outer edge dimensionouter版是什么意思思

PROSTHESIS AND METHOD FOR WIDENING THE PALPEBRAL FISSURE OF AN INDIVIDUAL'S EYE
United States Patent Application
A prosthesis capable of being worn on the eye of a wearer having a convex surface and a concave surface. The prosthesis is configured to widen the natural palpebral fissure of a wearer's eye. The prosthesis may have an aperture widening zone located on the convex surface and including an area of increased surface friction. A method of widening the natural palpebral fissure of a wearer's eye is also provided.
Inventors:
Blum, Ronald D. (Roanoke, VA, US)
Application Number:
Publication Date:
06/11/2015
Filing Date:
02/17/2015
Export Citation:
BeautiEyes, LLC (Roanoke, VA, US)
Primary Class:
Other Classes:
351/159.78,
351/159.02
International Classes:
G02C7/04; A61B3/10
View Patent Images:
&&&&&&PDF help
Related US Applications:
August, 2003OnoApril, 2009Ianelli et al.July, 2009PooleApril, 2010Witt et al.June, 2009ParentJanuary, 2008ToddOctober, 2009WeeberNovember, 2007Hong et al.May, 2008Kakuuchi et al.October, 2009Meyers et al.March, 2005Takeuchi
Primary Examiner:
MATTHEWS, WILLIAM H
Attorney, Agent or Firm:
STERNE, KESSLER, GOLDSTEIN & FOX P.L.L.C. (1100 NEW YORK AVENUE, N.W.
WASHINGTON DC 20005)
What is claimed is:
A prosthesis capable of being worn on the eye of a wearer, comprising: and an aperture widening zone located on the convex surface and including an area of increa wherein the aperture widening zone has a minimum vertical dimension of greater than or equal to 8 and wherein the aperture widening zone is configured to widen the natural palpebral fissure of a wearer's eye.
The prosthesis of claim 1, wherein the area of increased surface friction has a friction drag coefficient that is greater than the friction drag coefficient of a portion of the convex surface adjacent to the area of increased surface friction.
The prosthesis of claim 1, wherein the area of increased surface friction has a friction drag coefficient at least 25% greater than the friction drag coefficient of a portion of the convex surface adjacent to the area of increased surface friction.
The prosthesis of claim 1, wherein the area of increased surface friction is an area having a friction drag coefficient of 33% greater than the friction drag coefficient of a portion of the convex surface adjacent to the area of increased surface friction.
The prosthesis of claim 1, wherein the aperture widening zone includes a plurality of areas of increased surface friction.
The prosthesis of claim 1, wherein the prosthesis has an overall diameter of at least 13.0 mm.
The prosthesis of claim 1, wherein the area of increased surface friction is flat and takes on the normal curvature of the convex surface of the prosthesis.
The prosthesis of claim 1, wherein the area of increased surface friction is raised relative to a normalized front convex surface of the prosthesis.
The prosthesis of claim 1, wherein the area of increased surface friction is provided by a surface treatment, a coating, a different material, surface dimples, surface irregularities, chemical treatment, etching, or a combination thereof.
The prosthesis of claim 1, further comprising a color enhancing region.
The prosthesis of claim 10, wherein the color enhancing region provides increased surface friction.
The prosthesis of claim 10, wherein the color enhancing region at least partially overlaps with the aperture widening zone.
The prosthesis of claim 10, wherein color enhancing region comprises at least one of: a continuous colored ring, a non-continuous colored ring, a colored zone, a uniform color, multiple colors, multiple shades of a single color, and an accent color.
The prosthesis of claim 1, wherein the aperture widening zone also includes an area of increased thickness, and wherein the area of increased thickness includes an outer slope and an inner slope with a maximum change in thickness located in between.
The prosthesis of claim 14, wherein the maximum change in thickness is between 25 microns and 1,000 microns.
A method of widening the natural palpebral fissure of an individual's eye comprising: (a) measuring the vertical dimension of the natural palpebral fissure of an individual' (b) providing to the individual a first prosthesis comprising an aperture widening zone with a minimum vertical dimension at least 1 mm greater than the individual's natural palpebral fissure.
The method of claim 16, further comprising: (c) re-measuring the vertical dimension of the palpebral fissure of the individual's eye while the individual is wearing
(d) determining whether the vertical dimension of the palpebral fissure of the individual's eye has been widened by at least 1 mm relative to the measurement in step (a); and (e) repeating steps (b)-(d) with different prostheses comprising an aperture widening zone with a minimum vertical dimension greater than the minimum vertical dimension of the first prosthesis until the individual's palpebral fissure is widened by at least 1 mm relative to the measurement in step (a).
The method of claim 17, further comprising providing to the individual a prosthesis that, when worn, results in the individual having a palpebral fissure with a vertical dimension at least 1 mm greater than the vertical dimension of the individual's natural palpebral fissure.
The method of claim 16, wherein the measurement in step (a) is determined by at least one of: taking a photograph of the individual's eye and measuring the vertical dimension of the individual's palpebral fissure in the photograph, physically measuring the vertical dimension of the individual's palpebral fissure, visually estimating the vertical dimension of the individual's palpebral fissure, fitting a trial prosthesis having markings that indicate one or more vertical dimensions on the individual's eye, and fitting a trail prosthesis having a known diameter on the individual's eye.
The method of claim 17, wherein the measurement in step (e) is determined by at least one of: taking a photograph of the individual's eye and measuring the vertical dimension of the individual's palpebral fissure in the photograph, physically measuring the vertical dimension of the individual's palpebral fissure, visually estimating the vertical dimension of the individual's palpebral fissure, fitting a trial prosthesis having markings that indicate one or more vertical dimensions on the individual's eye, and fitting a trail prosthesis having a known diameter on the individual's eye.
Description:
CROSS-REFERENCE TO RELATED APPLICATIONSThis application is a continuation-in-part of U.S. application Ser. No. 14/018,244, titled “Eye Aperture Enhancing Prosthesis and Method,” filed on Sep. 4, 2013. This application claims priority to the following U.S. Provisional Patent Applications via U.S. application Ser. No. 14/018,244, all of which are hereby incorporated by reference in their entirety:Ser. No. 61/698,205, titled “Novel Lid Lifting Contact Lens Design and Use,” filed Sep. 7, 2012;Ser. No. 61/702,274, titled “Novel Cosmetic Contact Lens,” filed Sep. 18, 2012;Ser. No. 61/706,827, titled “Novel Cosmetic Eye Widening Contact Lens,” filed Sep. 28, 2012;Ser. No. 61/714,567, titled “Cosmetic Eye Widening Contact Lens,” filed Oct. 16, 2012;Ser. No. 61/716,633, titled “Fitting Method and Contact Len Design of Inventive Palpebral Fissure Widening Contact Lens,” filed Oct. 22, 2012;Ser. No. 61/721,530, titled “Contact Lens Design for Widening Palpebral Fissure of Wearer's Eye,” filed Nov. 2, 2012;Ser. No. 61/726,096, titled “Improved Contact Lens Design for Widening Palpebral Fissure of Wearer's Eye,” filed Nov. 14, 2012;Ser. No. 61/729,020, titled “Palpebral Fissure Widening Contact Lens.” filed Nov. 21, 2012;Ser. No. 61/730,185, titled “Palpebral Fissure Widening Contact Lens,” filed Nov. 27, 2012;Ser. No. 61/736,210, titled “Enhanced Palpebral Fissure Widening Contact Lens,” filed Dec. 12, 2012;Ser. No. 61/757,365 titled “Corneal Scleral Contact Lens for Palpebral Widening,” filed Jan. 28, 2013;Ser. No. 61/835,709, titled “Palpebral Fissure Enhancing Scleral Ring,” filed Jun. 17, 2013; andSer. No. 61/859,360, titled “Eye Aperture Enhancing Prosthesis,” filed Jul. 29, 2013.This application is a continuation-in-part of International Application PCT/US, titled “Eye Aperture Enhancing Prosthesis and Method,” with an international filing date of Sep. 5, 2013, which is hereby incorporated by reference it its entirety:This application claims priority to the following U.S. Provisional Patent Applications, all of which are hereby incorporated by reference in their entirety:Ser. No. 61/940,676, titled “Prosthesis For Widening Small Eye Palpebral Fissures,” filed Feb. 17, 2014;Ser. No. 61/979,535, titled “Palpebral Widening Soft Contact Lenses Comprising Different Overall Diameters,” filed Apr. 15, 2014;Ser. No. 62/024,154, titled “Eye Aperture Widening Prosthesis Having Combined Elements,” filed Jul. 14, 2014; andSer. No. 62/053,837, titled “Novel Design of Eye Aperture Widening Prosthesis Having Combined Elements,” filed Sep. 23, 2014.BACKGROUND OF THE INVENTION1. Field of the InventionThe present application relates to prostheses for use in the eye. In particular, the present application relates to prostheses that enhance or alter the appearance of a wearer's eye.2. BackgroundIt is known that the aperture of the human eye (i.e., largest vertical distance between an individual's upper lid and lower lid) reduces in overall diameter by 1.5 mm or more as one matures from that of a child to that of an adult of the age of 40 and even more as one matures to that of a senior of 60 years or older. In addition to a reduction in aperture size due to old age, some individuals suffer from blepharoptosis, also referred to as ptosis, which is defined as an abnormal low-lying upper eyelid margin within the eye in primary gaze. In some instances, ptosis is correctable by surgery. Moreover, some individuals may desire a larger eye aperture for cosmetic purposes.Traditional corneo-scleral contact lenses (soft contact lenses or hybrid contact lenses) that fit on the cornea of one's eye (do not vault the cornea) and extend over the limbus and bulbar conjunctiva thus covering part of the sclera are not being used for correcting ptosis and/or the widening of the wearer's palpebral fissure. This is due to their geometrical design. Also corneal contact lenses (rigid or soft) that fit only the cornea and do not extend past the limbus are not used for correcting ptosis and/or the widening of the wearer's palpebral fissure due to geometrical design and overall diameter. Scleral contact lenses are hard/rigid and have been designed in the past to fit snugly against the sclera of the wearer's eye, “vault the cornea” and have a very thick edge design such to lift the upper lid of the wearer's eye having ptosis. While scleral contact lenses have existed in the past that will lift the upper lid of the wearer's eye these hard/rigid sclera contact lenses are highly uncomfortable, cause very red eyes and irritate the eye lid margin thus presenting severe limitations for the wearer. For these reasons the commercial success of scleral contact lenses to correct for ptosis has been a major failure. Thus non-surgical and comfortable means to widen the natural palpebral fissure of an individual's eye are of interest.SUMMARY OF THE INVENTIONSome embodiments include a prosthesis, such as a corneo-scleral contact lens, for enhancing the look of a wearer, whereby the prosthesis includes a colored region that is one of: a colored ring, limbal ring, color enhanced iris area, accent color located over a portion of the limbus of the wearer's eye and whereby the prosthesis includes a surface feature designed to increase the distance between the upper lid margin and the lower lid margin of the eye of the wearer. In some embodiments, the prosthesis increases the vertical palpebral measurement of the wearer by at least 1 mm.Some embodiments include a prosthesis capable of being worn on the eye of a wearer having a convex surface and a concave surface. The prosthesis has an aperture widening zone located on the convex surface. The prosthesis widens the natural palpebral fissure of the wearer's eye by at least 1 mm. The invention disclosed herein is targeted toward eyes having a small palpebral fissure having a vertical dimension of 9.0 mm or less. The invention disclosed herein works well for Asian eyes. Additional features of the invention disclosed herein, by way of example only is that of increased surface friction that pertains to any prosthesis that widens the vertical dimension of any sized eye aperture (palpebral fissure)Some embodiments include a prosthesis capable of being worn on the eye of a wearer. The prosthesis has a convex surface and a concave surface. An aperture widening zone is located on the convex surface. The prosthesis is a corneo-scleral contact lens that widens the natural palpebral fissure of the wearer's eye by at least 1 mm.Some embodiments include a prosthesis having a convex surface and a concave surface. An aperture widening zone is located on the convex surface. The prosthesis is a scleral ring that widens the natural palpebral fissure of the wearer's eye by at least 1 mm.Some embodiments include a prosthesis capable of being worn on the eye of a wearer. The prosthesis has a convex surface and a concave surface. An aperture widening zone is located on the convex surface. The aperture widening zone includes at least one surface feature. The prosthesis widens the natural palpebral fissure of the wearer's eye by at least 1 mm.Some embodiments include a prosthesis capable of being worn on the eye of a wearer having a convex surface, a concave surface, and a peripheral edge. The prosthesis also has an aperture widening zone located on the convex surface. The aperture widening zone including an outer slope and an inner slope with a maximum change in thickness located in between. The outer slope and the inner slope are different.Some embodiments include a prosthesis capable of being worn on the eye of a wearer having a convex surface, a concave surface, and a peripheral edge. The prosthesis also has an aperture widening zone located on the convex surface. The aperture widening zone including an outer slope and an inner slope with a maximum change in thickness located in between.Some embodiments include a prosthesis capable of being worn on the eye of a wearer. The prosthesis has a convex surface and a concave surface. An aperture widening zone is located on the convex surface. The aperture widening zone has at least one surface feature. The aperture widening zone also has a minimum vertical dimension.Some embodiments include a prosthesis capable of being worn on the eye of a wearer. The prosthesis has a convex surface, a concave surface, a peripheral edge, and a geometric center. An aperture widening zone is located on the convex surface. The aperture widening zone has at least one surface feature. At least a portion of the at least one surface feature is located at or outside 5.25 mm from the geometric center of the prosthesis.In some embodiments the prosthesis has an overall diameter of at least 13.0 mm. In other embodiments the prosthesis has an overall diameter of at least 13.5 mm. In some embodiments the prosthesis has an overall diameter of at least 14 mm. In some embodiments the prosthesis has an overall diameter of at least 14.5 mm. In some other embodiments the prosthesis has an overall diameter of at least 15.0 mm or larger. In some other embodiments the prosthesis has an overall diameter of at least 15.5 mm. In some other embodiments, the prosthesis has an overall diameter of at least 16.0 mm.In some embodiments the prosthesis is a rotationally symmetric lens. In some embodiments the prosthesis is capable of rotating. In some embodiments the prosthesis is not capable of rotating.In some embodiments the aperture widening zone depresses a lower eye lid of the wearer by at least 1 mm. In some embodiments the aperture widening zone elevates an upper eye lid of the wearer by at least 1 mm.In some embodiments the prosthesis includes a colored accent color. In some embodiments the colored accent color is around a portion of the prosthesis which fits near or at the limbus of the eye when the prosthesis is worn. In some embodiments the colored accent color is a limbal ring, circle ring, or circle lens.In some embodiments the prosthesis is a multifocal contact lens. In some embodiments the prosthesis is a toric contact lens. In some embodiments the prosthesis is a single vision contact lens.In some embodiments the aperture widening zone comprises an area of increased surface friction. In some embodiments the increased surface friction is provided by a surface treatment, a coating, a different material, surface dimples, surface irregularities, chemical treatment, etching, or combinations thereof.In some embodiments the aperture widening zone also includes an outer slope and an inner slope with a maximum change in thickness located in between. In some embodiments the outer slope and inner slope are different. In some embodiments the outer slope is greater than the inner slope. In some embodiments the outer slope has an angle between 3° and 45°. In some embodiments the outer slope has an angle between 5° and 25°. In some embodiments the inner slope comprises an angle between 1° and 15°.In some embodiments the aperture widening zone has an incremental thickness and a maximum change in thickness. In some embodiments the maximum change in thickness is within a range of 25 microns to 1,000 microns. In some embodiments the maximum change in thickness is within a range of 100 microns to 500 microns. In some embodiments the maximum change in thickness is within a range of 75 microns to 400 microns. In some embodiments the maximum change in thickness is located between 1.0 mm and 2.5 mm from an outer edge of the prosthesis. In some embodiments the maximum change in thickness is located at or exterior to the corneal limbus of the wearer's eye when the prosthesis is worn on the eye. In some embodiments, the maximum change in thickness is located at least 5.5 mm from the geometrical center of the prosthesis (i.e., at least one half the diameter of the average human cornea, which is 11-12 mm). In some embodiments, the maximum change in thickness is located at least 6.0 mm from the geometrical center of the prosthesis. In some embodiments, the maximum change in thickness is located at least 6.5 mm from the geometrical center of the prosthesis. In some embodiments the incremental thickness is an increase in thickness. In some embodiments the incremental thickness is a decrease in thickness.In some embodiments an outermost part of the aperture widening zone is located within a range of 3 mm to 8.5 mm from a geometric center of the prosthesis. In some embodiments an outermost part of the aperture widening zone is located within a range of 5 mm to 7.75 mm from a geometric center of the prosthesis. In some embodiments an innermost part of the aperture widening zone is located between a peripheral edge of the prosthesis and 6 mm from a peripheral edge of the prosthesis.In some embodiments a minimum vertical dimension of the aperture widening zone is larger than a maximum vertical diameter of the natural palpebral fissure of the wearer's eye. In some embodiments a minimum vertical dimension of the aperture widening zone is equal to or greater than 8.0 mm. In other embodiments the minimum vertical dimension of the aperture widening zone is equal to or greater than 8.5 mm. In some embodiments a minimum vertical dimension of the aperture widening zone is equal to or greater than 9.5 mm. In some embodiments a minimum vertical dimension of the aperture widening zone is equal to or greater than 9.5 mm. In some embodiments a minimum vertical dimension of the aperture widening zone is equal to or greater than 10.0 mm. In some embodiments a minimum vertical dimension of the aperture widening zone is equal to or greater than 10.5 mm. In some embodiments a minimum vertical dimension of the aperture widening zone is equal to or greater than 11.0 mm. In some embodiments a minimum vertical dimension of the aperture widening zone is equal to or greater than 11.5 mm. In some embodiments a minimum vertical dimension of the aperture widening zone is equal to or greater than 12.0 mm. In some embodiments a minimum vertical dimension of the aperture widening zone is a vertical distance between an uppermost part of the aperture widening zone and a lowermost part of the aperture widening zone.In some embodiments the aperture widening zone includes at least one surface feature. In some embodiments the aperture widening zone has a plurality of surface features.In some embodiments the prosthesis is a corneo-scleral contact lens. In some embodiments the prosthesis is a scleral ring.In some embodiments the aperture widening zone has a minimum vertical dimension.In some embodiments the prosthesis also has a peripheral edge, a geometric center, and at least one surface feature. In some embodiments the at least one surface feature or at least a portion of the at least one surface is located at or outside 5.25 mm from the geometric center of the prosthesis. In some embodiments the peripheral edge has a knife edge shape, a rounded shape, a blunt shape, or a semi-rounded shape. In some embodiments the peripheral edge has a thickness between 25 microns and 100 microns.In some embodiments the prosthesis has a hybrid design. In some embodiments the prosthesis has a homogeneous design.In some embodiments the aperture widening zone comprises a ring, multiple rings, a partial ring, multiple partial rings, an island, multiple islands, a band, bands, partial bands, a segmented area, or multiple segmented areas.In some embodiments the prosthesis can be worn by the wearer continuously. In some embodiments the prosthesis can be worn by the wearer non-continuously. In some embodiments the prosthesis can be worn by the wearer daily, weekly, or monthly.In some embodiments the prosthesis is disposable. In some embodiments the prosthesis is reusable.In some embodiments the prosthesis comprises an optical power. In some embodiments the prosthesis does not comprise an optical power.Some embodiments include a prosthesis having an aperture widening zone. The aperture widening zone has an outer slope, an inner slope, a point of maximum added thickness delta, and an incremental thickness diameter. The prosthesis also has a peripheral edge, a geometrical center, and an overall diameter. The overall diameter is measured from a first point on the peripheral edge to a second point on the opposing peripheral edge thru the geometrical center of the prosthesis and the aperture widening zone. The overall diameter is 14.5 mm or greater. The outer slope is with the range of 5 degrees and 25 degrees. The point of maximum added thickness delta of the aperture widening zone is 75 microns or greater. The point of maximum added thickness delta of the aperture widening zone is located between 1 mm and 3 mm from the peripheral edge. The incremental thickness diameter is 8.5 mm or greater. In some embodiments, the incremental thickness diameter is 10.5 mm or greater.In some embodiments the prosthesis is free to rotate. In some embodiments the prosthesis is not free to rotate.In some embodiments the incremental thickness diameter is 1 mm larger than the vertical measurement of the natural aperture of the wearer's eye. In some embodiments the incremental thickness diameter is at least 1 mm larger than the vertical measurement of the natural aperture of the wearer's eye.In some embodiments the prosthesis is a single vision contact lens. In some embodiments the prosthesis is a multifocal contact lens. In some embodiments the prosthesis is a toric contact lens.In some embodiments the prosthesis includes a hydrogel. In some embodiments the prosthesis includes a silicone hydrogel. In some embodiments the prosthesis includes a homogenous material. In some embodiments the prosthesis includes hybrid materials.In some embodiments the aperture widening zone begins at or adjacent to the peripheral edge. In some embodiments the aperture widening zone begins internal to the peripheral edge.In some embodiments the point of maximum added thickness delta is 100 microns or greater. In some embodiments the point of maximum added thickness delta is 125 microns or greater. In some embodiments the point of maximum added thickness delta is 150 microns or greater. In some embodiments the point of maximum added thickness delta is 200 microns or greater. In some embodiments the point of maximum added thickness delta is 225 microns or greater. In some embodiments the point of maximum added thickness delta is 250 microns or greater.In some embodiments the prosthesis is one of: daily wear, disposable, continuous wear, weekly wear, or monthly wear.In some embodiments the prosthesis is not stabilized.In some embodiments the aperture widening zone is a round ring. In some embodiments the aperture widening zone is a series of partial segments that make up a ring.Some embodiments provide for a method of widening the natural palpebral fissure of a wearer's eye by providing a protocol or instructions for widening the wearer's natural palpebral fissure by at least 1 mm and providing at least one prosthesis comprising an aperture widening zone located on its convex surface. In some embodiments the protocol or instructions include directions to determine a vertical dimension of the wearer's natural palpebral fissure, and to provide the wearer with a prosthesis having a minimum vertical dimension at least 1 mm greater than a maximum vertical dimension of the natural palpebral fissure.Some embodiments include a prosthesis capable of being worn on the eye of a wearer including a convex surface, a concave surface, and an aperture widening zone located on the convex surface and including an area of increased surface friction, where the aperture widening zone has a minimum vertical dimension of greater than or equal to 8 mm and is configured to widen the natural palpebral fissure of a wearer's eye.In some embodiments, the area of increased surface friction has a friction drag coefficient that is greater than the fiction drag coefficient of a portion of the convex surface adjacent to the area of increased surface friction. In some embodiments, the area of increased surface friction has a friction drag coefficient at least 1% greater than the friction drag coefficient of a portion of the convex surface adjacent to the area of increased surface friction. In some embodiments, the area of increased surface friction has a friction drag coefficient at least 25% greater than the friction drag coefficient of a portion of the convex surface adjacent to the area of increased surface friction.In some embodiments, the aperture widening zone includes a plurality of areas of increased surface friction.In some embodiments, the prosthesis has an overall diameter of at least 13.0 mm.In some embodiments, the area of increased surface friction is flat and takes on the normal curvature of the convex surface of the prosthesis. In some embodiments, the area of increased surface friction is raised relative to a normalized front convex surface of the prosthesis.In some embodiments, the area of increased surface friction is provided by a surface treatment, a coating, a different material, surface dimples, surface irregularities, chemical treatment, etching, or a combination thereof.In some embodiments, the prosthesis also includes a color enhancing region. In some embodiments, the color enhancing region provides increased surface friction. In some embodiments, the color enhancing region at least partially overlaps with the aperture widening zone. In some embodiments, the color enhancing region comprises at least one of: a continuous colored ring, a non-continuous colored ring, a colored zone, a uniform color, multiple colors, multiple shades of a single color, and an accent color.In some embodiments, the aperture widening zone also includes an area of increased thickness, and wherein the area of increased thickness includes an outer slope and an inner slope with a maximum change in thickness located in between. In some embodiments, the maximum change in thickness is between 25 microns and 1,000 microns.Some embodiments provide for a method of widening the natural palpebral fissure of an individual's eye including (a) measuring the vertical dimension of the natural palpebral fissure of an individual's eye, and (b) providing to the individual a first prosthesis comprising an aperture widening zone with a minimum vertical dimension at least 1 mm greater than the individual's natural palpebral fissure. In some embodiments, the method includes (c) re-measuring the vertical dimension of the palpebral fissure of the individual's eye while the individual is wearing the first prosthesis. In some embodiments, the method includes (d) determining whether the vertical dimension of the palpebral fissure of the individual's eye has been widened by at least 1 mm relative to the measurement in step (a). In some embodiments, the method includes (e) repeating steps (b)-(d) with different prostheses comprising an aperture widening zone with a minimum vertical dimension greater than the minimum vertical dimension of the first prosthesis until the individual's palpebral fissure is widened by at least 1 mm relative to the measurement in step (a).In some embodiments, the method includes providing to the individual a prosthesis that, when worn, results in the individual having a palpebral fissure with a vertical dimension at least 1 mm greater than the vertical dimension of the individual's natural palpebral fissure.In some embodiments, the measurement in step (a) is determined by at least one of: taking a photograph of the individual's eye and measuring the vertical dimension of the individual's palpebral fissure in the photograph, physically measuring the vertical dimension of the individual's palpebral fissure, visually estimating the vertical dimension of the individual's palpebral fissure, fitting a trial prosthesis having markings that indicate one or more vertical dimensions on the individual's eye, and fitting a trail prosthesis having a known diameter on the individual's eye.In some embodiments, the measurement in step (e) is determined by at least one of: taking a photograph of the individual's eye and measuring the vertical dimension of the individual's palpebral fissure in the photograph, physically measuring the vertical dimension of the individual's palpebral fissure, visually estimating the vertical dimension of the individual's palpebral fissure, fitting a trial prosthesis having markings that indicate one or more vertical dimensions on the individual's eye, and fitting a trail prosthesis having a known diameter on the individual's eye.In some embodiments, the measurement in step (a) is performed while the individual's eyes are relaxed and the individual is not smiling. In some embodiments, the measurement in step (e) is performed while the individual's eyes are relaxed and the individual is not smiling.In some embodiments, the minimum vertical dimension of the first prosthesis is chosen based on the vertical dimension of the natural palpebral fissure of the individual's eye. In some embodiments, the minimum vertical dimension of the first prosthesis is no greater than 1 mm larger than the vertical dimension of the natural palpebral fissure of the individual's eye. In some embodiments, the aperture widening zone of the first prosthesis has a minimum vertical dimension of greater than or equal to 8 mm.Some embodiments provide for a method of widening the natural palpebral fissure of an individual's eye including providing to an individual a prosthesis comprising an aperture widening zone having a minimum vertical dimension at least 1 mm greater than the individual's natural palpebral fissure.Some embodiments provide for a method of widening the natural palpebral fissure of an individual's eye including providing instructions to widen the palpebral fissure of an individual's eye, the instructions comprising the steps of: measuring the vertical dimension of the individual's natural palpebral fissure and providing to the individual a prosthesis comprising an aperture widening zone with a minimum vertical dimension at least 1 mm greater than the individual's natural palpebral fissure.In some embodiments, the measurement for the vertical dimension of the individual's natural palpebral fissure is determined by at least one of the following: taking a photograph of the individual's eye and measuring the vertical dimension of the individual's natural palpebral fissure in the photograph, physically measuring the vertical dimension of the individual's natural palpebral fissure, visually estimating the vertical dimension of the individual's natural palpebral fissure, fitting a trial prosthesis having markings that indicate one or more vertical dimensions, and fitting a trail prosthesis having a known diameter.It will be appreciated that various embodiments recited above with respect to the prosthesis and/or aperture widening zone can be combined in any combination, except where features are mutually exclusive.BRIEF DESCRIPTION OF THE DRAWINGSFIG. 1 shows an individual having congenital ptosis on the right eye.FIG. 2 illustrates a visual field that shows functional blockage due to a ptotic lid.FIGS. 3-7 illustrate various individuals afflicted by ptosis.FIGS. 8-11 illustrate various individuals with wide eyes that are not afflicted by ptosis.FIGS. 12A-B show a prosthesis having an aperture widening zone according to one embodiment superimposed on the eyes of an individual.FIGS. 13A-B show a prosthesis having an aperture widening zone according to one embodiment superimposed on the eyes of an individual.FIG. 14A shows a contact lens with an aperture widening zone according to one embodiment. FIG. 14B shows a scleral ring with an aperture widening zone according to one embodiment.FIGS. 15A-D show various embodiments of a contact lens with different aperture widening zones having an incremental thickness.FIGS. 16A-D show various embodiments of a scleral ring with different aperture widening zones having an incremental thickness.FIGS. 17A-F show various embodiments of a contact lens with different aperture widening zones having increased surface friction.FIGS. 18-19 show a comparison between the eyes of an individual with and without a prosthesis having an aperture widening zone. FIG. 18 shows the individual's natural eyes and FIG. 19 shows the same individual wearing a prosthesis having an aperture widening zone.FIGS. 20-21 show a comparison between the eye of an individual with and without a prosthesis having an aperture widening zone. FIG. 20 shows the individual's natural eye.FIGS. 22A-B show a comparison between an individual's left eye with and without a prosthesis having an aperture widening zone. FIG. 22A shows the individual's natural left eye and FIG. 22B shows the individual wearing a prosthesis having an aperture widening zone in the left eye.FIG. 23 shows a comparison between the right and left eye of an individual. The individual is wearing a prosthesis having an aperture widening zone on their right eye and is not wearing a prosthesis having an aperture widening zone on their left eye.FIGS. 24A-B show a comparison between the eyes of an individual with and without a prosthesis having an aperture widening zone. FIG. 24A shows the individual's natural eyes and FIG. 24B shows the same individual wearing a prosthesis having an aperture widening zone.FIGS. 25A-C show the surface profiles for prostheses according to various embodiments.FIG. 26 is a graph illustrating the thickness across prostheses according to various embodiments.FIGS. 27A-E show the surface profiles for prostheses according to various embodiments.FIG. 28 shows a perspective view of a prosthesis according to one embodiment.FIG. 29 shows a perspective view of a prosthesis according to one embodiment.FIG. 30 shows a perspective view of a prosthesis according to one embodiment.FIG. 31 shows a perspective view of a prosthesis according to one embodiment.FIG. 32 shows a perspective view of a prosthesis according to one embodiment.FIG. 33 shows a perspective view of a prosthesis according to one embodiment.FIG. 34 shows a perspective view of a prosthesis according to one embodiment.FIG. 35 shows an aerial view of a prosthesis according to one embodiment.FIG. 36 shows an aerial view of a prosthesis according to one embodiment.FIG. 37 shows an aerial view of a prosthesis according to one embodiment.FIG. 38 shows an aerial view of a prosthesis according to one embodiment.FIGS. 39A-E illustrate the surface profile of a contact lens 3900 according to one embodiment. FIG. 39A shows an aerial view of the contact lens. FIG. 39B shows a side view of the contact lens. FIG. 39C shows a cross-sectional view of the contact lens along its central axis. FIG. 39D shows the convex surface of the contact lens. FIG. 39E shows the concave surface of the contact lens.FIG. 40 shows a prosthesis according to one embodiment superimposed on an eye.FIG. 41 shows a prosthesis according to one embodiment superimposed on an eye.FIG. 42 shows a prosthesis according to one embodiment superimposed on an eye.FIG. 43 shows a prosthesis according to one embodiment superimposed on an eye.FIG. 44 shows a hybrid contact lens according to one embodiment.FIG. 45 shows a hybrid contact lens according to one embodiment.FIG. 46 shows a hybrid contact lens according to one embodiment.FIG. 47 shows a reverse hybrid contact lens according to one embodiment.FIG. 48 shows an example of a scale used for fitting a prosthesis having an aperture widening zone.FIG. 49 shows a scleral ring with an aperture widening zone having an incremental thickness according to one embodiment.FIG. 50 shows a scleral ring with an aperture widening zone having an incremental thickness according to one embodiment.FIG. 51 shows a contact lens with an aperture widening zone having an incremental thickness according to one embodiment.FIG. 52 shows a contact lens with an aperture widening zone having an incremental thickness according to one embodiment.FIGS. 53A-C show various exemplary embodiments of scleral rings with aperture widening zones having a plurality of bands of incremental thickness. FIGS. 53D and 53E show various exemplary embodiments of contact lenses with aperture widening zones having a plurality of bands of incremental thicknessFIGS. 54-56 show a comparison of an individual's eyes with and without a prosthesis having an aperture widening zone. FIG. 54 shows the individual's natural eyes and FIG. 55 shows the same individual wearing a prosthesis having an aperture widening zone. FIG. 56 is a side by side comparison of FIGS. 54 and 55.FIG. 57 is a graph illustrating the outer slope, inner slope and thickness of a prosthesis according to one embodiment.FIG. 58 is a graph illustrating the outer slope, inner slope and thickness of a prosthesis according to one embodiment.FIG. 59 is a graph illustrating the outer slope, inner slope and thickness of a prosthesis according to one embodiment.FIG. 60 is a graph illustrating the outer slope, inner slope and thickness of a prosthesis according to one embodiment.FIG. 61 illustrates the dimensions and fit to the eye of a corneo-scleral contact lens prosthesis according to one embodiment compared to the structure of an eye.FIG. 62 illustrates the dimensions and fit to the eye of a scleral ring prosthesis according to one embodiment compared to the structure of an eye.FIG. 63A illustrates how to measure the vertical dimension of an aperture widening zone on a prosthesis with an outer edge in the shape of a circle. FIGS. 63B and 63C illustrate how to measure the vertical dimension of an aperture widening zone on a prosthesis with an outer edge in the shape of a triangle.FIGS. 64A-C illustrate various orientations of a prosthesis having an aperture widening zone with an outer edge having an oval shape. FIG. 64A illustrates an orientation having the minimum vertical dimension. FIGS. 64B and 64C illustrate orientations not having the minimum vertical dimension.FIGS. 65A and 65B illustrate how to measure the minimum vertical dimension of an aperture widening zone on a prosthesis with outer edges in the shape two partial rings.FIGS. 66A-D illustrate how to measure the minimum vertical dimension of an aperture widening zone on a prosthesis having a plurality of isolated areas.FIG. 67 shows an aerial view of a scleral ring having finger like members according to one embodiment.FIG. 68 shows an aerial view of a contact lens having finger like members according to one embodiment.FIG. 69 shows a side view of a prosthesis having finger like members according to one embodiment.FIGS. 70A and 70B show a comparison between a set of youthful looking eyes (FIG. 70A) and a set of eyes having one eye that droops (FIG. 70B).FIGS. 71A and 71B show a comparison between a set of youthful looking eyes (FIG. 71A) and a set of aging eyes (FIG. 71B).FIG. 72 shows the set of eyes in FIG. 70B with a prosthesis having an aperture widening zone according to an embodiment placed on the droopy eye.FIG. 73 shows the set of eyes in FIG. 71B with a set of prostheses having aperture widening zones according to an embodiment placed on the set of eyes.FIG. 74 shows the set of eyes in FIG. 71B with a set of prostheses having aperture widening zones and color enhancing regions according to an embodiment placed on the set of eyes.FIG. 75 shows the set of eyes in FIG. 71B with a set of prostheses having aperture widening zones and color enhancing regions according to an embodiment placed on the set of eyes.FIGS. 76A-76C show prostheses having color enhancing regions according to some embodiments.DETAILED DESCRIPTIONThis specification discloses one or more embodiments that incorporate the features of this invention. The disclosed embodiment(s) merely exemplify the invention. The scope of the invention is not limited to the disclosed embodiment(s). Multiple inventions may be described. The invention is defined by the claims appended hereto.The embodiment(s) described, and references in the specification to “one embodiment”. “an embodiment”, “an example embodiment”, etc., indicate that the embodiment(s) described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is understood that it is within the knowledge of one skilled in the art to implement such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.It is known that the aperture of the human eye (i.e., largest vertical distance between an individual's upper lid and lower lid) reduces in overall diameter by 1.5 mm or more as one matures from that of a child to that of an adult of the age of 40 and even more as one matures to that of a senior of 60 years or older. This reduction in diameter can be fixed surgically through a procedure called blepharoplasty. Presently there are approximately 200,000-300,000 blepharoplasty operations performed per year in the United States at the cost of approximately $2,500 per upper lids surgery and $3,500 per lower lids surgery. In addition to a reduction in aperture size due to old age, some individuals suffer from blepharoptosis, also referred to as ptosis, which is defined as an abnormal low-lying upper eyelid margin within the eye in primary gaze. The reduction in aperture size can affect an individual's vision. While a reduction of aperture size can affect the vision of some individuals, some individuals may desire a larger eye aperture for cosmetic purposes, either in combination with a desire to improve their vision or not.Traditional corneo-scleral contact lenses (soft contact lenses or hybrid contact lenses) that fit on the cornea of one's eye (do not vault the cornea) and extend over the limbus and bulbar conjunctiva thus covering part of the sclera are not being used for correcting ptosis and/or the widening of the wearer's palpebral fissure. This is due to their geometrical design. Also corneal contact lenses (rigid or soft) that fit only the cornea and do not extend past the limbus are not used for correcting ptosis and/or the widening of the wearer's palpebral fissure due to geometrical design and overall diameter. Scleral contact lenses are hard/rigid and have been designed in the past to fit snugly against the sclera of the wearer's eye, “vault the cornea” and have a very thick edge design such to lift the upper lid of the wearer's eye having ptosis. While scleral contact lenses have existed in the past that will lift the upper lid of the wearer's eye these hard/rigid sclera contact lenses are highly uncomfortable, cause very red eyes and irritate the eye lid margin thus presenting severe limitations for the wearer. For these reasons the commercial success of scleral contact lenses to correct for ptosis has been a major failure.Color enhancing soft contact lenses have been developed and have met with significant commercial success. These color enhancing soft contact lenses can enhance the color of the wearer's eyes. Certain soft contact lenses comprise a colored ring to make the eye of a wearer look larger when these soft contact lenses are worn. While colored soft contact lenses having a color ring or band have been used to increase the perception that the eye of the wearer is larger, no soft contact lens has been developed that both increases the perception that the eye of the wearer is larger and also physically widens the palpebral fissure of the eye of the wearer.Thus there is a need for a non-surgical comfortable means to widen the natural palpebral fissure of an individual's eye. There is also need for a non-surgical means to both open up the aperture of the natural eye that is also capable of allowing an individual blink without discomfort. And, in some instances, there is the need to restore some of or all lost visual field function in the case of ptosis due some degree of a paralysis or loss of function of the upper lid. Moreover, there is a need for a non-surgical means capable of enhancing the cosmetic look of an individual's eye(s) (e.g., maintain a youthful look or a more alert look). The cosmetic enhancement may be achieved by physically widening the natural palpebral fissure of an individual's eye (i.e., lifting the upper lid and/or depressing the lower lid) and/or providing the perception that the eye of an individual is larger.Embodiments of the present application described herein, or elements thereof, may accomplish one or more of these or other objectives.Some embodiments include a prosthesis capable of being worn on the eye of a wearer having a convex surface and a concave surface. The prosthesis has an aperture widening zone located on the convex surface. The prosthesis widens the natural palpebral fissure of the wearer's eye by at least 1 mm.Some embodiments include a prosthesis capable of being worn on the eye of a wearer. The prosthesis has a convex surface and a concave surface. An aperture widening zone is located on the convex surface. The prosthesis is a corneo-scleral contact lens that widens the natural palpebral fissure of the wearer's eye by at least 1 mm.Some embodiments include a prosthesis having a convex surface and a concave surface. An aperture widening zone is located on the convex surface. The prosthesis is a scleral ring that widens the natural palpebral fissure of the wearer's eye by at least 1 mm.Some embodiments include a prosthesis capable of being worn on the eye of a wearer. The prosthesis has a convex surface and a concave surface. An aperture widening zone is located on the convex surface. The aperture widening zone includes at least one surface feature. The prosthesis widens the natural palpebral fissure of the wearer's eye by at least 1 mm.Some embodiments include a prosthesis capable of being worn on the eye of a wearer having a convex surface, a concave surface, and a peripheral edge. The prosthesis also has an aperture widening zone located on the convex surface. The aperture widening zone including an outer slope and an inner slope with a maximum change in thickness located in between. The outer slope and the inner slope are different. In some embodiments the outer slope is greater than the inner slope. In other embodiments the inner slope is greater than the outer slope.Some embodiments include a prosthesis capable of being worn on the eye of a wearer having a convex surface, a concave surface, and a peripheral edge. The prosthesis also has an aperture widening zone located on the convex surface. The aperture widening zone including an outer slope and an inner slope with a maximum change in thickness located in between. The outer slope and the inner slope are the same.Some embodiments include a prosthesis capable of being worn on the eye of a wearer. The prosthesis has a convex surface and a concave surface. An aperture widening zone is located on the convex surface. The aperture widening zone has at least one surface feature. The aperture widening zone also has a minimum vertical dimension.Some embodiments include a prosthesis capable of being worn on the eye of a wearer. The prosthesis has a convex surface, a concave surface, a peripheral edge, and a geometric center. An aperture widening zone is located on the convex surface. The aperture widening zone has at least one surface feature. At least a portion of the at least one surface feature is located at or outside 5.25 mm from the geometric center of the prosthesis.In some embodiments the prosthesis has an overall diameter of at least 13.0 mm. In some embodiments the prosthesis has an overall diameter of at least 13.5 mm. In some embodiments the prosthesis has an overall diameter of at least 14.0 mm. In other embodiments the prosthesis has an overall diameter of at least 14.5 mm. In some embodiments the prosthesis has an overall diameter of at least 15 mm. In some embodiments the prosthesis has an overall diameter of at least 15.5 mm. In some other embodiments the prosthesis has an overall diameter of at least 16.0 mm or larger.In some embodiments the prosthesis is a rotationally symmetric lens. In some embodiments the prosthesis is capable of rotating. In some embodiments the prosthesis is not capable of rotating.In some embodiments the aperture widening zone depresses a lower eye lid of the wearer by at least 1 mm. In some embodiments the aperture widening zone elevates an upper eye lid of the wearer by at least 1 mm.In some embodiments the prosthesis includes a colored accent color. In some embodiments the colored accent color is around a portion of the prosthesis which fits near or at the limbus, or extends past the limbus (meaning the diameter of the colored portion is larger than the diameter of the limbus to limbus measurement) of the eye when the prosthesis is worn. In some embodiments the colored accent color is a limbal ring, circle ring, or circle lens.In some embodiments the prosthesis is a multifocal contact lens. In some embodiments the prosthesis is a toric contact lens. In some embodiments the prosthesis is a single vision contact lens.In some embodiments the aperture widening zone comprises an area of increased surface friction. In some embodiments the increased surface friction is provided by a surface treatment, a coating, a different material, surface dimples, surface irregularities, or combinations thereof.In some embodiments the aperture widening zone also includes an outer slope and an inner slope with a maximum change in thickness located in between. In some embodiments the outer slope and inner slope are different. In some embodiments the outer slope is greater than the inner slope. In some embodiments the outer slope has an angle between 3° and 45°. In some embodiments the outer slope has an angle between 5° and 25°. In some embodiments the inner slope comprises an angle between 1° and 15°.In some embodiments the aperture widening zone has an incremental thickness and a maximum change in thickness. In some embodiments the maximum change in thickness is within a range of 25 microns to 1,000 microns. In some embodiments the maximum change in thickness is within a range of 100 microns to 500 microns. In some embodiments the maximum change in thickness is within a range of 75 microns to 400 microns. In some embodiments the maximum change in thickness is located between 1.0 mm and 2.5 mm from an outer edge of the prosthesis. In some embodiments the maximum change in thickness is located at or exterior to the corneal limbus of the wearer's eye when the prosthesis is worn on the eye. By exterior it is meant that the maximum change in thickness diameter when measuring from one point of maximum added thickness thru the geometrical center of the prosthesis to an opposing point of maximum added thickness is larger than when measuring from one point on the limbus of the wearer's eye thru the center of the cornea to an opposing point on the limbus. In some embodiments, the maximum change in thickness is located at least 5.5 mm from the geometrical center of the prosthesis (i.e., at least one half the diameter of the average human cornea, which is 11-12 mm). In some embodiments, the maximum change in thickness is located at least 6.0 mm from the geometrical center of the prosthesis. In some embodiments, the maximum change in thickness is located at least 6.5 mm from the geometrical center of the prosthesis. In some embodiments the incremental thickness is an increase in thickness. In some embodiments the incremental thickness is a decrease in thickness.In some embodiments an outermost part of the aperture widening zone is located within a range of 3 mm to 8.5 mm from a geometric center of the prosthesis. In some embodiments an outermost part of the aperture widening zone is located within a range of 5 mm to 7.75 mm from a geometric center of the prosthesis. In some embodiments an innermost part of the aperture widening zone is located between a peripheral edge of the prosthesis and 6 mm from a peripheral edge of the prosthesis.In some embodiments the aperture widening zone has a minimum vertical dimension. In some embodiments a minimum vertical dimension of the aperture widening zone is larger than a maximum vertical diameter of the natural palpebral fissure of the wearer's eye. In some embodiments a minimum vertical dimension of the aperture widening zone is equal to or greater than 8.0 mm. In some embodiments a minimum vertical dimension of the aperture widening zone is equal to or greater than 8.5 mm. In some embodiments the minimum vertical dimension of the aperture widening zone is equal to or greater than 9.0 mm. In some embodiments a minimum vertical dimension of the aperture widening zone is equal to or greater than 9.5 mm. In some embodiments, a minimum vertical dimension of the aperture widening zone is equal to or greater than 10.0 mm. In some embodiments a minimum vertical dimension of the aperture widening zone is equal to or greater than 10.5 mm. In some embodiments a minimum vertical dimension of the aperture widening zone is equal to or greater than 11.0 mm. In some embodiments a minimum vertical dimension of the aperture widening zone is equal to or greater than 11.5 mm. In some embodiments a minimum vertical dimension of the aperture widening zone is equal to or greater than 12.0 mm. In some embodiments a minimum vertical dimension of the aperture widening zone is equal to or greater than 12.5 mm. In some embodiments a minimum vertical dimension of the aperture widening zone is equal to or greater than 13.0 mm. In some embodiments a minimum vertical dimension of the aperture widening zone is equal to or greater than 13.5 mm. In some embodiments a minimum vertical dimension of the aperture widening zone is a vertical distance between an uppermost part of the aperture widening zone and a lowermost part of the aperture widening zone.In some embodiments the aperture widening zone includes at least one surface feature. In some embodiments the aperture widening zone has a plurality of surface features.In some embodiments the prosthesis is a corneo-scleral contact lens. In some embodiments the prosthesis is a scleral ring. In some embodiments the prosthesis also has a peripheral edge, a geometric center, and at least one surface feature. In some embodiments the at least one surface feature or at least a portion of the at least one surface is located at or outside 5.25 mm from the geometric center of the prosthesis. In some embodiments the peripheral edge has a knife edge shape, a rounded shape, a blunt shape, or a semi-rounded shape. In some embodiments the peripheral edge has a thickness between 25 microns and 100 microns.In some embodiments the prosthesis has a hybrid design. In some embodiments the prosthesis has a homogeneous design.In some embodiments the aperture widening zone comprises a ring, multiple rings, a partial ring, multiple partial rings, an island, multiple islands, a band, bands, partial bands, a segmented area, or multiple segmented areas. In some embodiments these partial areas are aligned to ring the prosthesis. In other embodiments these partial areas are not aligned to ring the prosthesis.In some embodiments the prosthesis can be worn by the wearer continuously. In some embodiments the prosthesis can be worn by the wearer non-continuously. In some embodiments the prosthesis can be worn by the wearer daily, weekly, or monthly.In some embodiments the prosthesis is disposable. In some embodiments the prosthesis is reusable.In some embodiments the prosthesis comprises an optical power. In some embodiments the prosthesis does not comprise an optical power.Some embodiments include a prosthesis having an aperture widening zone. The aperture widening zone has an outer slope, an inner slope, a point of maximum added thickness delta, and an incremental thickness diameter. The prosthesis also has a peripheral edge, a geometrical center, and an overall diameter. The overall diameter is measured from a first point on the peripheral edge to a second point on the opposing peripheral edge thru the geometrical center of the prosthesis and the aperture widening zone. The overall diameter is 13.0 mm or greater. The outer slope is within the range of 5 degrees and 25 degrees. The point of maximum added thickness delta of the aperture widening zone is 75 microns or greater. The point of maximum added thickness delta of the aperture widening zone is located between 1 mm and 3 mm from the peripheral edge. The incremental thickness diameter is 8.5 mm or greater. In some embodiments, the incremental thickness diameter is 10.5 mm or greater.In some embodiments the prosthesis is free to rotate. In some embodiments the prosthesis is not free to rotate.In some embodiments the incremental thickness diameter is 1 mm larger than the vertical measurement of the natural aperture of the wearer's eye. In some embodiments the incremental thickness diameter is at least 1 mm larger than the vertical measurement of the natural aperture of the wearer's eye.In some embodiments the prosthesis is a corneo-scleral lens. In some embodiments the prosthesis is a scleral ring.In some embodiments the prosthesis has optical power. In some embodiments the prosthesis does not have optical power.In some embodiments the prosthesis is a single vision contact lens. In some embodiments the prosthesis is a multifocal contact lens. In some embodiments the prosthesis is a toric contact lens.In some embodiments the prosthesis includes a hydrogel. In some embodiments the prosthesis includes a silicone hydrogel. In some embodiments the prosthesis includes a homogenous material. In some embodiments the prosthesis includes hybrid materials.In some embodiments the aperture widening zone begins at or adjacent to the peripheral edge. In some embodiments the aperture widening zone begins internal to the peripheral edge.In some embodiments the point of maximum added thickness delta is 100 microns or greater. In some embodiments the point of maximum added thickness delta is 125 microns or greater. In some embodiments the point of maximum added thickness delta is 150 microns or greater. In some embodiments the point of maximum added thickness delta is 200 microns or greater. In some embodiments the point of maximum added thickness delta is 225 microns or greater. In some embodiments the point of maximum added thickness delta is 250 microns or greater.In some embodiments the prosthesis is one of: daily wear, disposable, continuous wear, weekly wear, or monthly wear.In some embodiments the prosthesis is not stabilized.In some embodiments the aperture widening zone is a round ring. In some embodiments the aperture widening zone is a series of partial segments that make up a ring.Some embodiments provide for a method of widening the natural palpebral fissure of a wearer's eye by providing a protocol or instructions for widening the wearer's natural palpebral fissure by at least 1 mm and providing at least one prosthesis comprising an aperture widening zone located on its convex surface. In some embodiments the protocol or instructions include directions to determine a vertical dimension of the wearer's natural palpebral fissure, and to provide the wearer with a prosthesis having a minimum vertical dimension at least 1 mm greater than a maximum vertical dimension of the natural palpebral fissure (such a determination can be made by, way of example only, actual measurement, photography, visual estimate, or by one of, fitting a trial prosthesis, contact lens of a known diameter, or a prosthesis of a known diameter).A prosthesis of this patent application in the form of a corneo-scleral contact lens and a scleral ring has been developed that enhances/widens the palpebral fissure of a wearer's eye to enhance the cosmetic appearance of the wearer's eye (eyes) and can also be used to provide relief to patients suffering from drooping eyelids and/or ptosis. By enhancing the appearance of the wearer's eye it is meant that it makes the eye look more open and/or larger, and/or more alert. The novel prosthesis enhances the cosmetic appearance of the wearer by way of pushing up (elevating) the upper eyelid and/or also pushing down (depressing) the lower eyelid thus enlarging the wearer's palpebral fissure or aperture. The prosthesis has been shown to open the aperture of a wearer's eye by up to an additional 50% from its normal/natural eye aperture vertical dimension. Given that the average aperture of an individual's eye under the age of 40 would have a natural aperture having a vertical dimension (between the upper lid margin and the lower lid margin) of approximately 10.5 mm and that after the age of 40 the average dimension from the same points is approximately 9 mm, or approximately a 15% reduction in aperture size it can be seen that the prosthesis described herein can restore the youthful look the of wearer's eyes.The prosthesis comprises one or more, by way of example of: an augmentation in edge thickness, an internal incremental thickness zone, a regressive thickness zone, or an increased surface friction zone (either one) located at or external to the limbus, thus also external to the pupillary or optic zone which takes the form on the convex surface, by way of example only, a ring, (rings) band, (bands), partial rings (ringlets), dome (domes), island (islands), segmented region (regions), convex surface roughness/friction near or around the periphery of the lens and/or within or covering the aperture widening zone, truncation (truncations), overall thickening of the contact lens, larger diameter, and steeper base curve. The effect is to open up the palpebral fissure of the eye of the wearer and thus minimize the impact of blepharoptosis on visual performance and/or enhance the cosmetic appearance of the patient/wearer. The prosthesis when in the form of a corneo-scleral contact lens can be that of a soft contact lens or hybrid contact lens. When the prosthesis is in the form of a scleral ring as opposed to a contact lens the scleral ring comprises a central open aperture without optical power. The scleral ring can be made of a material found in one of a: hard contact lens, gas perm contact lens, hybrid contact lens. The incremental thickness region (zone, area) or a regressive thickness region (zone, area), or increased surface friction region (zone, area) for the prosthesis (being a contact lens or a scleral ring) can be one of: rotationally symmetric, rotationally asymmetric, elliptical arch like feature, and isolated islands. The elliptical arch (arches) like feature (features) can resembl

我要回帖

更多关于 outerspace是什么意思 的文章

 

随机推荐