电池外壳是什么金属原料是什么

锂电池正极材料_百度百科
声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。
锂电池正极材料
锂离子电池的主要构成材料包括电解液、隔离材料、正负极材料等。正极材料占有较大比例(正负极材料的质量比为3: 1~4:1),因为正极材料的性能直接影响着锂离子电池的性能,其成本也直接决定电池成本高低。
锂电池正极材料简介
是以2种不同的能够可逆地插入及脱出的嵌锂化合物分别作为电池的正极和负极的2次电池体系。充电时,锂离子从正极材料的晶格中脱出,经过电解质后插入到负极材料的晶格中,使得负极富锂,正极贫锂;放电时锂离子从负极材料的晶格中脱出,经过电解质后插入到正极材料的晶格中,使得正极富锂,负极贫锂。这样正负极材料在插入及脱出锂离子时相对于金属锂的电位的差值,就是电池的工作电压。
锂离子电池是性能卓越的新一代绿色高能电池,已成为高新技术发展的重点之一。锂离子电池具有以下特点:高电压、高容量、低消耗、无记忆效应、无公害、体积小、内阻小、自放电少、循环次数多。因其上述特点,锂离子电池已应用到移动电话、笔记本电脑、摄像机、数码相机等众多民用及军事领域。
锂电池正极材料锂电池正极材料新型干燥及煅烧技术
采用微波干燥新技术干燥锂电池正极材料,解决了常规锂电池正极材料干燥技术用时长,使资金周转较慢,并且干燥不均匀,以及干燥深度不够的问题
具体特点有:
1、 采用锂电池正极材料,快捷迅速,几分钟就能完成深度干燥,可使最终含水量达到千分之一以上
2、 采用微波干燥锂电池正极材料,其干燥均匀,产品干燥品质好。
3、 采用微波干燥锂电池正极材料,其高效节能,安全环保。
4、 采用微波干燥电池正极材料,其无热惯性,加热的即时性易于控制。微波烧结锂电池正极材料具有升温速度快、能源利用率高、加热效率高和安全卫生无污染等特点,并能提高产品的均匀性和成品率,改善被烧结材料的微观结构和性能。synotherm注册资金2008万,是全球知名的工业微波窑炉装备制造商和工业微波加热解决方案提供商
锂电池正极材料发展现状
近年来,锂电池相关政策陆续出台推动着产业上下游企业如雨后春笋般成立。锂电池主要由正极材料、负极材料、隔膜和电解液等构成,正极材料在锂电池的总成本中占据40%以上的比例,并且正极材料的性能直接影响了锂电池的各项性能指标,所以锂电正极材料在锂电池中占据核心地位。
目前已经市场化的锂电池正极材料包括钴酸锂、锰酸锂、磷酸铁锂和三元材料等产品。
随着我国经济的快速发展,对电池新材料需求的不断增加,再加上手机、笔记本电脑、数码相机、摄像机、汽车等产品对新型、高效、环保电池材料的强劲需求,我国电池新材料市场将不断扩大。锂电池作为电池未来发展方向,其正极材料市场发展前景看好。同时,3G手机推广和新能源汽车的大规模商业化都将为锂电池正极材料带来新机遇。
虽然锂电池正极材料具有广阔的市场,前景十分乐观。但锂电池正极材料还存在一定的技术瓶颈,尤其是它的电容量高与安全性能强的优势还未充分发挥出来。
实际上,在锂电池正极材料领域,任何微小的技术革新都有可能掀起新一轮的市场拓展,我国企业应加强对正极材料关键技术的研发攻关,取得国际领先地位,增强核心竞争力,在国际竞争中取得优势。
锂电池正极材料锂电池正负极材料的优势
目前锂电池能量密度低。首先,能量密度低,车重了,空间也小了,需要发现电池新材料。其次,电池续航能力差,声称续航达到100公里以上的都是指理想状态,实际路面续航都是60公里左右,如果在北京这样的拥堵大城市,60公里不够。第三个是安全性较差,这个问题尚存争议,因为做电池的材料都不稳定,的确容易爆炸。
锂电池负极材料把握动力电池安全性命脉,在锂离子电池负极材料中,除石墨化中间相碳微球(MCMB)、无定形碳、硅或锡类占据小部分市场份额外,天然石墨和人造石墨占据着90%以上的负极材料市场份额。在2011年的负极材料市场统计中显示:负极材料的全球总产量应用达到32000吨,相比去年同期增长28%,其中天然石墨和人造石墨负极材料两者占据了89%的市场份额,而随着这几年由于电子产品的增速,特别是手机平板电脑领域里锂离子电池应用的增加,导致相应的电池正负极材料这几年产能迅猛上升,石墨负极材料从2009年到2011年连续三年的增速都达到25%以上。
2013年全球隔膜需求量可达5.63亿平方米,为2011年市场容量的1.41倍,产值约17亿美元。国内隔离膜市场需求2011年约1.28亿平方米。我国锂电产品已经占到全球约30%的市场份额。国内隔离膜市场需求与锂电市场同步增长。
目前国内隔离膜用量80%依靠进口,对国产隔离膜的需求还有很大的空间。国产隔离膜在国内市场的占比将快速上升,2013年国产隔离膜在国内市场的份额预计将超过30%,2015年将超过40%。
综合来看,锂离子电池正极材料的发展方向是磷酸铁锂。虽然国内磷酸铁锂正极材料的研发如火如荼,但缺乏原始创新技术。锂离子电池负极材料未来有两个发展方向——钛酸锂材料和硅基材料。国内近年来开发的硅基材料基本能达到高比容量、高功率特性和长循环寿命的要求,但产业化还须突破工艺、成本和环境方面的制约。我国在锂离子电池隔膜国产化方面已取得一定成绩,但要实现高端产品的大规模生产仍有较长的路要走。六氟磷酸锂在锂离子电池电解质中占有绝对的市场优势,但我国基本上受制于日本技术,自主研发实力薄弱。[1]
锂电池正极材料电池材料中的导电涂层
利用功能涂层对电池导电基材进行表面处理是一项突破性的技术创新,覆碳铝箔/铜箔就是将分散好的纳米导电石墨和碳包覆粒,均匀、细腻地涂覆在铝箔/铜箔上。它能提供极佳的静态导电性能,收集活性物质的微电流,从而可以大幅度降低正/负极材料和集流之间的接触电阻,并能提高两者之间的附着能力,可减少粘结剂的使用量,进而使电池的整体性能产生显著的提升。
涂层分水性(水剂体系)和油性(有机溶剂体系)两种类型。
导电涂层涂碳铝箔/铜箔的性能优势
1.显著提高电池组使用一致性,大幅降低电池组成本。如:
· 明显降低电芯动态内阻增幅 ;  · 提高电池组的压差一致性 ;  · 延长电池组寿命 ;
· 大幅降低电池组成本。
2.提高活性材料和集流体的粘接附着力,降低极片制造成本。如:
· 改善使用水性体系的正极材料和集电极的附着力;  · 改善纳米级或亚微米级的正极材料和集电极的附着力;  · 改善钛酸锂或其他高容量负极材料和集电极的附着力;
· 提高极片制成合格率,降低极片制造成本。
涂碳铝箔与光箔的电池极片粘附力测试图
使用涂碳铝箔后极片粘附力由原来10gf提高到60gf(用3M胶带或百格刀法),粘附力显著提高。
3.减小极化,提高倍率和克容量,提升电池性能。如:
· 部分降低活性材料中粘接剂的比例,提高克容量;  · 改善活性物质和集流体之间的电接触;  · 减少极化,提高功率性能。
不同铝箔的电池倍率性能图
其中C-AL为涂碳铝箔,E-AL为蚀刻铝箔,U-AL为光铝箔
4.保护集流体,延长电池使用寿命。如:
· 防止集流极腐蚀、氧化;  · 提高集流极表面张力,增强集流极的易涂覆性能;  · 可替代成本较高的蚀刻箔或用更薄的箔材替代原有的标准箔材。
不同铝箔的电池循环曲线图(200周)
其中(1)为光铝箔,(2)为蚀刻铝箔,(3)为涂碳铝箔
锂电池正极材料锂电池负极材料的研究
作为锂二次电池的负极材料,首先是金属锂,随后才是合金。但是,它们无法解决锂离子电池的安全性能,这才诞生了以碳材料为负极的锂离子电池。  聚合物锂离子电池的负极材料与锂离子电池基本上相同。从前面讲过聚合物锂离子电池的发展过程可以看出,自的商品化以来,研究的负极材料有以下几种:石墨化碳材料、无定形碳材料、氮化物、硅基材料、锡基材料、新型合金和其它材料。本章主要讲述实用负极材料,即石墨化碳材料,其它负极材料的研究在进行论述。  对于实际应用负极材料而言,要考虑的因素比较多,除了可逆容量、不可逆容量和循环性能外,还应该包括负极材料与集流体的黏结性 (即涂布性)、制成负极极片的压实密度、体积容量密度、质量容量密度等,而后面这些因素往往是从事负极材料研究的人员所忽略的。当然,负极材料的导电性、比表面积也是要考虑的因素。  由于碳材料种类比较多,为了更好地了解负极材料,对一些与碳材料有关的基本知识先进行介绍。[2]
锂电池正极材料锂电池正极材料的搅拌
混合分散工艺在锂离子电池的整个生产工艺中对产品的品质影响度大于30%,是整个生产工艺中最重要的环节。锂离子电池的电极制造,正极浆料由粘合剂、导电剂、正极材料等组成;负极浆料则由粘合剂、石墨碳粉等组成。正、负极浆料的制备都包括了液体与液体、液体与固体物料之间的相互混合、溶解、分散等一系列工艺过程,而且在这个过程中都伴随着温度、粘度、环境等变化。在正、负极浆料中,颗粒状活性物质的分散性和均匀性直接响到锂离子在电池两极间的运动,因此在锂离子电池生产中各极片材料的浆料的混合分散至关重要,浆料分散质量的好坏,直接影响到后续锂离子电池生产的质量及其产品的性能。
锂电池正极材料传统搅拌方式
目前传统的锂电池正极浆料的制备都是在双行星分散设备中完成的。尽管目前在小型电池生产技术上已日趋成熟,但目前锂离子电池的生产过程中,电池的一致性控制仍然是锂离子电池制作的技术难点,尤其是对于大容量、大功率的动力型锂离子电池。另外,随着锂离子电池材料的不断进步,原材料颗粒粒径越来越小,这不仅提高了锂离子电池性能,也非常容易形成二级团聚体,从而增加了混合分散工艺的难度。在锂离子电池生产过程中,对电池电极结构的控制是关键,尽管很多锂离子生产厂家对此未引起重视,采用不同结构的电极片生产的电池的自放电率、循环性、容量、一致性等都不同。
如何控制其电极片内部的微观结构,是锂离子电池生产过程的关键技术。所以在制备电极片过程中,必须控制好锂离子电池浆料的混合分散质量,提高电池浆料的均匀一致性和分散稳定性。
锂电池正极材料新一代搅拌工艺
锂离子电池浆料的混合分散过程可以分为宏观混合过程和微观分散过程,这两个过程始终都会伴随着锂离子电池浆料制备的整个过程。而根据传统工艺中的叶轮剪切——循环特性,可以把叶轮的作用分为两大类,第一类是对叶轮附近产生的剪切作用;第二类则是通过叶轮泵出的流量产生循环作用。浆体的进一步分散作用主要依靠叶轮的剪切作用,而叶轮的流量决定了叶轮的分散的能力。而在离叶轮端部较远的区域,总会存在一层浆料始终停滞不动,这个区域也就是人们常说的“死区”,分散设备的工作区域越大,而且浆料黏度越高,“死区”的问题就越突出,就算采用不同的叶轮和结构,死区仍然难以避免,因此在锂离子电池浆料的制备过程中,所制得的浆料产品就会出现混合分散不均匀、粉体颗粒与粘合剂接触不均匀、易分层和发生硬性沉淀等一系列问题。浆体的流变性十分复杂.一种浆体在低浓度时可能表现为或假塑性流体;浓度稍高产生絮团后,可能表现为宾汉流体;更高的浓度下又可能会出现胀塑性流体。
对同—种浆料,在剪切率不太高时,不出现胀流现象,剪切率高时又可能转化为胀塑性流体。有些在低剪切速率和高剪切速率下都可能呈现流体形象,这可能是因为在低剪切速率下,分子的无规则热运动占优势,体现不出剪切速率对其中物料重新排列使表观粘度的变化,当剪切速率增高到一定限度后,剪切定向达到了最佳程度,因而也使表观粘度不随剪切速率而变。如前所述,许多非牛顿体其流变特性受到体系中结构变化的影响。
在超剪切分散设备中,作用于液体的能量一般相当集中,这样可以使液体收到高能量密度的作用。引入能量的类型和强度必须足以使分散相颗粒有效地均匀分散。分散均匀的本质是使物料中分散相(固体颗粒、液滴等)受流体力学上的剪切作用和压力作用破碎并分散。
液体物料分散系中固体分散相颗粒或液滴破碎分散的直接原因是受到剪切力和压力的共同作用。引起剪切力和压力作用的具体流体力学效应主要有三种,它们分别是层流效应、湍流效应和空穴效应。层流效应的作用是引起固体分散相颗粒或液滴的剪切和拉长,湍流效应的作用是在压力波动作用下引起固体分散相颗粒或液滴的随意变形,而空穴效应的作用则是使形成的小气泡瞬间破灭产生冲击波,而引起剧烈搅动。
综上所述,超剪切分散设备内物料的分散机理比较复杂,主要是以剪切作用起主导作用,而以其他作用为辅。浆体物料在高频压力波的作用下产生反复的压缩效应,同时又受到超剪切分散设备内窄小间隙内的剪切力和回旋剪切力的强烈作用,如此综合反复的作用,被处理的浆料产生强烈的分散和粉碎作用,最终达到快速超细分散的目的。
.中国电池网[引用日期]
.深圳沃尔德电子.[引用日期]拒绝访问 | www. | 百度云加速
请打开cookies.
此网站 (www.) 的管理员禁止了您的访问。原因是您的访问包含了非浏览器特征(3bdaad-ua98).
重新安装浏览器,或使用别的浏览器电池仍是研究热点!盘点近年来出现的新型电池材料
电池,作为现代社会生活中最重要的能量来源,自诞生之日起,对于它的研究就一直没有停过!虽然前不久的三星手机电池爆炸给电池抹了不少黑,但由于电池的广泛应用,科学家们仍然希望通过大量的研究改善它们的性能。
通过几种材料的“聚合”与“碰撞”,就能产生“电”,并且不同的材料组合产生“电”的性能也不一样,这是多么令人着迷的一件事情。我们所熟知的锂电池、干电池、燃料电池等就是在不断的材料碰撞中诞生的。
虽然现阶段各类电池的产业链已经相对成熟,但近年来各类新型电池的新闻似乎没停过。可见,对于新型电池的研究,科学家们仍然非常热情!
储能提高10倍、充电速度提升15倍
近日,美国西北大学的研究人员打造出了一种适用于电池和超级电容的绝佳新材料,该材料被称作“共价有机框架”(COF),这是一种适合储存能量、有许多气孔的有机晶体结构。将该材料打造的电池应用到电动汽车上时,有助于提升电动汽车的续航里程和充电速度。
研究人员声称,他们的材料能够稳定经受万次充放电循环。其储能是非改性COF电能源的10倍、同时充电速度提升了10-15倍——可以说是两全其美。
超强循环寿命,手机续航有救了
沈阳材料科学国家(联合)实验室高性能陶瓷材料研究部王晓辉通过创造极度缺水的酸性合成环境,在国际上首次制备出12nm厚的[100]取向LiFePO4超薄纳米片。
锂电池由正极、负极、隔膜、电解液等组成,其关键性能指标(如倍率性能和循环寿命)由正极材料的电化学性能决定,其中LiFePO4是公认的正极材料。
该纳米片电极的意义在于是迄今为止最小的电压间隙,提高了活化粒子数比例。
中科院称,该电极具有优异的倍率性能和循环寿命,在10C(60分钟/10=6分钟)充放电倍率下,循环1000次后能保持初始容量的90%。在20C充放电倍率下,容量仍可达到理论容量的72%。
锂空气电池,或将改写电池历史
剑桥大学的化学教授克莱尔·格雷和她的团队研发了一款锂空气电池。该电池系统效率达90%,可充电2000次。
该电池原理非常简单,通过锂和氧结合成过氧化锂实现放电,再通过施加电流逆转这一过程而完成充电。在研发过程中,他们克服了这种电池由于化学上不稳定,导致性能迅速衰退的问题。
和盛行的锂离子技术相比,锂空气电池理论上可存储的能量要多得多。理论上说,只有这种电池能让电动汽车在不必携带巨大而笨重的电池组的情况下,拥有可媲美汽油车及柴油车的续航里程。
锂离子电池的一大步,安全性得到提升
康奈尔大学的研究人员宣布,在锂金属电池的扩容问题上取得重大突破。
锂金属电池目前存在最大的问题是,当对电池进行充电时,材料内部会形成枝晶(树状突起),最终通过电解质一直延伸到阴极,这样可能会引发短路及起火等安全隐患。
康奈尔大学的研究人员通过使用新的陶瓷膜以及纳米颗粒技术可以有效阻隔锂枝晶的生长,提升了电池的可靠性,在高温环境下工作也有上佳表现。在电池容量方面,可以让每克容量增加10倍(高达3860毫安时/克),这是一个相当大的进步。
新型固体电池材料,成本低廉
固体氧化物燃料电池是一种高效和环境友好型的能源转换技术,其商业化应用一直是研究者们追求的目标。然而,由于成本太高,商业化应用至今尚未实现。
材料与化学学院吴艳副教授与湖北大学朱斌教授等合作,成功研发出成本低廉的新能源电池材料——褐铁矿。其性能几乎能与人工合成电池材料相媲美。并且在新型的固体电池材料方面,褐铁矿在成本更具优势。
新型锂电池阳极材料,充电仅几分钟
加州大学河滨分校的一组研究人员开发出了一种新架构的硅阳极,不仅能够使单位重量材料携带更多电量,同时能让充电速度快16倍左右。
他们首先构建了一层石墨烯薄片,并在此基础上使用柱状碳纳米管构建了柱状的纳米结构。最后他们使用温和的电感耦合等离子体使之柱状纳米管变成锥形结构,最后他们将非晶硅沉积在上面。
应用这种结构的阳极的锂离子电池在快速充放电循环中也表现出了极高的稳定性,阳极能达到1954mAh/g(是传统阳极的五倍性能)。在230次充放电循环后仍保留有1200mAh/g的比容量。
海绵状碳材料,可制作大容量电池
日本研究人员曾用简单方法开发出了一种拥有大量纳米级孔洞的海绵状碳材料。这种碳材料的表面积比同等重量的石墨大得多,如果将其用于制造蓄电池的电极,电池容量能变大。
这种碳材料中存在几纳米至几十纳米大小的孔穴,每克材料相当于拥有约180平方米的表面积,是石墨粉末的10倍以上。
由于碳是以规整的结晶结构排列的,所以导电性与石墨处于同等程度。这种碳材料还具有强耐蚀性。所以,利用其制作出的电池的容量会更大且更耐用。
新型锂电池材料,电量激增10倍
日本信越化学工业成功开发出一种锂离子充电电池新材料,该材料不但可以缩减电池体积,最重要的是能够将锂离子电池电量提升10倍。
目前主流的锂离子电池都是用的是碳素材料,信越化学工业运用多年积累的加工技术,使用硅酮代替了碳素材料,一种薄板材料,专门用于锂离子电池储存电能。
尽管硅酮比碳素材料造价更高,但是其电量储存能力却达到了碳素材料的10倍,这样一来便可以解决智能手机用户频繁充电的烦恼。
只用一种材料的新型储能电池
传统固态电池两头各有一层电极材料,就像松松脆脆的饼干。夹在饼干间幼滑的奶油层,就是电池电解质。如果你把两头饼干连接,电子便可以在奶油层开始跑动,整块电池就进入了充放电状态。
日前,马里兰大学的研究人员研究出了一种新型固态电池材料,这个新材料糅合了包括硫磺、锗、磷以及锂在内的多种单质与化合物。在混合体的两头,研究人员加了碳驱使电子流动的催化剂。
它解决了电极和电解质界面间反应时,逐渐产生的电阻问题。全都是一种材料,所以电流通过时不存在过多阻力。这意味着电池的充放电过程将会非常平顺。
石墨烯聚合材料电池,电池技术革新
西班牙一家企业与当地大学合作开发出新型石墨烯电池,如用于电动汽车,只需8分钟就能完成一次充电,续航里程可达1000公里。
电动汽车多数以锂电池为动力,主要是钴酸锂电池、磷酸铁锂电池和锰酸锂电池三种。钴酸锂电池能量密度最高,但高温下最不稳定,其他两种能量密度不高。严重影响了电动汽车的续航和充电性能。
如果使用这种材料制作电池,理论上电池重量能比传统锂离子电池减半,厚度也会大幅缩小,储电量高出数倍,并且按照美国伦斯勒理工学院研究人员估算,石墨烯阳极材料比锂离子电池中常用的石墨阳极充放电速度要快10倍。
除了以上这些新型电池外,还有非常之多各具特色的新型电池,小编就不一一介绍。但它们都有一个共同点,目前还没有应用到市面上,都是仅存于实验室或者小范围的研究。
或许到某一天,一种超越现阶段所有电池的新型电池就横空出世,像锂电池一样统治电池行业几十年,甚至上百年。
文章来源:新材全球网
独家整理发布,转载请注明出处
更多行业资讯,请关注官方微信:xclqqjyw(长按复制)
责任编辑:
声明:本文由入驻搜狐号的作者撰写,除搜狐官方账号外,观点仅代表作者本人,不代表搜狐立场。
今日搜狐热点推荐这篇日记的豆列
&&&&&&&&&&&&

我要回帖

更多关于 电池外壳是什么金属 的文章

 

随机推荐