分子免疫诊断微流控芯片片现在的具体类型和作用是什么?

扫一扫,慧博手机终端下载!
热门关键字:
位置:首页 >>
IVD行业研究报告:东吴证券-IVD行业专题报告(技术控)之:分子诊断微流控-150801
行业名称:
股票代码: 分享时间: 13:44:23研报栏目:
研报类型: (PDF)
研报作者:
研报出处:
研报页数: 16 页 推荐评级:
研报大小: 1,554 KB 分享者: zhouxuelian197
如需数据加工服务,数据接口服务,请联系客服电话: 400-806-1866
【免责条款】
1. 用户直接或通过各类方式间接使用慧博投研资讯所提供的服务和数据的行为,都将被视作已无条件接受本声明所涉全部内容;若用户对本声明的任何条款有异议,请停止使用慧博投研资讯所提供的全部服务。
2. 用户需知,研报资料由网友上传,所有权归上传网友所有,慧博投研资讯仅提供存放服务,慧博投研资讯不保证资料内容的合法性、正确性、完整性、真实性或品质;
3. 任何单位或个人若认为慧博投研资讯所提供内容可能存在侵犯第三人著作权的情形,应该及时向慧博投研资讯提出书面权利通知,并提供身份证明、权属证明及详细侵权情况证明。慧博投研资讯将遵循"版权保护投诉指引"处理该信息内容;
4.本条款是本站免责条款的附则,其他更多内容详见本站底部
我要点评(选填):
打开微信,点击底部的"发现",
使用"扫一扫"即可将网页分享至朋友圈。
【研究报告内容摘要】
&&&&投资要点分子诊断:分子诊断是采用分子生物学的理论和技术,通过直接探查核酸的存在状态或缺陷,从核酸结构、复制、转录或翻译水平分析核酸的功能,从而对人体状态与疾病做出诊断的方法。它检测的基因有内源性(即机体自身的基因)和外源性(如病毒、细菌等)两种,前者用于诊断基因有无病变,后者用于诊断有无病原体感染。...
推荐给朋友:
以上行业显示为大行业分类,点击进入可选择细分行业
12345678910
12345678910
客服电话:400-806-1866
&&&&客服QQ:1223022
&&&客服Email:
Copyright@ Microbell.com 备案序号:冀ICP备号-2
京公网安备:37
本网站用于投资学习与研究用途,如果您的文章和报告不愿意在我们平台展示,请联系我们,谢谢!
&&将此篇报告分享给好友阅读(微信朋友圈,微信好友)
小提示:分享到朋友圈可获赠积分哦!
&&&&&&操作方法:打开微信,点击底部“发现”,使用“扫一扫”即可分享到微信朋友圈或发送给微信好友。
您还可以给此报告打分(必选):
我要点评(选填):
为了完善报告评分体系,请在看完报告后理性打个分,以便我们以后为您展示更优质的报告。
&&&&您也可以对自己点评与评分的报告在“
”里进行复盘管理,方便您的研究与思考,培养良好的思维习惯。
当前终端的在线人数: 69896人微流控芯片_百度百科
清除历史记录关闭
声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。
微流控芯片
微流控芯片简介
技术(Microfluidics)是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上, 自动完成分析全过程。由于它在生物、化学、医学等领域的巨大潜力,已经发展成为一个生物、化学、医学、、电子、材料、机械等的崭新研究领域。
微流控芯片分类
包括:白金电阻芯片, 压力传感芯片, 电化学传感芯片, 微/纳米反应器芯片, 微流体燃料电池芯片, 微/过滤芯片等。
①(microfluidic chip)是当前(Miniaturized Total Analysis Systems)发展的热点领域。分析以芯片为操作平台, 同时以为基础,以微机电加工技术为依托,以微管道网络为结构特征,以生命科学为目前主要应用对象,是当前领域发展的重点。它的目标是把整个化验室的功能,包括采样、稀释、加试剂、反应、分离、检测等集成在微芯片上,且可以多次使用。
②是实现的主要平台。其装置特征主要是其容纳流体的有效结构(通道、反应室和其它某些功能部件)至少在一个纬度上为微米级尺度。由于微米级的结构,流体在其中显示和产生了与宏观尺度不同的特殊性能。因此发展出独特的分析产生的性能。
③的特点及发展优势:微流控芯片具有液体流动可控、消耗试样和试剂极少、分析速度成十倍上百倍地提高等特点,它可以在几分钟甚至更短的时间内进行上百个样品的同时分析,并且可以在线实现样品的预处理及分析全过程。
④其产生的应用目的是实现的终极目标-芯片实验室
⑤目前工作发展的重点应用领域是生命科学领域
⑥当前(2006)国际研究现状:创新多集中于分离、检测体系方面;对芯片上如何引入实际样品分析的诸多问题,如样品引入、换样、前处理等有关研究还十分薄弱。它的发展依赖于多学科交叉的发展。
微流控芯片前景
目前媒体普遍认为的(micro-arrays),如,、等只是微流量为零的点阵列型杂交芯片,功能非常有限,属于(micro-chip)的特殊类型,微流控芯片具有更广泛的类型、功能与用途,可以开发出、基因与、质谱和色谱等分析系统,成为尤其的极为重要的技术基础。
微流控芯片进展
微流控分析芯片最初只是作为纳米技术革命的一个补充,在经历了大肆宣传及冷落的不同时期后,最终却实现了商业化生产。微流控分析芯片最初在美国被称为“芯片实验室”(lab-on-a-chip),在欧洲被称为“微整合分析芯片”(micrototal analytical systems),随着、微纳米加工技术和微电子学所取得的突破性进展,也得到了迅速发展,但还是远不及“摩尔定律”所预测的半导体发展速度。今天阻碍发展的瓶颈仍然是早期限制其发展的制造加工和应用方面的问题。芯片与任何远程的东西交互存在一定问题,更不用说将具有全功能样品前处理、检测和都集成在同一基质中。由于的微小通道及其所需部件,在设计时所遇到的喷射问题,与大尺度的液相色谱相比,更加困难。上世纪80年代末至90年代末,尤其是在研究芯片衬底的材料科学和微通道的流体移动技术得到发展后,也取得了较大的进步。为适应时代的需求,现今的研究集中在集成方面,特别是的研究,开发制造具有超强运行能力的多功能芯片。 美国圣母大学(University of Notre Dame)的Hsueh-Chia Chang博士与微生物学家和免疫检测专家合作研究,提高了微流控分析设备检测细胞和生物分子的速度和灵敏性。同时,Chang对交流电动进行了改善,因为他认为交流电(AC)可作为选择平台,驱动流体通过用于医学和研究的微流控分析仪。微流控分析仪最初的驱动机制是常规的直流电动电学,但是使用时容易产生气泡并引起物质在发生的缺点限制了直流电的应用,此外,为保证其对流量的精确控制,直流电极必须放置在储液池中,不能直接连接在电路中。
三个因素美国Caliper Life Sciences公司Andrea Chow博士认为,微流控技术的成功取决于联合、技术和应用,这三个因素是相关的。他说:“为形成联合,我们尝试了所有可能达到一定复杂性水平的应用。从长远且严密的角度来对其进行改进,我们发现了很多无需经过复杂的集成却有较高使用价值的应用,如机械阀和微电动机械系统(MEMS)。”改进的微流控技术,一般用于蛋白或基因电泳,常常可取代聚丙烯酰胺凝胶电泳。进一步开发的芯片可用于酶和细胞的检测,在开发新药方面很有用。更进一步的产品是可集成样品前处理的基因鉴定,例如基于芯片的链式聚合反应(PCR)。由于具有高度重复和低消耗样品或试剂的特性,这种自动化和半自动化的在早期的药物研发中,得到了广泛应用。Caliper的商业模式是将芯片看作是与昂贵的电子学和光学仪器相连接的一个消费品,目前,已被许多公司独立的采用。每个芯片完成一天的实验运作的成本费用大概是5美元,而高通量的应用成本是几百到几千美元,但预计可以重复循环使用几百或几千次,以一次分析包括时间和试剂的成本计算在内,芯片的成本与一般实验室分析成本相当。此外,特定设计芯片的批量生产也大大降低了其成本。Caliper的旗舰产品是LabChip 3000新药研发系统,其微流体成分分析可以达到10万个样品,还有用于高通量基因和蛋白分析的LabChip 90 电泳系统。据Caliper宣称,75 %的主要制药和生物技术公司都在使用LabChip 3000系统。美国加州的安捷伦科技公司曾与Caliper科技公司签署正式合作协议,该项合作于1998年开始,去年结束。安捷伦作为一个仪器生产商的实力,结合其在喷墨墨盒的经验,在微流控技术尚未成熟时,就对微流体市场做出了独特的预见,喷墨打印是目前为止微流控技术应用最多的产品,每年的使用价值100亿美元。安捷伦已有一些仪器使用趋向于具有更多可用性方面的经验,并将这些经验应用到了微流体技术开发上。微流体和生物传感器的项目经理Kevin Killeen博士在接受采访时说,安捷伦的目标是为终端使用者解除负担,“由适宜的仪器产品组装成的系统可以让非专业人士操纵专业设备”。微流体技术也需要适时表现出其自身的实用性和可靠性,例如,纳米级电喷雾质谱分析(nano-electrospray MS)不必考虑其顶端的闭合及边带的加宽,Killeen补充道:“对于生物学家来说,微流控技术的价值就在于此。” 安捷伦在微流控技术平台上的三个主要产品是Agilent 2100 Bioanalyzer/5100 Automated Lab-on-a-Chip (已于2004年11月推出)和HPLC-Chip(已于2005年3月推出)。鉴定蛋白的HPLC-Chip集成了样品富集和分离,同时还将设备装置减少至LC/MS系统的一半。安捷伦的资料显示,这些特征减少了泄漏和死体积,这种芯片在实验控制时采用了无线电频率标识技术。 推动力目前,一直都未能解决的仍然是驱动力问题,以及如何控制流体通过微毛细管。研究者认为,从某种程度上来说,微致动器(micro-actuators)可以为微流控技术提供动力和调节,但是这一设想并没有成功。Chia Chang博士认为,现在还不可能实现利用微电动机械系统(MEMS)作为微流体驱动力,因为“还没有设计出这样的微电动机械系统”。至少到目前为止,一直都在应用非机械的流体驱动设备。刚刚兴起的技术有斯坦福大学Stephen Quake研究小组开发的微流体控制因素大规模地综合应用和瑞士Spinx Technologies开发的激光控制阀门。澳大利亚墨尔本蒙纳士大学的研究者正在开发可在微通道内吸取、混合和浓缩分析样品的等离子体偏振方法。等离子体不接触工作流体便可产生“推力”,具有维持流体稳定流动,对电解质溶液不敏感也不受其污染的优点。瑞士苏黎士联邦工业大学的David Juncker认为,流体的驱动没有必要采用这类高新技术,利用简单的毛细管效应就可以驱动流体通过微通道。Juncker博士说,以毛细管作用力驱动流体具有独特优势:自包含、可升级、没有死体积、可预先设计、易更换溶液。可应用的范围包括开发药物的免疫检测和定点照护诊断检测。最近,Juncker博士及其同事已经开发出可以梯度检测大分子蛋白和检测单个细胞的微流控探测器,Juncker说“这种探测器结合了扫描和微流控技术,定义了一类新的实验空间”, 同时他还设想将这种探测器应用于细胞生物学和新药开发上。另外一个与微流控技术相关却一直未能克服的障碍,是“设备尺寸缩小而存在的效益递减临界点问题”系统缩小到微米甚至纳米级的尺度范围,与之结合的设备成为一个主要问题。对于,必须将材料从微通道中放入和取出,还要从纳升级流量的流体中获得可靠信号。一些研究者建议将微流控技术与“中等流体”结合,——以小型化的方式附加到中等尺寸的设备中,可以浓缩样品,易于检测。生物学家还受他们所使用微孔板的几何限制。Caliper和其他的一些公司正在开发可以将样品直接从微孔板装载至芯片的系统,但这种操作很具挑战性。美国Corning公司Po Ki Yuen博士认为,要说服生产商将生产技术转移到一个还未证明可以缩减成本的完全不同的平台,是极其困难的。Yuen博士所领导的研究小组的研究领域包括微电动机械系统、光学和微流体学,目前致力于研发新药的非标定检测系统方面的研究。
与芯片之间的比较美国Cascade Microtech公司的Cali Sartor认为,当今生命科学领域的微流体与20年前工业领域的具有相似之处。计算机芯片的开发者最终解决了集成、设计和增加复杂性等问题,而微流体技术的开发者也正在从各方面克服所遇到的此类问题。Cascade的市场在于开发半导体制造业的最初检验和分析系统,现在希望通过具微流控特征和建模平台的L-Series实现市场转型。L-Series包括严格的机械平台,集成了显微镜技术、微定位和计量学等方法。可应用于芯片电场的微型电位计(Microport)也作为其开发的副产品。L-Series致力于真正的解决微流控设备开发者所遇到的难题:必须独立构造芯片系统和提供实用程序,Sartor说:“若是将衬质和芯片粘合在一起,需要经过长期的多次测试,”设计者若想改变流体通道,必须从头开始。L-Series检测组使内联测试和假设分析实验变得更简单,测试一个新设计只要交换芯片即可。当前,L-Series设备只能在手动模式下运行,一次一个芯片,但是Cascade 正在考虑开发可平行操作多个芯片的设备。Cascade 有两个测试用户:马里兰大学Don DeVoe教授的微流体实验室和加州大学Carl Meinhart教授的微流体实验室。德国thinXXS公司开发了另一套微流控分析设备(图4)。该设备提供了一个由微反应板装配平台、模块载片以及连接器和管道所组成的结构工具包。可单独购买模块载片。
ThinXXS还制造专用芯片,生产微流体和微光学设备和部件并提供相应的服务。将应用于光学检测已经计划很多年了,thinXXS一直都在进行这方面的综合研究,但未提供详细资料。ThinXXS公司Thomas Stange博士认为,虽然原型设计价格高且有风险,微制造技术已不再是微流控产品商业化生产的主要障碍。对于他们公司所操纵的高价药品测试和诊断市场,校准和工艺惯性才是最主要的障碍。ThinXXS于6月推出了一款新的微芯片产品QPlate,同时宣称该产品首次结合了硅微处理、微铸技术以及印制电路板技术。QPlate是与丹麦Sophion Bioscience公司合作开发的,是QPatch-16 system的组成部分,QPatch-16 system可平行的测量16个细胞离子通道。
中国电子学会(Chinese Instit...
提供资源类型:内容
清除历史记录关闭微流控芯片—注定被深度产业化的科学技术
微流控芯片—注定被深度产业化的科学技术
微流控芯片已经发展成为一门涉及材料、化学、物理、微机电、生物、医学等领域的综合性交叉学科,我从2003年研究生阶段在导师田昭武院士的引领下有幸进入这个前沿领域,
大家好,我是叶嘉明。首先非常感谢贝壳社为我们提供这么好的一个交流机会与平台,我也非常高兴能够有这个机会和各位一起来探讨微流控芯片技术!
微流控芯片已经发展成为一门涉及材料、化学、物理、微机电、生物、医学等领域的综合性交叉学科,我从2003年研究生阶段在导师田昭武院士的引领下有幸进入这个前沿领域,先后从事基础研究、应用研究、产品开发工作,到今天开始走上创业的道路,也仅仅只能说局部地领略到微流控芯片这个伟大&艺术平台&的魅力。因此,今天在有限的时间里,我主要结合个人体会谈谈微流控芯片技术的一些观点,希望能够起到&抛砖引玉&的作用。
另外,本人在博士后阶段师从于微流控芯片领域著名专家&&林炳承教授,此次分享的内容部分引用了中科院团队近二十年来在微流控芯片领域丰硕的科研成果,以及导师林炳承教授的观点。
今天我和大家分享的主题是&微流控芯片&&注定要被深度产业化的科学技术&。
一)微流控芯片简介:
1.1 微型化、集成化和智能化,是现代科技发展的一个重要趋势。伴随着微机电加工系统(MEMS)技术的发展,电子计算机已由当年的&庞然大物&演变成由一个个微小的电路集成芯片组成的便携系统,甚至是一部微型的智能手机。
与之发展类似,今天我们介绍的微流控芯片,又称芯片实验室(Lab-on-a-Chip),是一种以在微纳米尺度空间中对流体进行操控为主要特征的科学技术,具有将生物、化学等实验室的基本功能诸如样品制备、反应、分离和检测等缩微到一个几平方厘米芯片上的能力,其基本特征和最大优势是多种单元技术在整体可控的微小平台上灵活组合、规模集成。
1.2 各种材质和功能的微流控芯片及实验室相关配套仪器
微流控芯片早期也是从MEMS技术发展而来,通过微加工工艺在硅、金属、高分子聚合物、玻璃、石英等材质的基片上,加工出微米至亚毫米级的流体通道、反应或检测腔室、过滤器或传感器等各种微结构单元,而后在微米尺度空间对流体进行操控,配合流体控制或分析仪器自动完成生物实验室中的提取、扩增、萃取、标记、分离、分析,或者细胞的培养、处理、分选、裂解、分离分析等过程。
(引用中国科学院大连化学物理研究所林炳承团队在2000年代研究成果)
1.3 微流控芯片的发展及应用领域:
上世纪90年代初,A.Manz等人采用芯片实现了此前一直在毛细管内完成的电泳分离,显示了它作为一种分析化学工具的潜力;90年代中期,美国国防部提出对士兵个体生化自检装备的手提化需求催生了世界范围内微流控芯片的研究;在整个90年代,微流控芯片更多的被认为是一种分析化学平台,因此往往和&微全分析系统&(Micro Total Analysis System, u-TAS)概念混用。因此,原则上,微流控芯片作为一种&微全分析&技术平台可以应用于各个分析领域,如生化医疗诊断、食品和商品检验、环境监测、刑事科学、军事科学和航天科学等重要应用领域,其中生物医学分析是热点。
2000年G. Whitesides等关于PDMS软刻蚀的方法在Electrophoresis上发表,2002年S. Quake等以微阀微泵控制为主要特征的&微流控芯片大规模集成&文章在Science上发表,这些里程碑式的工作使学术界和产业界看到了微流控芯片超越&微全分析系统&的概念而发展成为一种重大的科学技术的潜在能力。例如,利用微流控芯片作为一种微反应器,通过在微流控芯片上开展组合化学反应或结合液滴技术,有望用于药物合成与筛选,或纳米粒子、微球、晶体等的高通量、大规模制备,甚至形成一种&芯片上的化工厂或制药厂&。
二)微流控芯片的战略意义:
自微流控芯片诞生以来,一直受到学术界和产业界的极大关注。2001年,&Lab on a Chip&杂志创刊,它很快成为本领域的一种主流刊物,引领世界范围微流控芯片研究的深入开展。2004年美国Business 2.0杂志在一篇封面文章把芯片实验室列为&改变未来的七种技术之一&。2006年7月Nature杂志发表了一期题为&芯片实验室&专辑,从不同角度阐述了芯片实验室的研究历史、现状和应用前景,并在编辑部的社评中指出:芯片实验室可能成为&这一世纪的技术&。至此,芯片实验室所显示的战略性意义,已在更高层面和更大范围内被学术界和产业界所认同。
2.1 作为一种战略性的科学技术,微流控芯片的发展有它的内在必然性。
首先,微型化是人类社会发展的一种趋势,面对我们所生存的已经消耗过度的地球,微型化反映了人类对资源枯竭的忧虑和对资源利用的优化。其次,世界上有太多的技术和流体操控有关,而当被操控的流体在一个微米尺度的空间里流动的时候,会出现很多新的现象,其中的一部分至今还没有被我们所充分认识。第三则是基于对系统研究的需求。系统学研究整体,更研究构成整体的各个局部之间的相互联系,自古以来,人类一直缺少微小但又能操控全局的工具,微流控芯片能承载多种单元技术并使之灵活组合和规模集成的特征使其可能成为系统研究的重要平台。
2.2 微流控芯片的战略意义还根植于它和信息科学、信息技术的特殊关系。
一般认为,在二十世纪,人们借助于电子在半导体或金属中流动得到的&信息&,成就了具有战略意义的信息科学和信息技术;而在二十一世纪,通过带有可溶性生物分子或悬浮细胞的水溶液在微流控芯片通道或平面上流动以研究生命,理解生命,以至部分地改造生命,将有可能同样成就一种新的具有战略意义的科学技术:微流控学。因为,&生命&和&信息&构成了现代科学技术的核心。
2.3 微流控芯片&&当今国家产业转型的一种先导型科学技术
微流控芯片是注定要被深度产业化的科学技术。这种判断首先当然是源于全球性产业转型需求的不可逆转,需求加剧,进程加快;另一方面,或许更为重要的,则是基于对这一科学技术在一些重大领域不可替代性的认识,而这种认识只是在最近的若干年内才被人们所逐步接受。它很可能发展成为当今产业转型的一种模式,对以生物经济为代表的新型经济产生重要影响。例如未来几年内,如果将微流控芯片与&生物手机&、&互联网+&进一步结合,这样一个由一种新兴技术引发的可能具有全局性影响的趋势,是否能够因此诞生一批&风口&行业值得大家期待。
三)基于微流控芯片的代表性关键技术:
3.1 新一代床边诊断(point of care test,)技术&&Microfluidics-based POCT
POCT可直接在被检者身边提供快捷有效的生化指标,现场指导用药,使检测、诊断、治疗成为一个连续过程,对于疾病的早期发现和治疗具有突破性的意义。
POCT仪器发展趋势应是小型化、&傻瓜&式,操作简单,无需专业人员,直接输入体液样本,即可迅速得到诊断结果,并将信息上传至远程监控中心,由医生指导保健。目前,市场上有多种即时诊断方法,简单的流动测试工作没有流体管理技术,而当测试复杂性增加时,微流控技术是必要的。微流控芯片所具有的多种单元技术在微小可控平台上灵活组合和规模集成的特点已使其成为现代POCT技术的首选,经过近年的发展,已涌现了一批微流控芯片POCT分子诊断和免疫诊断的成功案例。
(Cited from: Commercialization of microfluidic point-of-care diagnostic devices, Lab Chip, 18-2134)
3.2 超高通量筛选的主流平台&&微流控液滴芯片
在微流控芯片通道上加入两种互不相溶的液体,将其中的分散相以微小体积单元(10-15 L-10-9 L)的形式和极快的速度(100-10000个/秒)分散于连续相中,即可形成用作微反应器或微量生化样品载体的液滴。微流控芯片液滴已被认为是迄今为止最重要的微反应器,能提供一种在单分子和单细胞层面快速开展超大规模,超低含量反应的平台。液滴操控灵活,形状可变,大小均一,又有优良的传热传质性能,产生频率已达数十到数百KHz,在高通量药物筛选和材料筛选领域显示了巨大的潜力。
(Cited from: Reactions in Droplets in Microfluidic Channels, Angew. Chem. Int. Ed. 36-7356)
3.3 哺乳动物细胞及其微环境操控平台&&微流控芯片仿生实验室
由于微流控芯片的构件尺寸和细胞吻合,并可同时测定物理量、化学量和生物量,它已成为对哺乳动物细胞及其微环境进行操控的最具潜力的平台。目前已可以构建微米量级且相对封闭的三维细胞培养、分选、裂解等操作单元,并把这些单元成功延伸到组织和器官。器官芯片是一种更接近仿生体系的模式,可在一块几平方厘米的芯片中培养各种活体细胞,形成组织器官,乃至由不同器官芯片进一步组成活体芯片,从而模拟一个活体的行为并研究活体中整体和局部的种种关系。在药学领域,器官芯片将被部分替代小白鼠等模型动物,用于验证候选药物,开展毒理和药理作用研究。
四)微流控芯片的产业化现状和发展趋势:
4.1 微流控芯片的市场前景:
微流控芯片作为一种革命性的技术平台,其市场前景显然是极其巨大的。最近几年微流控芯片取得了突破性进展,引起产业界的极大关注。这些突破性进展主要表现在两个方面,一是已涌现出一批关健性技术,它们在很大程度上具有不可替代性,并因此形成以医学和药学为代表,覆盖面很宽的应用领域,例如最近发展起来的器官芯片、液滴微流控芯片。其中,器官芯片或人体芯片,有望部分代替药物研发过程中的临床前动物实验,最大限度地节约研发成本、缩短研发周期,并且解决动物权等伦理问题,具有极其巨大的潜在市场价值。
二是其中的一些应用已经或正在形成规模产业,例如基于微流控技术的新一代床边诊断(Microflluidics-based POCT)系统,被产业界认为目前最有可能成为&Killer Appliction&(杀手级应用)的微流控芯片产品,其市场预计从2013年的16亿美元增长到2019年的56亿美元。
(微流控即时诊断市场预测,法国市场研究机构Yole Development提供的数据,转载自互联网)
4.2 目前市场上几种代表性微流控芯片产品:
4.3 微流控分析芯片产品现状及发展趋势:
总体而言,当前的微流控芯片产品及发展趋势总结如下(个人观点,供探讨):
4.4 微流控芯片产业化关键问题(个人观点,供探讨):
(1)技术:需要解决微流控芯片批量生产工艺(微加工、键合、表面修饰);
重点是要解决芯片质控问题。
(2)人才:急需多学科交叉人才、企业研发人员、专业化市场人员进行微流控芯片产品的开发及推广;国内芯片人才特别是在企业从事产品开发的芯片技术人员较为缺乏,专业的人做专业的事!这个很重要。
(3)产品:急需具有&Killer Application&特征的微流控产品引领行业市场(产业界一致看好microfluidics-based POCT 系统);普遍认为poct最大市场是应用于医疗诊断行业,这个行业市场最为巨大毫无争议;或许在中国,食品安全、环境检测是否能够首先成为&中国特色&的killer application的一个案例,值得探讨?
(4)资本:需要有长远目标的资本或金融机构的积极介入与扶持;个人认为,微流控芯片实验室已经到了产业化的前夕,希望有远见的企业家尽快介入到这一技术的发展过程中来,大家同舟共济,一起滚打几年,一起来改进技术,培育市场,共同发展。某种意义上说,这也是一种机会,等市场完全成熟了再介入进来可能就太晚了一些。
(5)政策支持、强强合作:具有强大研发实力的企事业单位和丰富技术积累的科研院所鼎力合作)。
五)我们的工作和未来展望:
5.1 单位及团队介绍:
(1)浙江清华长三角研究院
(2)浙江清华长三角研究院微流控芯片实验室团队成员
5.2 微流控芯片产业化进展:
杭州霆科生物科技有限公司(TinkerBio)创立于2014年1月,是依托浙江清华长三角研究院技术平台,集食品安全快速检测类仪器、试剂、软件的研发及生产为一体的高科技企业,为客户提供基于微流控芯片技术的食品安全快速检测及监管的整体解决方案。
5.3 未来展望:
未来十年、二十年内,微流控芯片注定成为一种被深度产业化的科学技术,世界范围内的微流控芯片的科学研究及产业竞争也将日趋激烈。中国被认为是在微流控芯片领域研究水平较高的国家之一,但国内的微流控芯片产业仍处于起步阶段,仅有为数不多的微流控产品面世,远落后于欧美等发达国家。尽管如此,我们欣喜地发现,近年来中国开始有越来越多的微流控技术专家、市场化专业人士,以及科研院校、企事业单位、投资机构,关注并投身于微流控芯片产业化。我们有理由相信,微流控芯片在中国的成功产业化值得期待。
近期,霆科生物计划二次融资,进行后续微流控芯片产品生产与推广,欢迎合作。
最后希望更多关注微流控芯片的人,更多地参与到这个领域来,共同努力!MicroChip,BigWorld! 再次感谢贝壳社!感谢各位!
1. 叶博士您好,请问在POCT领域,微流控应用比较成熟的方向有哪些?上面看到雅培的血气分析仪,国内这方面有产品的,有哪些方向?领头的企业是?
叶博士:目前,POCT,微流控芯片的主要应用主要是在体外诊断领域。理论上,传统的生化、免疫的POCT检测技术比较容易、也最可能在微流控芯片平台上实现。如前所述,微流控POCT领域的产业化是现在所有人最为关注的方向。也已经有不少的企业开始开展微流控POCT产品的开发。包括一些以微流控芯片为主要核心技术的生物企业,例如博奥生物、天津微纳芯等等;另外据我所知,很多的传统POCT,例如免疫层析试纸的企业,也都有在开展微流控芯片产品的研发。
2. 叶博士您好,以安捷伦2100为例,虽然其目前作为微流控电泳已经比较成熟,但其耗材成本却远高于毛细管电泳,更高于传统手工电泳,这个问题您怎么看?
叶博士:在微流控芯片电泳方面,Agilent 2100 生物分析仪已经取代了繁琐的凝胶电泳技术成为RNA 样品质量控制 (QC) 的行业标准。同时在 DNA 片段分析和蛋白样品 SDS-PAGE 分析中迅速取代凝胶电泳技术。由于国内产业化落后和技术垄断,目前国外的微流控产品的确在仪器和芯片价格上还很高,这与目前整个仪器分析领域的情况是一样的。希望未来在微流控芯片产业化方面,国内的企业能够开发生产更多国产化的、性价比高的微流控产品,从而解决这一成本问题。
3. 叶博士您好,对微流控技术分离CTC细胞是否关注,能否帮我们做一个进展综述,谢谢!
叶博士:在微流控芯片平台上进行CTC细胞的筛选和检测,是目前的一大研究热点。这个咱们可以线下进一步交流?
4. 叶博士您好,Nanotube-based POCT与微流控是同一类技术吗,一个是纳米级的,一个是微米级的。
叶博士:现在微流控领域有一个重要的发展方向,微纳流控,事实上,纳米级的通道中流体的运行与微米级结构中有相同的地方,也有许多截然不同的现象和原理。
5. 叶博士您好,我认为微流控不可能完全取代传统大仪器。虽然优点多,但是因为小,质量控制就很难做。 对加工人员要求高,后续仪器大,也都是瓶颈。 除非现在的微流控摆脱目前材质的局限,而且真正出现一个killer应用,其它的仪器完全无法做或者做的效果很差。
叶博士:不同的分析技术各有优缺点,微流控芯片在分析领域作为&微全分析&的一种工具,在现场、快速、无需专业人员操作、低成本上,对比大型分析仪器,具有显著的优势,适合于现场快速筛查。目前的电子微加工工艺已经非常成熟,并且已经有成功的微流控芯片商业化的案例。只能说产业化的成功,不是简单依靠某一个工艺技术而实现。
6. 叶博士您好,比如几十个微米级别的精细金属模具的加工能力,国内就跟不上。这方面国外就做得很成熟,但是价格很高。这是个空白,也是个商机。
叶博士:非常赞同这个观点,微流控芯片是挑战,也是机遇。从我产品开发的经验上来讲,一个成功的微流控芯片产品,并非一定要追求&过分&的&微&而&全&,例如在食品安全,或者环境水检测,样本量一般不去考虑纳升或者微升;另外,一个好的产品,或许可以是解决某一方面的&痛点&,如执行客户操作最简便的芯片分析功能;实现这个产品目标,即使是&毫流控&也未尝不可,而并不一定要几微米或几十微米级别的芯片。
了解更多内容敬请下载手机APP。
本网站所有注明“来源:艾兰博曼医学网”的文字、图片和音视频资料,版权均归艾兰博曼医学网所有,欢迎转载,但请务必注明出处“艾兰博曼医学网”,否则将追究法律责任。本网所有注明来源为其他媒体的内容仅出于传递更多信息之目的,版权归原作者所有,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

我要回帖

更多关于 入党积极分子发展类型 的文章

 

随机推荐