环境因素对分布式光伏电站系统效率计算影响有多大

当前位置: >
将各种损耗都算进来之后 光伏并网电站系统效率通常为多少你知道么?
来源:网络
光伏组件虽然使用寿命可达25-30年,但随着使用年限增长,组件功率会衰减,会影响发电量。另外,系统效率对发电量的影响更为重要。
& & & &1组件的衰减
1,由于破坏性因素导致的组件功率骤然衰减,破坏性因素主要指组件在焊接过程中焊接不良、封装工艺存在缺胶现象,或者由于组件在搬运、安装过程中操作不当,甚至组件在使用过程中受到冰雹的猛烈撞击而导致组件内部隐裂、电池片严重破碎等现象;
2,组件初始的光致衰减,即光伏组件的输出功率在刚开始使用的最初几天内发生较大幅度的下降,但随后趋于稳定,一般来说在2%以下;
3,组件的老化衰减,即在长期使用中出现的极缓慢的功率下降现象,每年的衰减在0.8%,25年的衰减不超过20%;25年的效率质保已经在日本和德国两家光伏公司的组件上得到证实。2012年以后国内光伏组件已经基本能够达到要求,生产光伏组件的设备及材料基本采用西德进口。
个人认为系统效率衰减可以不必考虑,系统效率的降低,我们可以通过设备的局部更新或者维护达到要求,就如火电站,水电站来说,不提衰减这一说法。
影响发电量的关键因素是系统效率,系统效率主要考虑的因素有:灰尘、雨水遮挡引起的效率降低、温度引起的效率降低、组件串联不匹配产生的效率降低、逆变器的功率损耗、直流交流部分线缆功率损耗、变压器功率损耗、跟踪系统的精度等等。
1)灰尘、雨水遮挡引起的效率降低
大型一般都是地处戈壁地区,风沙较大,降水很少,考虑有管理人员人工清理方阵组件频繁度一般的情况下,采用衰减数值:8%;
2)温度引起的效率降低
太阳能电池组件会因温度变化而输出电压降低、电流增大,组件实际效率降低,发电量减少,因此,温度引起的效率降低是必须要考虑的一个重要因素,在设计时考虑温度变化引起的电压变化,并根据该变化选择组件串联数量,保证组件能在绝大部分时间内工作在最大跟踪功率范围内,考虑0.45%/K的功率变化、考虑各月辐照量计算加权平均值,可以计算得到加权平均值,因不同地域环境温度存在一定差异,对系统效率影响存在一定差异,因此考虑温度引起系统效率降低取值为3%。
3)组件串联不匹配产生的效率降低
由于生产工艺问题,导致不同组件之间功率及电流存在一定偏差,单块电池组件对系统影响不大,但光伏并网电站是由很多电池组件串并联以后组成,因组件之间功率及电流的偏差,对光伏电站的发电效率就会存在一定的影响。组件串联因为电流不一致产生的效率降低,选择该效率为2%的降低。
4)直流部分线缆功率损耗
根据设计经验,常规20MWP光伏并网发电项目使用光伏专用电缆用量约为350km,汇流箱至直流配电柜的电力电缆(一般使用规格型号为ZR-YJV22-1kV-2*70mm2)用量约为35km,经计算得直流部分的线缆损耗3%。
5)逆变器的功率损耗
目前国内生产的大功率逆变器(500kW)效率基本均达到97.5%的系统效率,并网逆变器采用无变压器型,通过双分裂变压器隔离2个并联的逆变器,逆变器内部不考虑变压器效率,即逆变器功率损耗可为97.5%,取97.5%。
6)交流线缆的功率损耗
由于光伏并网电站一般采用就地升压方式进行并网,交流线缆通常为高压电缆,该部分损耗较小,计算交流部分的线缆损耗约为1%。
7)变压器功率损耗
变压器为成熟产品,选用高效率变压器,变压器效率为98%,即功率损耗计约为2%。
综合以上各部分功率损耗,测算系统各项效率:组件灰尘损失、组件温度效率损失、组件不匹配损失、线路压降损失、逆变器效率、升压变压器效率、交流线路损失等,可以计算得出光伏电站系统效率:
系统效率:&=(1-8%)*(1-3%)*(1-2%)*(1-3%)*(1-2.5%)*(1-1%)*(1-2%)=80.24%。
经过以上分析,可以得出光伏并网电站系统效率通常为80%。
东莞发改局
江西发改委
三湘都市报
新能情报局
中国经济网
广西发改委
张家界三农网
中国能源报
南方能源监管局
能见Eknower
内蒙古发改委
江苏能源监管办
集邦新能源网
中国电力新闻网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
光伏能源圈
呼和浩特日报
中国证券报
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
门窗幕墙联盟吧
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
中国政府采购网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
能源互联网电改
集邦新能源网
PVInfoLink
索比光伏网
集邦新能源网
PVInfoLink
索比光伏网
智通财经网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
索比光伏网
中国广核集团
EnergyTrend
甘肃省政府办公厅
中国环保在线
国家能源局
中国新闻网
同花顺财经、光伏荟
索比光伏网
计鹏新能源
能见Eknower
索比光伏网
中关村储能产业技术联盟
pv-magazine
国际能源参考
中国能源报
国际能源小数据
国际能源小数据
国际能源小数据
索比光伏网
国际能源小数据
国际能源小数据
索比光伏网
中国能源报
华夏能源网
国际能源小数据
中国能源报
中国能源报
中国能源报
活动地点:安徽省合肥市皇冠假日酒店
活动地点:广东 广州o中心皇冠假日酒店
活动地点:威海
活动地点:河南·郑州
活动地点:江苏无锡·君来世尊酒店灰尘对光伏电站效率影响究竟多大
  灰尘遮挡造成的功率损失到底有多大?很多人对这一问题做过专业的研究。之前,我也跟很多业主讨论过这个问题,有个非常有心的电站总经理,做了一个对比实验。我有幸拿到了他们的对比实验数据,希望能给大家一点帮助。
  说明:本结果仅针对样本电站的一次实验,不同电站情况不同,结果也会不同,本结果不具有广泛的代表性!
  1、样本电站基本情况
  位于内蒙古呼市附近的大型地面电站,当地空气质量好,无雾霾影响,沙尘天气少。
  2、清洗说明
  本次清洗为日常清洗,非沙尘暴后清洗,光伏组件上无比较厚的尘土。
  3、实验设计
  为了排除其他干扰因素,充分验证灰尘遮挡对样本光伏电站造成的影响,设计了几组对比试验,对比时会受到以下因素影响:
  1)太阳能资源的影响
  由于清洗样本光伏电站需要的时间较长,清洗前后太阳能资源会发生变化。为了排除太阳能资源变化的影响,采用清洗发电单元和未清洗发电单元进行相同时间段(太阳能资源相同)的对比;
  2)发电单元差异性的影响
  由于不同的发电单元,采用的光伏组件等设备、施工质量都会有所差异,即使在相同的太阳能资源下,不同发电单元的发电量本身就会有所差异。为了排除发电单元之间差异性造成的影响,将进行清洗前差异和清洗后差异进行对比分析。
  3)逆变器差异的影响
  样本电站采用了相同型号的光伏组件,但采用了4种类型的逆变器。为了排除逆变器差异造成的影响,将4种型号的逆变器都分别进行对比。
  对比方案设计如下。
  表1 样本光伏灰尘遮挡试验设计方案
  4、实验结果
  4种逆变器对比结果如下。
  表2逆变器1的实验结果(单位:kWh/天)
  表3逆变器2的实验结果(单位:kWh/天)
  表4逆变器3的实验结果(单位:kWh/天)
  表5逆变器4的实验结果(单位:kWh/天)
  4种逆变器对比结果汇总如下。
  表6不同逆变器的实验结果对比
  通过4种逆变器对比结果,对灰尘造成的影响进行判断。就本实验所选取的样本电站而言,清洗前后,发电量损失大约为3.79%。
关注电子发烧友微信
有趣有料的资讯及技术干货
下载发烧友APP
打造属于您的人脉电子圈
关注发烧友课堂
锁定最新课程活动及技术直播
MIPAQPro具有出色的保护技术。所有的关键运行参数都被密切监控,如输出电流(Iout)、直流母线...
致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布,其旗下世平联合上海南潮信息科技推出基...
本文基于自然坐标系的SVPWM技术,研究三相四桥臂逆变器的调制策略,通过建立分析四桥臂拓扑的平均电流...
通过SG3525芯片与其外围电路产生两路互补的高频PWM(Pulse Width Modulatio...
TI公司的TIDA-01179是30W汽车前端电源参考设计,包括了两个DC/DC转换器:第一个为降压...
SG3524是开关电源脉宽调制型控制器。本文开始介绍了sg3524引脚及功能,其次介绍了sg3524...
电源、工业控制器、DC-DC 转换器、DC-AC 逆变器或 UPS 所运用的开关模式电源转换均具备能...
本文主要介绍了48v转12v转换器电路图(五款48v转12v转换器电路原理图详解),电动车用,48V...
本文主要介绍了逆变直流电焊机的工作原理。逆变电焊机主要是逆变器产生的逆变式弧焊电源,又称弧焊逆变器,...
场效应管(FET)是利用控制输入回路的电场效应来控制输出回路电流的一种半导体器件,并且目前在工业领域...
每一个行业都是由不规范向着规范去发展,国家标准或者行业标准的出现无疑加快了这一脚步。对于储能行业而言...
对单相全桥逆变器进行故障诊断,需建立其对应的诊断键合图模型。因此,通过引入虚拟势(流)传感器将键合图...
本文主要介绍了纯正弦波逆变器哪个好_纯正弦波逆变器排行榜。纯正弦波的逆变器好,困为谐波分量少,功率因...
本文主要介绍了纯正弦波逆变器电路图大全(数字式/自举电容/光耦隔离反馈电路图详解)。逆变电源硬件结构...
本文主要介绍了电鱼机常用保护电路图大全。在制作电鱼机之前我们需要掌握一些电子电路图的基本知识,这样才...
本文主要介绍了七款超级简单的逆变器制作电路原理图详解。只用4个元件的逆变器,制作简单,用于普通照明不...
本文主要介绍了最简单的变压电路图大全(交流逆变器/振荡升压电路原理图详解)。555定时器是一种模拟和...
与NPC逆变器相比,新型逆变器的拓扑仅由十二个开关管和两个直流侧母线电容组成,比NPC逆变器少用了六...
通过拆解发现,修正波逆变器并没有什么高科技,都是通用元件,KA7500相信很多人都是非常熟悉了。小米...
本文主要介绍了3dd15d逆变器图纸分享之3dd15d老式逆变器自制。一款简易的晶体管逆变器电路图,...
本文主要介绍了几款3dd15d逆变器电路图合集。3DD15D是晶体三极管的一种,极性为NPN型(大功...
本文开始对逆变器定义和逆变器的特点与结构进行了阐述,其次介绍了逆变器工作原理及逆变器使用范围,最后介...
离网逆变器采用模块部件的完整系统解决方案Xantrex XW由一些可管理的构建块组成:XW逆变器/充...
并网逆变器一般分为光伏发电并网逆变器、风力发电并网逆变器、动力设备发电并网逆变器和其他发电设备发电并...
本文主要介绍了igbt模块逆变器电路图大全(六款igbt模块逆变器电路设计原理图详解)。全桥式逆变器...
本文主要介绍了igbt逆变器工作原理_igbt在逆变器中的作用。IGBT(绝缘栅双极型晶体管),是由...
方波逆变器虽然实现简单,但谐波含量太高,远远不能适用于大多数情形,只能用在极少数对谐波含量要求不高的...
事实是存在不需要整流单元的变频器,就是所谓的交-交变频器。但是市场上绝大部分都是交-直-交变频器,也...
在2005年,美国著名光伏制造商SUNPOWER公司提出了一个新的发现。这种现象称之为“表面极化”。...
逆变器的脉宽调制技术PWM是一种参考波为“调制波”,而以N倍于调制波频率的正三角波为“载波”。由于正...
本分开始分析了变压器能否当逆变器用,其次介绍了变压器和逆变器两者之间的区别,最后介绍了两种变压器改逆...
本文开始对变压器进行了介绍,其中包括了变压器主要分类、变压器工作原理及变压器特征参数,其次对逆变器进...
我们处在一个“挪动”的时期,挪动办公,挪动通讯,挪动休闲和文娱。在挪动的状态中,人们不但需求由电池或...
目前组串式逆变器,不同的厂家技术路线不一样。一般家用以单相 6kW 以下逆变器和三相 10kW 以下...
本文开始介绍了什么是逆变器、逆变器工作原理与作用,其次介绍了采用CD4047多谐振荡器的逆变电源电路...
实际电机计算结果和理论分析表明,整个低速范围内最大转矩值工作点的转矩值、齿部磁通密度、转差率几乎保持...
逆变器就是一种将低压(12或24伏或48伏)直流电转变为220伏交流电的电子设备。因为我们通常是将2...
电路得名于“H桥驱动电路”是因为它的形状酷似字母H。4个三极管组成H的4条垂直腿,而电机就是H中的横...
本文主要介绍了用三个元件做的逆变器以及如何用四个元件做12v转为220v逆变器。给大家分享的这个逆变...
本文主要介绍了60v转220v逆变器的电路制作(几款逆变器电路设计原理图)。逆变器由逆变电路、逻辑控...
本文主要介绍了sg3525逆变器电路图大全(几款模拟电路工作原理详解)。在中小容量变频电源的设计中,...
本文主要介绍了逆变器常见电路图大全,介绍了八款逆变器常见电路。逆变器是一种DC to AC的变压器,...
从滤波器的原理入手,对单L型和LCL型滤波器原理进行对比分析,在设计方法上,对比传统的分步设计法,本...
220v转12v稳压电源电路包含降压、整流、滤波、稳压各环节电路。降压环节是用变比为15.7左右的变...
本文主要介绍了电子捕鱼器原理与制作电路图集。电子捕鱼器是将直流高压电能迅速释放到水中,将鱼击晕后捞捕...
光伏电站所用电表主要有两类,单向电表和双向电表。
程控交换机、数据通讯处理系统、计算机、通信基站、安防监控系统等设备在运行中要求交流供电系统不能停电,...
本文给大家分享三个ne555做逆变器电路图。
工频逆变器首先把直流电逆变成工频低压交流电;再通过工频变压器升压成220V,50Hz的交流电供负载使...
本文详细介绍了全硬件纯正弦波逆变器的前后级电路和H桥电路。
本文为大家介绍利用TL494组成的400W大功率稳压逆变器电路。
介绍的分布式家用,是指10kW以下,安装在家庭屋顶,通过220V并网或者380V并网的项目。大部分采...
金刚砂又名碳化硅(SiC)是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料通过...
本文介绍了三种irf3205典型应用电路。
本文主要介绍了基于SG3525的单相桥式逆变器的设计与仿真,单相逆变器硬件回路由主电路、控制电路和驱...
本文主要介绍了基于SGV逆变器用直流升压电路的设计与特性分析,主电路采用DC-DC推...
本文主要介绍了基于PIC单片机的正弦波逆变器设计与实现,利用单片机的CCP模块CCP1和CCP2输出...
在针对特定的电源输入和输出进行设计时,了解逆变器、转换器、变压器和整流器之间的区别必不可少。
UPS 称为不间断电源,是因为停电的时候,它能快速转换到“逆变”状态,从而不会让在使用中的电脑因为突...
独立电力系统是指独立运行在与大电网隔离地区的电力系统,常应用于偏远山区、孤立海岛等地区。传统独立电力...
车载逆变器是可以把12V转220V!逆变器还是蛮实用,不过很多人会担心车载逆变器对电瓶有害吗!很多人...
通常来说将交流电能转化为直流电能的过程称为整流,把整流功能的电路称为整流电路,把实际整流过程的装置称...
随着光伏逆变器行业竞争的不断加剧,大型光伏逆变器企业间并购整合与资本运作日趋频繁,国内优秀的光伏逆变...
针对汽车内部直流电源不能用于交流用电器的问题,设计了一款基于脉宽调制芯片TL494的微型车载逆变器。...
74HC04是高速的硅栅CMOS器件并兼容低功耗肖特基的TTL( LSTTL )非门(逆变器)。74...
逆变器的种类很多,可按照不同的方法进行分类。 1、按逆变器输出交流电能的频率分,可分为工频逆变器、中...
线交互式UPS逆变器在主交流市电正常情况下是不向负载输出功率的,处于热备份状态,这是它与后备式UPS...
分立式逆变器挑战 分立式逆变器使用的直流电来自电池中的太阳能模块或其他电源,它会根据需要将直流电转换...
随着电力电子技术的发展,电力负载的增大,对电源的功率要求越来越大,往往一个电源已经不能满足要求,通...
UPS控制环路分析 一个典型的UPS控制环路如图1所示。其中包含三个控制环路。最主要的环路是瞬时电压...
开发出的多端DRI具有独特的灵活性,相比目前可用的逆变器拥有更高的可靠性、更高的效率和更低的成本等众...
逆变器是一种DC to AC的变压器,它其实与转化器是一种电压逆变的过程转换器是将电网的交流电压转变...
光伏组件是光伏电站最重要的设备之一,成本占了并网系统50%左右,组件的技术参数对系统设计非常重要,只...
分布式光伏中的逆变器大多是组串式逆变器,以古瑞瓦特分布式项目的应用来看,也是如此,据古瑞瓦特市场安装...
正弦波逆变器的定义就是输出波形为正弦波的逆变器。它的优点是输出波形好,失真度很低,且其输出波形与市电...
逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220V,50Hz正弦波)。它由逆变桥、控制逻...
逆变器(见图)主要由MOS 场效应管,普通电源变压器构成。其输出功率取决于MOS 场效应管和电源变压...
TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于桥式单端正激双管...
逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220V,50Hz正弦波)。它由逆变桥、控制逻...
CD4047是一种低功耗的CMOS非稳态/单稳态多谐振荡器IC。在这里,它是连接生产0.01S 18...
 TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于桥式单端正激双...
TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于桥式单端正激双管...
逆变器作为风力发电系统与电网的接口,承担着核心电能变换和控制的作用,同时是系统中极易发生故障的薄弱环...
主芯片SG3525的接法和一般常规接法有点不同,因为脚是“图腾柱”输出,我把11...
SG3524的基准源属于常规的串联式线性直流稳压电源,它向集成块内部的斜波发生器、PWM比较器、T型...
升压器12v升220v电路其实就是一个震荡电路,就是把直流电变成交流电,然后通过变压器升压变成220...
 然而根据最新多方传闻的消息显示,分布式光伏补贴将在日进行下调。不少业内人士认为,在...
随着光伏发电系统装机容量在电力系统中的占比不断提高,整个电网对于光伏逆变器的品质和能力的要求也越来越...
600W逆变器方案是一款隔离低压直流输入,220Vac正弦波输出的逆变方案,用 SPWM 控制方式,...
日,北京讯—德州仪器(TI)近日推出一项创新的三相氮化镓(GaN)逆变器参考设计,...
供应链服务
版权所有 (C) 深圳华强聚丰电子科技有限公司
电信与信息服务业务经营许可证:粤B2-拒绝访问 | www.solarbe.com | 百度云加速
请打开cookies.
此网站 (www.solarbe.com) 的管理员禁止了您的访问。原因是您的访问包含了非浏览器特征(643d7-ua98).
重新安装浏览器,或使用别的浏览器分布式光伏发电系统设计原则及影响设计的因素
1.分布式发电
分布式发电(Distributed Generation,简称DG)是由美国在1978年的公共事业管理政策法中提出,公布后便得以推广应用,并很快被其它国家接受。目前分布式发电站美国有6000多座;英国有1000多座;日本有近5000座,总容量超过600MW。2006年欧盟国家的分布式供电系统达到1.5万个左右。
美国计划到2020年有50%以上的新建商用或办公建筑使用分布式供电系统,并且在2020年将15%的现有建筑改由分布式电源供电。上海、北京、广州等大城市,10多年前就尝试分布式供电,已有成功范例。2005年,我国首个分布式电力技术集成工程中心落户广州,标志着我国分布式供电技术进入实质性发展阶段。冷热电三联供技术应用*广泛,发展前景较好,我国大部分地区的住宅、商业大楼、医院、公用建筑、工厂等,都有供电、供暖及制冷需求,而且很多地方配有自备发电设备,这些都为冷热电三联供提供了市场。
分布式发电的定义是:区别于集中发电、远距离传输、大互联网络的传统发电形式,直接配置在配电网或者负荷附近的、发电功率在几千瓦至数百兆瓦(也有的建议限制在30~50MW下)的小型模块化,能够经济、高效、分散式、可靠运行的发电单元,所产生的电力除由用户自用和就近利用外,多余电力送入当地配电网。
分布式发电多种多样,因资源和用能需求而异,发电方式包括太阳能、风能、生物质能(含生活垃圾)、地热能、天然气等。主要包括:以液体或气体为燃料的内燃机、微型燃气轮机发电,太阳能发电(光伏电池、光热发电),风力发电,生物质能发电等。与传统的集中式发电方式相比,分布式发电具有投资较少、发电方式灵活、环保性能好等优点。将分布式发电应用于传统的电力系统,既可以满足电力系统和用户的特定要求,又可以提高系统的灵活性、可靠性和经济性。现在的分布式发电多采用新型发电技术。根据发电容量的规模大小,分布式发电可以分为以下4个层次:微型:5kW以下;小型:5kW~5MW;中型:5MW~50MW;大型:50MW~300MW。
集中与分布相结合的发电方式可以充分发挥两种发电方式的优势,目前采用的主要形式是将投资省、发电方式灵活、与环境兼容的分布式发电与大电网联合运行,从而提高整个电力系统运行的灵活性、可靠性和安全性。
对于分布式发电,国外起步较早,目前已经进行了一系列的研究和试验。在国内,对分布式发电的研究起步较晚,目前主要是对具体的发电方式的研究比较多,对于分布式发电与传统电力系统之间的相互影响以及相应的对策研究比较少。
分布式发电通常接入中压或低压配电系统,传统的配电系统被设计成仅具有分配电能到末端用户的功能,而未来的配电系统有望演变成一种功率交换媒体,即它能收集电力并把它们传送到任何地方,同时分配它们。因此,将来它可能不是一个“配电系统”,而是一个“电力交换系统”。分布式发电具有分散、随机变动等特点,大量的分布式电源的接入,将对配电系统的安全稳定运行产生极大的影响。
2.分布式光伏发电系统设计原则
分布式光伏发电系统的设计包括两个方面:容量设计和硬件设计。分布式光伏发电系统容量设计的主要目的就是要计算出分布式光伏发电系统在全年内能够可靠工作所需的太阳能电池组件和蓄电池的数量。同时要注意协调分布式光伏发电系统工作的*可靠性和成本两者之间的关系,在满足的*可靠性基础上尽量地减少分布式光伏发电系统的成本。分布式光伏发电系统硬件设计的主要目的是根据实际情况选择合适的硬件设备:包括太阳能电池组件的选型,支架设计,逆变器的选择,电缆的选择,控制测量系统的设计,防雷设计和配电系统设计等。在进行分布式光伏发电系统设计的时候需要综合考虑软件和硬件两个方面。针对不同类型的分布式光伏发电系统,软件设计的内容也不一样。独立分布式光伏发电系统,并网分布式光伏发电系统和混合分布式光伏发电系统的设计方法和考虑重点都会有所不同。
在进行分布式光伏发电系统的设计之前,需要了解并获取一些进行计算和设备选择所必需的基本数据:如分布式光伏发电系统安装的地理位置,包括地点、纬度、经度和海拔;该地区的气象资料,包括逐月的太阳能总辐射量、直接辐射量以及散射辐射量,年平均气温和*、*气温,*长连续阴雨天数,*风速以及冰雹、降雪等特殊气象情况等。要求所设计的分布式光伏发电系统具有先进性、完整性、可扩展性、智能化程度,以保证系统安全、可靠和经济。
1)先进性。随着国家对于可再生能源的日益重视,开发利用可再生能源已经是新能源战略的发展趋势。根据当地太阳日照条件、电源设施及用电负载的特性,选择利用太阳能资源建设分布式光伏发电系统,既节能环保,又能避免采用市电铺设电缆的巨大投资(远离市电电源的用电负载),是具有先进性的电源建设方案。
2)完整性。太阳能分布式光伏发电系统包括:太阳能电池组件、蓄电池、控制器、逆变器等部件,分布式光伏发电系统可以独立对外界提供电源,与其它用电负载和市电电源配套,形成一个完整的离网和并网的分布式光伏发电系统。分布式光伏发电系统应具有完善的控制系统、贮能系统、功率变换形态、防雷接地系统等构成一个统一的整体,具有完整性。
3)可扩展性。随着太阳能光伏发电技术的快速发展,分布式光伏发电系统的功能也会越来越强大。这就要求分布式光伏发电系统能适应系统的扩充和升级,分布式光伏发电系统的太阳能电池组件应为并联模块结构组成,在系统需扩充时可以直接并联加装电池板模块,控制器或逆变器也应采用模块化结构,在系统需要升级时,可直接对系统进行模块扩展,而原来的设备器件等都可以保留,以使分布式光伏发电系统具有良好的可扩展性。
4)智能化程度。所设计的太阳能分布式光伏发电系统,在使用过程中应不需要任何人工的操作,控制器可以根据太阳能电池组件和蓄电池的容量情况控制负载端的输出,所有功能都由微处理器自动控制,还应能实时检测太阳能分布式光伏发电系统的工作状态,定时或实时采集分布式光伏发电系统主要部件的状态数据并上传至控制中心,通过计算机分析,实时掌握设备工作状况,对于工作状态异常的设备,发出故障报警信息,以使维护人员可提前排除故障,保证供电的可靠性。
分布式光伏发电系统设计必须要求具有高可靠性,保证在较恶劣条件下的正常使用,同时要求系统的易操作和易维护性,便于用户的操作和日常维护。整套分布式光伏发电系统得设计、制造和施工要具有低的成本,设备的选型要标准化、模块化,以提高备件的通用互换性,要求系统预留扩展接口便于以后规模容量的扩大。
3.影响太阳能光伏系统设计的因素
设计一个完善的太阳能分布式光伏发电系统需要考虑很多因素,进行各种设计,如电气性能设计、防雷接地设计、静电屏蔽设计、机械结构设计等,对地面应用的独立分布式光伏发电系统来说,*主要的是根据使用要求,决定太阳能电池方阵和蓄电池的容量,以满足正常工作的需求。分布式光伏发电系统总的设计原则是在保证满足负载用电需要的前提下,确定*少的太阳能电池组件和蓄电池容量,以尽量减少投资,即同时考虑可靠性及经济性。
独立的太阳能光伏系统的设计思路是,先根据用电负载的用电量,确定太阳能电池组件的功率,然后计算蓄电池的容量,但对于并网的太阳能分布式光伏发电系统又有其特殊性,需要确保分布式光伏发电系统运行的稳定性和可靠性,所以在设计时需要注意以下事项:
1)太阳照在地面太阳能电池方阵上的辐射光的光谱、光强受到大气层厚度(即大气质量)、地理位置、所在地的气候和气象、地形地物等的影响,其能量在一日、一月和一年内都有很大的变化,甚至各年之间的每年总辐射量也有较大的差别。太阳能分布式光伏发电系统在哪个地区使用,该地日光辐射情况,太阳能电池使用地的经度与纬度。了解并掌握使用地的气象资源,比如月(年)平均太阳能辐照情况、平均气温、风雨等资料,根据这些条件可以确定当地的太阳能标准峰值时数(h)和太阳能电池组件的倾斜角与方位角。
2)由于用途不同,耗电功率、用电时间、对电源可靠性的要求等各不相同。有的用电设备有固定的耗电规律,有些负载用电则没有规律。而太阳能光伏系统输出功率(W)的大小直接影响着整个系统的参数。太阳能电池方阵的光电转换效率,受到太阳能电池本身的温度、太阳光强和蓄电池浮充电压的影响,而这三者在*内都会发生变化,所以太阳能电池方阵的光电转换效率也是变量,因而太阳能电池方阵的输出功率也随着这些因素的改变而出现一些波动。
3)太阳能光伏系统工作的时间(h),是决定太阳能光伏系统中太阳能电池组件大小的核心参数,通过确定工作时间,可以初步计算负载每天的功耗和与之相应的太阳能电池组件的充电电流。
4)太阳能光伏系统使用地的连续阴雨天数(d)的参数,决定了蓄电池容量的大小及阴雨天过后恢复蓄电池容量所需要的太阳能电池组件功率。确定两个连续阴雨天之间的间隔天数D,是决定系统在一个连续阴雨天过后充满蓄电池所需要的电池组件功率。
5)蓄电池组是工作在浮充电状态下,其电压随太阳能电池方阵发电量和负载用电量的变化而变化。蓄电池提供的能量还受环境温度的影响。
6)太阳能电池充放电控制器、逆变器由电子元器件组成成,它本身运行时具有能耗影响其工作的效率,控制器、逆变器选用元器件的性能、质量等也关系到耗能的大小,从而影响到分布式光伏发电系统的效率。
这些因素相当复杂,原则上需要对每个发电系统单独进行计算,对一些无法确定数量的影响因素,只能采用一些系数来进行估量。由于考虑的因素及其复杂程度不同,采取的方法也不一样。
设计太阳能分布式光伏发电系统的任务,是在太阳能电池方阵所处的环境条件下(即现场的地理位置、太阳辐射能、气候、气象、地形和地物等),选择的太阳能电池方阵、蓄电池、控制器、逆变器构成的电源系统既要具有高的经济效益,又要保证系统的高可靠性。
地球上各地区受太阳光照射及辐射的变化周期为*24h,处在某一地区的太阳能电池方阵的发电量也在24h内周期性的变化,其规律与太阳照在该地区辐射的变化规律相同。但是天气的变化将影响太阳能电池方阵的发电量。如果有几天连续阴雨天,太阳能电池方阵就几乎不能发电,只能靠蓄电池来供电,而蓄电池深度放电后又需尽快地将其补充。设计中应以气象台提供的太阳每天总的辐射能量或每年的日照时数的平均值作为设计的主要数据。由于一个地区各年的数据不相同,为了可靠性应取近十年内的*小数据。根据负载的耗电情况,在日照和无日照时,因均需由蓄电池供电,所以气象台提供的太阳能总辐射量或总日照时数对决定蓄电池的容量大小是不可缺少的数据。
对太阳能电池方阵而言,负载应包括系统中所有耗电装置(除用电器外还有蓄电池及线路、控制器、逆变器等)的耗用量。太阳能电池方阵的输出功率与组件串并联的数量有关,串联是为了获得所需要的工作电压,并联是为了获得所需要的工作电流,根据负载所消耗的电量,对适当数量的太阳能电池组件,经过串并联即组成所需要的太阳能电池方阵的输出功率。

我要回帖

更多关于 光伏电站系统效率 的文章

 

随机推荐