请教大家一个Boost34063升压电路路问题,带不了负载

查看: 10231|回复: 21
请教一个Boost升压电路问题,带不了负载。谢谢!
12V输入升压到55V 1.5A,直接一级boost可以做到吗?我的总是一带载电压就降到22V左右,升不上去。升到24V还能带一个40W的负载,但是电压也会下降2V左右。空载输出电压就很好,55V很稳定,电压调整率也挺好的,调节输入电压,输出电压还是比较稳定的,是电压负反馈的作用,就是带不了负载。
我的BOOST电路是最简单的那种结构,一个储能电感(铁硅铝磁环,1mm的漆包线两股并饶了17圈,随便绕的,多几圈少几圈带了负载电压都升不上去),一个肖特基二极管,一个大电容,一个MOS开关管,用SG3525做PWM驱动器,直接一路驱动的,闭环电压反馈。
怎样才能增强带负载能力呢?谢谢各位大神指导!!!
SG3525驱动MOS ,应用图腾电路吧。电源网大把。
sun 发表于
SG3525驱动MOS ,应用图腾电路吧。电源网大把。
但是我用的BOOST,不用图腾。
Chash 发表于
但是我用的BOOST,不用图腾。
还是用图腾电路驱,SG3525输出直驱不够,可以看MOS管G波型。
还有就是频率不对或定时不对。或连线。
还有开关变压器绕的有问题。高频这种电路,MOS管G极有的话,就不稳。或者说效率上不去。
驱动不足时带载能力差,其特征是开关管的功耗大,发热严重。
如开关管发热正常而带载能力差,则问题在储能电感,需根据开关频率和最大占空比来确定磁芯的材料和截面尺寸,通常频率取得高些则磁芯截面可以小一些。
<p id="rate_46" onmouseover="showTip(this)" tip="对的&经验 + 9 点
" class="mtn mbn">
可以参考摩托车低音炮电路,就明白了。
Lee_88 发表于
驱动不足时带载能力差,其特征是开关管的功耗大,发热严重。
如开关管发热正常而带载能力差,则问题在储能 ...
谢谢您回帖!3525的PWM直接就是推挽输出的,这个应该可以吧!不用加驱动了。3525一路PWM最大占空比为50%,升压最大只能从12V到24V,那么我可以把3525两路反相的PWM(两路都是推挽输出的)并接在一起然后送到MOS的栅极么?我试过了,有点效果,但是过了不久MOS就烧了。(IRF540 55V 28A的)都不知道该怎么办了?
将线圈多绕几圈,看看是否有效。
左江农民 发表于
将线圈多绕几圈,看看是否有效。
这个不是主要问题。
Chash 发表于
这个不是主要问题。
你确信试过没有效果?
用双路并联驱动的话要预先设置死区,一般Boost升压的占空比要控制在70%以下,如没把握还是单路的50%比较好。
如果频率和最大占空比确定了,要重新计算所需磁环的截面积和匝数,通常的做法是针对已有的磁环和输出功率来确定频率,如果所需频率过高(超过100K)则重新选择磁环再计算。
计算电感需要的参数:磁环的截面积、磁路长度(由磁环的内外直径计算)、磁导率和饱和磁通
功率较大时用EE磁芯有优势,因为可以通过增加磁隙来防止磁芯饱和。
Lee_88 发表于
用双路并联驱动的话要预先设置死区,一般Boost升压的占空比要控制在70%以下,如没把握还是单路的50%比较好。 ...
谢谢您回帖!我再去学习一下!
左江农民 发表于
你确信试过没有效果?
嗯。现在主要是占空比的问题。谢谢您的回帖!
Powered byboost升压电路输出电压_百度知道
boost升压电路输出电压
boost升压电路输出电压到底跟哪些因素有关,输入电压,占空比,电感值?还是什么其他,最好能给出一个具体的计算公式,网上的公式太乱了,故望专业人士和经验者指教,先谢谢啦
我有更好的答案
oost升压电路中占空比D=(Vo-Vi)/Vo,Vo是输出电压,Vi是输入电压。从公式上看,你能把10V电压升到10000V或任意倍数的电压。在工程上,占空比一般不超过0.9,所以工程的极限在10倍左右。没有比boost更成熟的升压方案了,如果需要输出电压输入电压比更高,可以接多级的boost升压。
我的门极连接的是494出来的PWM波,这个PWM波的占空比不影响输出电压么
先了解什么叫PWM,PWM就是Pulse-Width Modulation (脉冲宽度调制),这里面的脉冲宽度即在一个周期内输出高电平的时间,假如说周期T=64US,脉冲宽度D=32us,则占空比=D&#47;T=32&#47;64=50% ,脉冲宽度调整就是占空比的调整应用:
1.用于低频传输,如产生一个频率为125khz的占空比为50%的载波,传输无线数据。
2.用于电源逆变,即由直流电变交流电。
采纳率:48%
为您推荐:
其他类似问题
boost的相关知识
&#xe675;换一换
回答问题,赢新手礼包&#xe6b9;
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。boost升压电路原理
【转】 boost升压电路原理
boost升压电路,开关直流升压电路(即所谓的boost或者step-up电路)原理
13:28the boost converter,或者叫step-up
converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。
基本电路图见图一。
假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。
下面要分充电和放电两个部分来说明这个电路
在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。
如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。
说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。
如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。
如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。
一些补充1 AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上).
1.电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大).
2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之十.
开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过0.2--0.3V,单只做不到就多只并联.......
最大电流有多大呢?我们简单点就算1A吧,其实是不止的.由于效率低会超过1.5A,这是平均值,半周供电时为3A,实际电流波形为0至6A.所以咱建议要用两只号称5A实际3A的管子并起来才能勉强对付.
5 现成的芯片都没有集成上述那么大电流的管子,所以咱建议用土电路就够对付洋电路了.
以上是书本上没有直说的知识,但与书本知识可对照印证.
开关管导通时,电源经由电感-开关管形成回路,电流在电感中转化为磁能贮存;开关管关断时,电感中的磁能转化为电能在电感端左负右正,此电压叠加在电源正端,经由二极管-负载形成回路,完成升压功能。既然如此,提高转换效率就要从三个方面着手:1.尽可能降低开关管导通时回路的阻抗,使电能尽可能多的转化为磁能;2.尽可能降低负载回路的阻抗,使磁能尽可能多的转化为电能,同时回路的损耗最低;3.尽可能降低控制电路的消耗,因为对于转换来说,控制电路的消耗某种意义上是浪费掉的,不能转化为负载上的能量。
已知参数:
输入电压:12V
输出电压:18V
输出电流:1A
输出纹波:36mV
工作频率:100KHz
************************************************************************
稳定工作时,每个开关周期,导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*don/(f*L)=(Vo+Vd-Vi)*(1-don)/(f*L),整理后有
don=(Vo+Vd-Vi)/(Vo+Vd),参数带入,don=0.572
先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量
其值为Vi*(1-don)/(f*2*Io),参数带入,Lx=38.5uH,
deltaI=Vi*don/(L*f),参数带入,deltaI=1.1A
当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显,
当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面影响取L=60uH,
deltaI=Vi*don/(L*f),参数带入,deltaI=0.72A,
I1=Io/(1-don)-(1/2)*deltaI,I2= Io/(1-don)+(1/2)*deltaI,
参数带入,I1=1.2A,I2=1.92A
3:输出电容:
此例中输出电容选择位陶瓷电容,故
ESR可以忽略
C=Io*don/(f*Vpp),参数带入,
C=99.5uF,3个33uF/25V陶瓷电容并联
4:磁环及线径:
查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环
Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A
按此电流有效值及工作频率选择线径
其他参数:
占空比:don
初始电流:I1
峰值电流:I2
线圈电流:Irms
输出电容:C
电流的变化:deltaI
整流管压降:Vd
没有更多推荐了,一级boost升压电路最大增益能达到20倍以上吗?如果能,帮忙给一个参考设计电路,帯PWM控制器的。_百度知道
一级boost升压电路最大增益能达到20倍以上吗?如果能,帮忙给一个参考设计电路,帯PWM控制器的。
输出电压比,输入大概是20V左右的直流,输出最好能达到400V向上的电压,电流比较小,所以功率要求不高,100W左右,工作频率要求50KHZ以内。
单级BOOST变换器无法达到20倍这么高,恐怕得5级BOOST才可能。可以使用反激升压,这样的参考示例网上好找些,如果非用boost拓扑,那就用变压器代替电感,通过适合的匝比达到升压20倍的目的。现成的电路图没有,给个公式做参考Vout=Vin*(1+nD/1-D)其中n为匝比,D为占空比。再有,这个电路的电流电压应力都不低,设计要注意。
采纳率:47%
提个建议;你的问题不清楚吗;你所谓的增益是输出电压比输入电压;或是电流比;亦或是其他,还有,输入电压电流参数;功率要求,工作频率等,也得有个范围吧
应该不行。这种直流升压电路我印象里只能提供1~2W的功率。100W的找个UPS电源的电路抄一下不就得了
为您推荐:
其他类似问题
&#xe675;换一换
回答问题,赢新手礼包&#xe6b9;
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。浅谈Boost升压电路的原理及设计
21:43:29来源: 电源网 关键字:&&&&
在实际应用中经常会涉及到的设计,对于较大的功率输出,如70W以上的DC/DC升压电路,由于专用升压芯片内部开关管的限制,难于做到大功率升压变换,而且芯片的价格昂贵,在实际应用时受到很大限制。考虑到升压结构外接开关管选择余地很大,选择合适的控制芯片,便可设计出大功率输出的DC/DC升压电路。
UC3S42是一种电流型脉宽调制电源芯片,价格低廉,广泛应用于电子信息设备的电源电路设计,常用作隔离回扫式开关电源的控制电路,根据UC3842的功能特点,结合Boost拓扑结构,完全可设计成电流型控制的升压DC/DC电路,且外接元器件少,控制灵活,成本低,输出功率容易做到100W以上,具有其他专用芯片难以实现的功能。
1 UC3842芯片的特点
UC3842工作电压为16~30V,工作电流约15mA。芯片内有一个频率可设置的振荡器;一个能够源出和吸入大电流的图腾式输出结构,特别适用于MOSFET的驱动;一个固定温度补偿的基准电压和高增益误差放大器、电流传感器;具有锁存功能的逻辑电路和能提供逐个脉冲限流控制的PWM比较器,最大占空比可达100%。另外,具有内部保护功能,如滞后式欠压锁定、可控制的输出死区时间等。
由UC3842设计的DC/DC升压电路属于电流型控制,电路中直接用误差信号控制电感峰值电流,然后间接地控制PWM脉冲宽度。这种电流型控制电路的主要特点是:
1)输入电压的变化引起电感电流斜坡的变化,电感电流自动调整而不需要误差放大器输出变化,改善了瞬态电压调整率;
2)电流型控制检测电感电流和开关电流,并在逐个脉冲的基础上同误差放大器的输出比较,控制PWM脉宽,由于电感电流随误差信号的变化而变化,从而更容易设置控制环路,改善了线性调整率;
3)简化了限流电路,在保证电源工作可靠性的同时,电流限制使电感和开关管更有效地工作;
4)电流型控制电路中需要对电感电流的斜坡进行补偿,因为,平均电感电流大小是决定输出大小的因素,在占空比不同的情况下,峰值电感电流的变化不能与平均电感电流变化相对应,特别是占空比,50%的不稳定性,存在难以校正的峰值电流与平均电流的误差,即使占空比<50%,也可能发生高频次谐波振荡,因而需要斜坡补偿,使峰值电感电流与平均电感电流变化相一致,但是,同步不失真的斜坡补偿技术实现上有一定的难度。
2 Boost电路结构及特性分析
2.1 由UC3842作为控制的Boost电路结构
由UC3842控制的Boost拓扑结构及电路分别如图1和图2所示。
图2中输入电压Vi=16~20V,既供给芯片,又供给升压变换。开关管以UC3842设定的频率周期开闭,使电感L储存能量并释放能量。当开关管导通时,电感以Vi/L的速度充电,把能量储存在L中。当开关截止时,L产生反向感应电压,通过二极管D把储存的电能以(Vo-Vi)/L的速度释放到输出电容器C2中。输出电压由传递的能量多少来控制,而传递能量的多少通过电感电流的峰值来控制。
整个稳压过程由二个闭环来控制,即
闭环1 输出电压通过取样后反馈给误差放大器,用于同放大器内部的2.5V基准电压比较后产生误差电压,误差放大器控制由于负载变化造成的输出电压的变化。
闭环2 Rs为开关管源极到公共端间的电流检测电阻,开关管导通期间流经电感L的电流在Rs上产生的电压送至PwM比较器同相输入端,与误差电压进行比较后控制调制脉冲的脉宽,从而保持稳定的输出电压。误差信号实际控制着峰值电感电流。
2.2 Boost升压结构特性分析
Boost升压电路,可以工作在电流断续工作模式(DCM)和电流连续工作模式(CCM)。CCM工作模式适合大功率输出电路,考虑到负载达到lO%以上时,电感电流需保持连续状态,因此,按CCM工作模式来进行特性分析。
Boost拓扑结构升压电路基本波形如图3所示。
ton时,开关管S为导通状态,二极管D处于截止状态,流经电感L和开关管的电流逐渐增大,电感L两端的电压为Vi,考虑到开关管S漏极对公共端的导通压降Vs,即为Vi-Vs。ton时通过L的电流增加部分△ILon满足式(1)。
式中:Vs为开关管导通时的压降和电流取样电阻Rs上的压降之和,约0.6~0.9V。
toff时,开关管S截止,二极管D处于导通状态,储存在电感L中的能量提供给输出,流经电感L和二极管D的电流处于减少状态,设二极管D的正向电压为Vf,toff时,电感L两端的电压为Vo+Vf-Vi,电流的减少部分△ILoff满足式(2)。
式中:Vf为整流二极管正向压降,快恢复二极管约0.8V,肖特基二极管约0.5V。在电路稳定状态下,即从电流连续后到最大输出时,△ILon=△ILoFf,由式(1)和(2)可得
如果忽略电感损耗,电感输入功率等于输出功率,即
由式(4)和式(5)得电感器平均电流
同时由式(1)得电感器电流纹波
式中:f为开关频率。
为保证电流连续,电感电流应满足
考虑到式(6)、式(7)和式(8),可得到满足电流连续情况下的电感值为
另外,由Boost升压电路结构可知,开关管电流峰值Is(max)=二极管电流峰值Id(max)=电感器电流峰值ILP,
3 样机电路设计
样机的电路图如图2所示,是基于UC3842控制的升压式DC/DC变换器。电路的技术指标为:输入Vi=18V,输出Vo=40V、Io=2A,频率f≈49 kHz,输出纹波噪声1%。
根据技术指标要求,结合Boost电路结构的定性分析,对图2的样机电路设计与关键参数的选择进行具体的说明。
3.1 储能电感L
根据输入电压和输出电压确定最大占空比。由式(4)得
当输出最大负载时至少应满足电路工作在CCM模式下,即必须满足式(9),
同时考虑在10%额定负载以上电流连续的情况,实际设计时可以假设电路在额定输出时,电感纹波电流为平均电流的20%~30%,因增加△IL可以减小电感L,但为不增加输出纹波电压而须增大输出电容C2,取30%为平衡点,即
L可选用电感量为140~200μH且通过5A以上电流不会饱和的电感器。电感的设计包括磁芯材料、尺寸、型号选择及绕组匝数计算、线径选用等。电路工作时重要的是避免电感饱和、温升过高。磁芯和线径的选择对电感性能和温升影响很大,材质好的磁芯如环形铁粉磁芯,承受峰值电流能力较强,EMI低。而选用线径大的导线绕制电感,能有效降低电感的温升。
3.2 输出电压取样电阻R1、R2
因UC3842的脚2为误差放大器反向输入端,芯片内正向输入端为基准2.5v,可知输出电压Vo=2.5(1+R1/R2),根据输出电压可确定取样电阻R1、R2的取值。
由于储能电感的作用,在开关管开启和关闭时会形成大的尖峰电流,在检测电阻Rs上产生一个尖峰脉冲,为防止造成UC3842的误动作,在Rs取样点到UC3842的脚3间加入R、C滤波电路,R、C时间常数约等于电流尖峰的持续时间。
3.3 开关管S
开关管的电流峰值由式(10)得
Iv(max)=ILP=5.11A
开关管的耐压由式(11)得
Vds(off)=Vo+Vf=40+0.8=40.8V
按20%的余量,可选用6A/50V以上的开关管。为使温升较低,应选用Rds较小的MOS开关管,要考虑的是通态电阻Rds会随PN结温度T1的升高而增大。
图4为实测开关管的开关电压波形和电流瞬态波形图。
3.4 输出二极管D和输出电容器C2
升压电路中输出二极管D必须承受和输出电压值相等的反向电压,并传导负载所需的最大电流。二极管的峰值电流Id(max)=ILP=5.11A,本电路可选用6A/50V以上的快恢复二极管,若采用正向压降低的肖特基二极管,整个电路的效率将得到提高。输出电容C2的选定取决于对输出纹波电压的要求,纹波电压与电容的等效串联电阻ESR有关,电容器的容许纹波电流要大于电路中的纹波电流。
电容的ESR<△Vo/△IL=40x1%/1.33=O.3Ω。
另外,为满足输出纹波电压相对值的要求,滤波电容量应满足
根据计算出的ESR值和容量值选择电容器,由于低温时ESR值增大,故应按低温下的ESR来选择电容,因此,选用560μF/50V以上频率特性好的电解电容可满足要求。
3.5 外补偿网络
UC3842误差放大器的输出端脚l与反相输入端脚2之间外接补偿网络Rf、Cf。 Rf、Cf的取值取决于UC3842环路电压增益、额定输出电流和输出电容,通过改变Rf、Cf的值可改变放大器闭环增益和频响。为使环路得到最佳补偿,可测试环路的稳定度,测量Io脉动时输出电压Vo的瞬态响应来加以判断。
图5为Cf选用0.0lμF和470pF时动态响应控制波形的区别,上冲下降幅度和复位时间都有差别。
3.6 斜坡补偿
在实用电路中,增加斜坡补偿网络,一般有二种方法,一是从斜坡端脚4接补偿网络Rx、Cx至误差放大器反相输入端脚2,使误差放大器输出为斜坡状,再与Rs上感应的电压比较。二是从斜坡端脚4接补偿网络Rx、Cx到电流感应端脚3,将在Rs的感应电压上增加斜坡的斜率,再与平滑的误差电压进行比较,作用是防止谐波振荡现象,避免UC3842工作不稳定,同时改善电流型控制开关电压的噪声特性。本文采用方法二。
3.7 保护电路
当UC3842的脚3电压升高超过1V或脚1电压降到1V以下,都可使P
关键字:&&&&
编辑:探路者
引用地址:
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
关注eeworld公众号快捷获取更多信息
关注eeworld服务号享受更多官方福利
网友正在学习IC视频
EEWORLD网友正在观看&&视频
EEWORLD网友正在观看&&视频
EEWORLD网友正在观看&&视频
EEWORLD网友正在观看&&视频
EEWORLD网友正在观看&&视频
相关关键词
热门关键词
大学堂最新课程
汇总了TI汽车信息娱乐系统方案、优质音频解决方案、汽车娱乐系统和仪表盘参考设计相关的文档、视频等资源
热门资源推荐
频道白皮书

我要回帖

更多关于 boost升压电路计算 的文章

 

随机推荐