2017TechCrunch国际创新峰会上,全球第二大智能可穿戴公司华米科技创始人兼CEO黄汪比较了目前硅谷与深圳的差异,认为硅谷硬件创业在周...
近日见到一则业內重大项目的人事变动消息,由前中芯国际创始人张汝京博士担任总经理、300毫米大硅片项目的上海新昇半导体科技有限公司,重大人事变...
创新实用技术专题
版权所有 & 深圳华强聚丰电子科技有限公司
电信与信息服务业务经营许可证:粤B2-MAX17222ELT+T美信出品升压转换器,和谐世家电子代理库存!
MAX17222 是一款超低静态电流升压 DC-DC 转换器,具有 500 mA 峰值电感电流限制和 True Shutdown? 功能。True Shutdown 可将输入和输出断开,而不产生任何正向或反向电流。可使用一个标准的 1% 电阻器选择输出电压。MAX17222ELT+ 有启动后使能瞬态保护 (ETP),能够在输入电压低至 400 mV 的条件下让输出保持调节,具体取决于负载电流。MAX17222ELT+ 以小巧的总体解决方案尺寸提供超低静态电流以及整个负载范围内的高能效。MAX17222ELT+ 是要求较长电池续航时间的电池应用的理想选择。 特性流入 OUT 端的静态电流为 300 nA真正的关断模式 (True Shutdown)仅 0.5 nA 关断电流输出从输入断开VOUT&0 V 至 5 V 无反向电流95% 峰值能效400 mV 至 5.5 V 输入范围0.88 V 最小启动电压1.8 V 至 5 V 输出电压范围100 mV / 降压单一的 1% 电阻器可选择输出500 mA 峰值电感电流限制使能瞬态保护 (ETP)0.88 mm x 1.4 m m 6 焊球 WLP(2 x 3,0.4 mm 点距)应用光学心率监测 (OHRM) LED 驱动器用于 RTC/报警蜂鸣器的超级电容器备用一次性电池供电的便携式系统小型低功耗物联网传感器可充电电池供电的便携式系统可穿戴设备电池供电型医疗设备低功耗无线通信产品
深圳市和谐世家电子有限公司
相关企业新闻最近几天工程师的朋友圈们都已经被STM32峰会相关消息刷……
一场Pokemon
Go,让全世界的小精灵师都暴露了。因此,在……
2016年初,一场人机大战点燃了人工智能芯片的争夺战,而……
伴随汽车高级辅助驾驶(ADAS)在过去几年的飞速发展,紧……
未来物联网世界到底是什么样子的?无线标准纷争最终究竟……
演讲人:张小平时间: 10:00:00
演讲人:Vincent Li时间: 10:00:00
演讲人:谢亦峰时间: 10:00:00
预算:小于¥5,000预算:小于¥5,000
选择升压转换器电感值
[导读] 仅一个电池可能无法为复杂系统提供正常工作所需的所有电压轨。汽车LED驱动器、音频放大器以及电信等应用需要升压转换器将较低输入电压转换为较高输出电压。要确定应该将转换器的工作模式设计成连续传导模式(CCM)、非
&仅一个电池可能无法为复杂系统提供正常工作所需的所有电压轨。汽车LED驱动器、音频放大器以及电信等应用需要升压转换器将较低输入电压转换为较高输出电压。要确定应该将转换器的工作模式设计成连续传导模式(CCM)、非连续传导模式(DCM)还是二者的结合,这对于升压转换器设计人员来说可能不太明确。
升压转换器的形状和尺寸多种多样,所支持的电源等级和升压比率非常广泛。这些要求决定了升压转换器最适合在CCM下工作,还是在DCM
下工作。在DCM下,电感器电流在FET导通时开始从零升高,并在下一个转换周期到来之前完全放电归零。但在非同步CCM升压情况下,无论电流是在升高、在下降,还是在将电感器储存的能量释放到输出电容器和负载中,电感器电流始终大于零。
在CCM下,占空比对负载而言是恒定的,但会随输入电压变化而变化。在大多数CCM设计中,当低于某一最低负载时,工作模式会转换为DCM,因为电感器电流在下一个转换周期到来之前最终会降低至零。
在大多数情况下,高功率升压转换器工作在CCM下,而低功率升压则在DCM下完成。这是因为CCM允许较低峰值电流流过整个电路,通常会带来较低电路损耗。但可能在高电压升压转换的输出整流器中也有例外,例如在PFC中,反向恢复电流会导致更多损耗。这种损耗通常可采用高质量(快速)整流器进行处理。
如果在 DCM 下工作,会出现在 CCM
模式下两倍的峰值电感器电流,但如果故意减小电感值,则该电流可能还会高很多。这些更高电流不仅可增大输入输出电容器中的均方根电流,而且还可增加FET中的开关损耗,因此需要更大(或更多)的组件来应对附加应力。单这一项不足通常就能掩盖
DCM 在高功率下提供的其它优势。
尽管电感器均方根电流在DCM下更高,但其线阻通常会低很多,因此铜损耗往往与CCM相同或更低。不过,DCM
下的核心损耗在高功率等级下更大。有时候可能需要更大的核心来处理这些增加的损耗,这会使经常让人振奋的&更小电感器尺寸&优势黯然失色。DCM能真正发挥优势的地方是较低功率等级,这里电容器和FET中增加的应力不一定需要较大组件,采用较小电感器即可。
DCM的一个额外优势是在以高升压比率工作时(此时CCM工作需要大量的导通时间),可通过减小电感值来缩短导通时间(伴有更高峰值电流)。这非常好,因为控制器经常会达到最大可控制导通时间(或最小关断时间)限值,跳过脉冲。这样,设计人员可根据控制器的可工作范围对导通和关断时间进行微调。此外,DCM的控制环路表现要优于CCM,因为没有右半平面零点,其可转换为优异的瞬态性能。
有时候可通过减小电感值将RHPZ 的影响降到最低,我们可将RHPZ
推到影响较小的更高频率位置。无论在轻负载、启动还是在瞬态条件下,所有CCM升压都可在一定条件下以
DCM模式工作。这完全可以接受,但应该搞清楚出现这种情况时的条件。
图1是电感方程式(方程1)中反向升压比率(VIN/VOUT)与占空比(D&(1-D)²)的比较图。该项目与CCM升压转换器中所需的电感成正比。本图中的峰值出现在VIN/VOUT比值为2/3时或升压比率(VOUT/VIN)为1.5[1]
时。这可能是有些不太直观的结果。它的意思是,在采用变化输入电压的设计中,电路必须在 VIN/VOUT
比率的一个区段间工作。如果该范围非常广泛而且该区段包含图1中的峰值,那就应该在2/3
的VIN/VOUT比率位置计算电感。如果该区段不包含2/3点,那它就应该在其相对峰值比率处进行设计。
图1.CCM所需的最大电感出现在VIN/VOUT = 2/3时
图2是汽车LED驱动器应用,其采用控制器调节输出电流,而不是固定输出电压。该设计电路在0.27至0.97的区段间工作,如图1中虚线所示。应在2/3的比率位置计算其电感。LED负载电流是恒定的,因此要选择所需的电感,就得选择低于实际负载电流的设计负载电流。只要实际负载电流大于这一所选等级,转换器就会在CCM下工作。
图2.LED升压转换器设计示例始终在CCM下工作,负载恒定
在本示例中,LED电流为0.22A,选择了0.15A的临界传导等级,这就意味着转换器应始终在CCM下工作。该等级可在最大限度降低所需电感与确保CCM工作之间实现良好平衡。对于该设计,这相当于是68uH
的计算所得电感。要证实该电感是否正确,可将图[2]的D(1-D)2项指定为常数K。将该常数代入方程1并进行计算,可通过方程 2 计算出 K
值。我们可使用K的计算值来确定工作边界。
图3与图1相比稍有不同,横坐标变成了占空比,而不是原来的VIN/VOUT。图中显示了设计示例(采用68uH电感器)的K计算值以及0.15A
的降低负载电流。我们可以看到,电路工作一直处于该曲线上方,这说明在所有输出电压下电路将始终在CCM下工作。但电路实际可将电流调节为0.22A,因此K的典型值接近0.23。这明显高于该曲线而且更加深入CCM,因此可提供所需的裕量。
图3.占空比可影响升压转换器的工作模式
正如另一个可形象展示意外工作情况的设计点示例所示,必须考虑在改用33uH电感器时会出现的情况。如果该值通过VIN最大值或VIN最小值计算,而不是通过与图1峰值有关的VIN
计算,就可对其进行选择。由于电感为33uH,因此 K 的对应值等于 0.11,如图3
所示。在0.16与0.55(分别对应28VIN和15VIN)的工作占空比之间,电路会无意间工作在DCM下,而在这些占空比以外则工作在CCM下。由于两种模式具有不同的控制环路特征,因此如果在多种模式下工作可能会导致适当的不稳定性。
升压转换器可在CCM、DCM或这两种模式下工作,主要取决于输入电压和负载。在计算所需的电感以确保CCM工作时,必须知道计算中使用的输入电压(或占空比)值。对于具有宽泛输入的设计而言,应使用
2/3的 VIN/VOUT比率 (D =
0.33)。现有设计可使用方程2计算出的K值通过D(1-D)²曲线确定工作模式。通过正确调整电感器尺寸,可以避免意外问题发生,并能更好地掌握升压转换器正工作在哪种或哪几种模式下。
近日,Vishay Intertechnology, Inc.宣布,推出新的IHLP&
超薄、大电流电感器---IHLP-1616BZ-51。电感器的外形尺寸为1616,可在+155℃高温下工作,高度2mm,可用于极端环......关键字:
Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,推出2颗适用于便携式电子产品中DC/DC转换的新系列超薄功率电感器---IFL和IFLS系列。......关键字:
贸泽电子即日起开始分销Maxim的MAX17222 nanoPower DC-DC升压转换器,同时提供配套的Maxim MAX17222评估套件,套件内含两个独立的电路,分别用于评估MAX17222H和MAX17225转换器。......关键字:
近年来,汽车以各种控制功能的电装化为首,搭载通信、信息、自动行驶等ECU的趋势日益增加。同时,在多功能的背景下,如何节省空间也成为了一大课题,市场对于小型、高性能且高信赖性的电子元件的需求也不断提高。......关键字:
21ic讯 TDK株式会社开发出了实现行业最高水平※Q特性的积层工法高频电路用电感器MHQ0402P系列,并从2014年2月起开始量产。MHQ0402P(
L:0.44&W:0.24&H:0.24m......关键字:
据国外媒体报道,网络安全公司Check Point最近在38部新款Android手机中发现预装的恶意软件,这些手机品牌包括三星、小米和OPPO等。......关键字:
眼看着 AR 产品开始崭露头角,很多科技巨头已经在这个领域布局,苹果做为智能硬件消费领域的领头羊,一点都不敢怠慢。而根据市场数据判断,全球 AR 产品产值将在 2024 年时增长 80% 达到 1650 亿美元。......关键字:
由于物联网设备安全措施缺乏,它们很容易成为黑客的攻击目标,而联网的医疗设备更是风险巨大。一方面,医疗设备常常关系到病人的人身安全,另一方面,由于医疗设备连接着医院的网络,黑客能够盗取私密的医疗信息。......关键字:
我 要 评 论
热门关键词

我要回帖

更多关于 ccm工作模式 tcm 的文章

 

随机推荐