前几天看见变压器初级线圈匝数线圈材质分析仪界面上的F2,这个是干什么用的?

 上传我的文档
 下载
 收藏
粉丝量:23
该文档贡献者很忙,什么也没留下。
 下载此文档
变压器--11主变压器结构、各部件作用
下载积分:1000
内容提示:变压器--11主变压器结构、各部件作用
文档格式:DOC|
浏览次数:410|
上传日期: 15:23:20|
文档星级:
全文阅读已结束,如果下载本文需要使用
 1000 积分
下载此文档
该用户还上传了这些文档
变压器--11主变压器结构、各部件作用
关注微信公众号503 Service Temporarily Unavailable
503 Service Temporarily Unavailable特斯拉线圈有什么用,特斯拉线圈原理
说到特斯拉,很多人第一眼想到的就是著名的汽车品牌,因为这个汽车的品牌非常的著名,可以说是顶级汽车的代表,可是说到尼古拉特斯拉,还是有很多人知晓的,因为这个人可以说是历史上的一个物理学家奇才,他的发明可以说是完全超越了当时的科技水平,因此有很多人说他其实是外星人,其中他提出来的特斯拉线圈就是非常著名的一个东西,因为根据预想,这种东西能够实现能源的无限发展,并且特斯拉线圈的原理也相对比较简单,很多普通的人都可以制作特斯拉线圈,目前人们对于特斯拉线圈的探索依然在进行着,毕竟这种东西的开发潜力是非常巨大的。特斯拉线圈一、特斯拉线圈的发明者特斯拉线圈的发明者是一个叫做尼古拉特斯拉的科学家,他是世界上最伟大的发明家、物理学家、机械工程师和电机工程师之一。塞尔维亚血统的他出生在克罗地亚(后并入奥地利帝国)。特斯拉被认为是历史上一位重要的发明家。他在19世纪末和20世纪初对电和磁性的贡献也是知名的。他的专利和理论工作形式依据现代交变电流电力(AC)的系统,包括多相电力分配系统和AC马达,帮助了他带起第二次工业革命。二、特斯拉线圈是如何被发明的发明特斯拉线圈的时代,还得从19世纪的九十年代说起。以发明电灯泡起家的爱迪生,正在全力研发和推广直流电设备、直流用电系统。而一位名叫尼古拉·特斯拉(Nikola Tesla)的美籍塞尔维亚裔天才科学家,在1883年为人类创造出了第一个小型交流电动机之后,坚信交流电的诸多明显优势更加适用于电力系统的构建。正当两方各自的科研和商业竞争愈演愈烈之时,特斯拉在1890年发现了横跨物理学中机械学、声学和电力学中的共振现象。在随后的1891年,这位天才科学家利用共振原理制造出了一个新型变压器——“特斯拉线圈(Tesla Coil)”,于是一项伟大的发明横空出世。三、特斯拉线圈的种类特斯拉线圈其实有很多的类型,因为根据设计理念的不同,特斯拉线圈能够产生不同的效果,不同的接线级能够产生不同的表现,而能量的大小也能有不同的作用,一般来讲,特斯拉线圈有以下的一些种类。1、离线式特斯拉线圈当我们把SGTC的打火器去掉,换成一个MOSFET或者IGBT来代替,并在用一个二极管反向并联在D极和S极(如果是IGBT,就是C极和E极)上,并用一个固态的电路来控制这个开关管,再加以低压驱动,就成了OLTC。原文地址:http://www.pikacn.com/news/0.html它的本质原理依然是LC振荡,且和SGTC几乎相同,不同的地方,就是把打火器换成了固态开关,并使用了低压驱动。其它地方没有太多区别。由于是低压驱动,无法形成太大的电流,所以OLTC的电弧是不如SGTC壮观的。2、真空管特斯拉线圈当电子管逐渐退出我们的视野时,一群电子管发烧友用它们做出了VTTC。电子管本身有高频性能好等等优点,所以做出的VTTC效果十分独特。但是,不可否认,电子管本身有造价高、寿命低、效率低、发热严重以及极易损坏等缺点,VTTC未能大范围流行。3、连续波双谐振固态特斯拉实验证明,连续模式(CW)的特斯拉线圈由于功率要是在没有时间限制情况发挥出来弧并不长,且呈簇状。4、双谐振特斯拉线圈DRSSTC本质属于一个串联谐振逆变器,相对于SSTC来说,由于初级线圈发生了串联谐振,初级线圈电感两端的电压为激励源电压的Q倍,谐振阻抗Z(R)因子很低,因此初级的谐振电流很大(谐振电压除以谐振阻抗等于谐振电流),此时给次级提供的励磁功率也会很大,和SSTC可不是一个数量级的。相比SSTC来说,SSTC的初级线圈给次级线圈无法提供足够大的励磁功率,所以导致SSTC产生的闪电壮观程度不及同功率等级的火花隙特斯拉线圈。DRSSTC的初级线圈不仅满足了次级线圈的电感和分布电容发生串联谐振的条件,也能够给次级线圈提供足够大的励磁功率,所以DRSSTC的电弧长度会很长。优点:相比SGTC来说,没有火花间隙的声光污染,可控性强,可以放音乐,效率高,寿命长。5、带灭弧固态特斯拉线圈同输出功率下,SSTC的电弧成簇状,且明显不如SGTC壮观。这时,可以加上一个灭弧器来模仿SGTC的工作,电弧可以长一些,还可以利用音频信号灭弧信号来演奏音乐。6、固态特斯拉线圈说通俗些是个单谐振的电子开关特斯拉线圈,初级不发生串联谐振,只给次级提供可以满足次级LC发生串联谐振的频率,让次级线圈发生串联谐振,初级电流为激励源电压除以交流阻抗。优点:具有低噪音、高效率、寿命长的特点,因而得到了很好的发展。缺点:初级线圈给次级线圈提供的励磁功率有限,电弧不长。7、触发二极管特斯拉线圈由触发二极管--IGBT管组成的电路组代替传统火花间隙工作,达到消除打火噪音的目的。8、火花间隙特斯拉线圈尼古拉·特斯拉先生本人当年发明的“特斯拉线圈”就属于SGTC。由于构造、原理较为简单,所以也是现阶段初学者入门特斯拉线圈。四、特斯拉线圈的原理简单来说,特斯拉线圈是一种升压装置,学名为“分布参数高频共振变压器”。它带有两级升压线圈,可以把家用的220V电压升到数万伏甚至数十万伏,然后再经放电终端放电。由于电压很高,放电时产生的火花就像小型闪电。另一方面,特斯拉线圈包含了LC振荡回路,因此放电终端产生的交流电具有很高的频率。以家用工频50Hz交流电为例,特斯拉线圈的放电终端可以达到100kHz到1.5MHz,即工频的倍。因此特斯拉线圈可以产生超高电压但低电流、高频率的交流电。首先,工频电源经过升压变比为2000以上的变压器升压,经过整流桥后对电容C1充电。当电容的电压高到一定程度超过了打火间隙(SG)的阈值,打火间隙击穿空气打火,变压器初级线圈的通路形成,能量在电容C1和初级线圈L1之间振荡,并通过耦合传递到次级线圈。次级线圈也是一个电感,放顶罩C2和大地之间可以等效为一个电容,因此也会发生LC 振荡。当两级振荡频率一样发生谐振的时候,初级回路的能量会涌到次级,放电端的电压峰值会不断增加,直到放电。五、特斯拉线圈与无线电力传输第一次接触特斯拉线圈还是在中国达人秀上面,我永远也忘不了那位年轻而又神秘的少年——卢驭龙,年仅16岁的他就成为了中国科学达人。同时我也认识了另一位好朋友——“特斯拉线圈”。特斯拉线圈(Tesla Coil)在本质上来说是一种特殊的变压器。该变压器通过多级耦合电路将普通交流电压提升的百万伏或者千万伏级别的电压。经过特斯拉线圈作用的放电终端的电压特性为低电流、超高压、高频率。特斯拉线圈最早由尼古拉·特斯拉发明。特斯拉对线圈进行了多种方式的配置,他试图通过利用不同方式,结合不同实验现象对线圈配置进行改进和优化,以期可以通过该线圈实现电力的无线传输。特别是其为科学研究而建造了沃登克里弗塔,但是资金的短缺导致该项目最终还是失败了。但是这并不能证明无法利用特斯拉线圈进行电力的无线传输。本文就特斯拉线圈及如何利用特斯拉线圈实现电力的无线传输进行了研究。一个小型的特斯拉线圈物理结构应该由以下几个模块构成:感应线圈模块、打火模块、电容器模块、变压器模块、互感模块。其中电容器部分要求至少要有两个大容量电容,要求互感器部分的初级线圈的圈数要少一些,保证增大电压的能力。对线圈进行放电,电能通过变压线圈耦合到大容量电容阵中。随着电容充电过程的不断持续,电容两级电势差会不断增大,一旦该差值超过击穿电压值,就会对电容两极间的打火器进行点火,进而在电容阵和主线圈之间形成闭合回路,该回路利用电磁效应将电能通过耦合由初级线圈耦合到次级线圈中。利用特斯拉线圈可以将普通交流电压耦合到高频高压范围,因此使用该线圈时需要注意采取必须的防护措施,以免发生事故。为了让大家更清楚的理解,这里我做了一个小型特斯拉线圈,如图1所示。图中所示为小型特斯拉线圈装置,大体分为5个部分,放电顶端装置1号位置,次级线圈2号位置表示,初级线圈表示在3号位置,底座为4号位置,外输出装置在5号位置表示。该装置主要由放电顶端的球形装置产生的电弧现象以及外输出装置(节能灯发光)呈现。当节能灯靠近次级线圈,达到一定距离时就会发光,同时放电顶端表面的电弧变弱。同样,距离变远时,灯光由亮变暗,电弧现象增强。由该实验可以看出,特拉斯线圈可以实现电力的无线传输。若提高特拉斯线圈的电压和频率,可以将电能输送到很远的地方。利用特斯拉线圈实现电能的无线传输是其今后的主要发展趋势。基本的特斯拉线圈原理图如下图2所示,电源端电压经过整流后变为直流电,该直流电对回路中的大容量电容进行充电。随着充电的进行,电容两级间的电势差不断增大,当电容两极间的电势差超过空气所能承受的最大绝缘电压时会在电容两极间产生放电现象。此时初级谐振回路处于导通状态,整个电路的能量通过耦合效应由初级回路耦合到次级回路。通过几个周期的耦合后,大部分能量被转移到次级回路中。其中,部分能量会因线路损耗等被损耗掉。根据线圈结构可知,在次级回路中的能量还会通过耦合返回到初级回路,期间部分能量被损耗。几个耦合周期后,电容两端的电势差无法击穿空气,导致初级线圈所在回路断开,该过程结束,电源重新进入充电状态。特斯拉线圈的放电过程只有三到十毫秒,但是线圈的放电频率超过100次每秒,因此虽然放电过程持续时间较短,但仍旧会给观察者以持续放电的效果。通过上述分析可知,其结构和原理相对简单,实现较为容易。但是在大规模实际应用中,对其与环境的调试具有非常大的操作难度。虽然理论和局部验证性质的实验证明利用特斯拉线圈可以实现电能的无线传输,且该方式传输效率高、对生态破坏性小,但是实际应用中还存在诸多困难和障碍,还无法将其应用到实际电力输送中。需要注意的是,特斯拉线圈能够将普通电压提升到超高伏电压段,该阶段电压远远超出了人类的承受能力,若不慎发生触电不仅会导致触电者瞬间死亡,还会对触电者周围环境产生破坏,因此在线圈的制造和维护过程中一定要采取足够的防护措施,操作人员要严格按照其所掌握的理论基础和操作规范进行操作,以免发生危险,对人和设备造成危害。六、特斯拉线圈计算公式在特斯拉线圈制作的过程中,无论是大功率的特斯拉线圈,还是标准功率的特斯拉线圈,都需要工程师精确的按照相应公式完成功率、电容、电压、电流等数值的计算。下面皮卡中国小编就来给大家介绍一下那些特斯拉线圈的公式内容。1、电路长度计算公式在特斯拉线圈制作的过程中,电路长度的计算是需要非常精确的,这就需要用到一个计算公式,即:L=1.7*sqrt(P)。在该公式中,电弧长度为L,单位是英寸,P为变压器功率,单位是瓦特,sqrt为开方。2、震荡频率计算公式震荡频率的计算公式为F=1/[2*Pi*sqrt(L*C)]。3、电容阵列计算公式在制作过程中,特斯拉线圈电容阵列最大容量的计算公式也是最常用到的,该计算公式为C=(10^6)/[6.2832*(E/I)*F]。在该公式中,E为变压器输出电压,单位伏特,I为变压器输出电流,范围毫安,电容器阵列最大容量为C(单位微法),F是交流频率(单位赫兹)。4、交流峰值公式当电容过大时在交流上升到顶点时,即sqrt(2)*V时,电容电压过低无法击穿打火器的空气隙则打火器无法启动就无法工作,整个系统也就无从启动。七、特斯拉线圈的能量接收作用只要建立一座大型特斯拉线圈,纵使接收电容的数量不断增加,也绝对不会影响该线圈所供应电力的输出量。换句话说,只要该座线圈是输出10万匹马力之电力, 方圆35英里内,所有接收电容即可接收10万匹电力,就算再增加多1 万个或100万个接收电容,这1万个或100万接收电容亦可以接收空气中的10万匹的电力。因为它所释放的高压高频电流,能够诱导其他空气中的中子释放出 一样的电子。这就是特斯拉线圈与一般免费能源发明之分别。比如只要城市在数个方位位置上建设了特斯拉线圈,整个城市每一处地方即可享受到免费电力的生活。我们的交通工具、汽车、火车、轮船、飞机、手提电话、白光 灯、电脑、升降机、电冰箱和空调机皆能使用免费电力。可惜这项已于100年前被确认的免费能源至今仍遭到不公平的压抑,在各个国家中只允小撮人以实验性质来制造,并不能被推上成为主要供电方法之一。八、特斯拉线圈在无人机方面的作用按照无人机目前发展的热火趋势来看,未来不管是送包裹,还是看农场、抓犯人,这种体型小巧灵活的飞行器似乎都能够胜任。不过这家伙也并非没有缺点,其中最恼人的莫过于电池续航不足的问题。目前大部分市面在售的无人机,单次充电在空中停留的时间不超过30分钟,之后便需要更换电池或连接电源充电。其实,将电能通过无线方式传输的想法,在一个多世纪前就有了。1893年,作为工业级电力应用倡导者之一的尼古拉·特斯拉,在当年芝加哥举行的哥伦布纪念博览会上,就曾展示过「隔屋点灯」的“绝技”。不过这种「点灯泡」的小伎俩和特斯拉怀揣已久的野心相比,似乎根本不值得一提。按照他的想法,未来利用高塔和气球进行“广播”,即可将电力输送到世界各地,甚至特斯拉还为第一次试验成功申请到了摩根大通的投资。不过遗憾的是,和当时大部分物理学家预测的一样,特斯拉「无线输电」的试验最终以失败告终。尽管特斯拉的偏执与爱出风头曾一度被人诟病,但不可否认的是,一些能够实现远程电能传输的靠谱方式,目前正越来越受到关注。例如,特斯拉率先尝试的无线充电技术已经在手机上得以实现,而研究人员甚至正在开发类似的无线供电的厨电家居,抬头显示器等军用装备,心脏泵、脑电图等医疗器械。据市场知名调研机构IHS估计,目前每年此类设备的销售额在5亿美元左右,未来10年内,该数值将实现30倍的增长。九、特斯拉在其他方面的作用体现特斯拉线圈由两组(有时用三组)耦合的共振电路组成。特斯拉线圈难以界定,尼古拉·特斯拉试行了大量的各种线圈的配置。特斯拉利用这些线圈进行创新实验,如电气照明,荧光光谱,X射线,高频率的交流电流现象,电疗和无线电力,以便进行电力传输。十、特斯拉线圈如何制作其实说到特斯拉线圈的作用,目前很多的民间科技爱好者都非常喜欢特斯拉线圈,因为这种东西是可以自行进行制造的,也就是说只要你有科技的知识,那么自行制造特斯拉线圈是非常有可能得,并且由于特斯拉线圈非常的美丽,所以成了欣赏者非常喜爱的一种东西,下面皮卡中国的小编就教大家如何制造特斯拉线圈。1、初级线圈的制作用2mm的漆包线绕成圆柱形状。类似一个压扁的弹簧。直径7.5厘米,绕七圈。这一步,我建议大家找一小段直径7.5厘米的塑料管来绕,这样容易绕,也比较坚固。线之间尽量不留空隙。2、次级线圈的制作用0.25mm漆包线在管子上绕,线不能交叉,绕1000圈。尽量保证线和线之间没有空隙。有条件的,可以用绝缘漆刷一层。对于次级线圈,我没有什么好说的,也没有什么技巧。我们要遵循两个原则:一,线不能交叉;二,绕线要紧密。用0.25的线绕1000圈,大约有27.5厘米长。因为漆包线的表面是有一层漆的。开始绕之前,一定要先在管子一段钻个小小的洞,再把线的一头用胶固定好,然后开始绕。绕的过程中务必要小心,如果线乱了那就大杯子了。绕好后务必要把线固定好。3、组装线圈把次级线圈的线的一头接在那个金属球上。这个球,我们称为放电顶端。它和地面形成了一个电容。然后用胶或者热胶枪把球固定在管子一头。把次级线圈固定在塑料板上,初级线圈固定在次级线圈附近。次级线圈的线的另一头接地。这样,我们先把初级线圈用胶固定在有机玻璃板中间(我假设你买的是有机玻璃板),然后再把次级线圈固定在初级线圈中间。然后,把次级线圈的一头的漆包线的一小段弄掉一点漆,接在那个圆球上,再把球固定好。次级线圈的线的另一头要接地。4、组合电容我们需要一些无极性电容,推荐使用MKPH电容或者陶片电容。根据这个线圈的数据,我计算的结果是需要一个21717pF的电容。呃,要这么精确干什么,就取0.022μF吧(可根据打火器间距进行微调)。电容的耐压取决于电源的电压,而高压包可以产生一到两万伏的电压,所以电容的耐压还是越高越好。电容的计算很简单,在此,再提一下。串联电容的耐压等于各电容耐压之和,容量的倒数等于各电容的容量的倒数之和。并联电容的耐压不变,容量等于各电容的容量之和。(我们组合电容时,尽量使用同种电容。)建议使用20kv 1000p的电容串并联22次,比较省材料。5、制作电源我们可以采用单管自激推高压包的方法来产生高压。我们使用一个2N3055三极管。那个黑色的东西,就是高压包的磁芯。绕在铁氧体上的那两个线圈,上面到下面两个分别用1mm漆包线绕八圈和二十圈。绕线的方向必须相同!最好给三极管装一个散热装置,因为单管自激会产生高温,不吱温度过高会不会把三极管烧坏。高手可以直接搭棚,而菜鸟们还是老老实实用洞洞板吧,用那个12V蓄电池作为它的电源。6、制作打火器SGTC的原理就是先给电容充电,电容的电压达到一定程度时,在打火器出放出电弧,形成一个回路,然后放电,之后重新开始这个循环。我们可以用稍粗的漆包线来制作打火器。一般,打火器是不能用尖端的,需要用光滑表面。把两段粗漆包线的一头的皮刮掉,弯成两个光滑表面,然后用热胶枪固定在塑料板上,中间留6~10毫米间隙。7、最终的装配 这个“对地等效电容”没必要做,因为它是放电顶端和地面形成的一个等效电容。根据电容的概念,这个“电容”的两个极板分别是放电顶端和地面,介质是空气。十一、特斯拉线圈的崛起提到无线充电技术,很多人会想到大名鼎鼎的“Tesla线圈”。被认为是“通古斯大爆炸”缔造者的尼古拉·特斯拉,发明了这种可以产生人造闪电的高能设计。虽然可以让电跨空气传播,但和我们现在所说的无线充电还有点区别。真正类似的设计,是电感线圈。一组线圈通电后,可以利用电磁场在另外一组相邻的线圈中产生电流,这也就是无线充电的雏形。虽然这个技术已经出现了百十年,但到目前为止,无线充电技术的普及难度仍然非常高,甚至最大的受益者居然是充电牙刷,这实在是一件让人高兴不起来的事情。其实无线充电技术真正的壁垒,在于短距离感应耦合的高要求条件。从而使得在很长一段时间里,它都无法真正普及,哪怕是业内已经出现了Qi这种规范化标准。不过一切都在朝着好的方向发展,4AWP以及PMA两大标准宣布合并,而Qi标准的阵容也在一步步扩大,微软、松下、三星、索尼、东芝……连宜家都表示即将推出支持Qi充电的全新家具系列。最新的Qi标准可以实现45mm的充电距离,这个进步也算是一个小小的突破了。得益于无线充电技术,人们可以逐步抛弃插头,就像当年用Wi-Fi取代有线网一样。而其充电速度、稳定性和安全性等指标,也会随着时间的推移慢慢进化。而且除了数码领域,我们还可以在更多地方看到这类技术。在今年的首届CES ASIA上,我们看到了来自大众汽车的高尔夫概念车,可以直接驶入特定区域,通过底下的磁感线圈进行无线充电。如果未来的感应耦合可以突破距离和准确度的限制,那可能任何需要用电的东西都能随时进行电能补给。比如你坐在客厅里,无线充电装置位于书房,你也可以通过手机App一键完成远距离充电。如此一来,走进厕所才发现手机电量见底也不必担心了——只要还没自动关机。现在星巴克也在部分门店推出了Qi无线充电技术,如果距离得到突破,那门口除了蹭网的,还会出现一批蹭电的。如果把未来预期的无线充电效果比作Wi-Fi技术,那今天的无线充电模式连蓝牙级别都算不上。但我们相信一次次小的进步会积累成大的成功,而这一切即将发生在不远的将来。十二、特斯拉线圈视频总结:说到特斯拉,还有著名的通古斯大爆炸,很多人都猜测和特斯拉的实验有关,这个爆炸可以说是空前的,其爆炸的当量非常的恐怖,依据当时的炸药水平是达不到的,而这个时候刚好就是特斯拉的试验阶段,虽然说不能直接的表明,但是依然还是有很多的人在说就是特斯拉造成的,但是对于这种虚无缥缈的东西,我们更多应该关注的是特斯拉线圈能够给他们带来什么样的精彩。
(责任编辑:蓝色)
皮卡销量排行榜查看: 15572|回复: 71
在线时间5697 小时
阅读权限120
经验3840 点
金钱942 ¥
输出变压器的一些简化设计很多文章均有 , 这里就不多讨论 ,现主要试着从变压器的一些深入浅出的理论与胆友们探讨输出变压器的绕制 , 制作。
一, 初级线圈电感
L≥Rpp/2*3.14f√M2 –1
式中Rpp为功率管的最隹阻抗 , f为要求最低频率 , M为中音频增益与f增益的比值 , 一般取2-3分贝 .
输出变压器在低频段时频率特性与输入幅度有关 , 因为铁心的磁感应强度与输入电压成正比 , 也就是说当输入电压低时磁感强度小 , 铁心的导磁系数小 ,初级线圈的电感量也小 ,结果是低频矢真增大 , 反之亦然 , 所以设计时应从最低工作频率最小信号电压的情况 , 考虑初级线圈的电感 , 这一点不能忽视它 , 毕竟信号输入电压是变化的 , 而非恒定的 , 初级线圈的电感也是非恒定值 .
二输出变压器的效率 输出变压器的线圈肯定有直流电阻 , 有电流过就产生功率损耗 , 从而产生效率 , 在输出变压器中一般铁心损耗较小可以不加考虑 , 主要是铜耗 , 因此要提高输出变压器唯一途径是增加导线直径 , 但这样又会降低铁芯窗口的利用率 , 又会加大变压器的体积 。 适合的效率选择是必需考虑。
三变压器的圈数比n 输出变压器的圈数比应根据阻抗匹配的原则确定 , 即折算到变压器初级端的线圈负载电阻应等于末级电子管最佳负载阻抗 , 此时功率输出最大失真最小 , 圈数比公式 : n=√Rpp*n/R2 此式中Rpp电子管最佳负载电阻 , n为萝变压器效率 , R2为出阻抗 , 一般情况下取 2 - 8 o , 但是我们知道现今音箱阻抗的标法是一种国标标法 , 而实际上音箱阻抗是决非一条恒定不变的直线 , 而是随频率改变而改变的阻抗曲线 , 音箱测试系统测试音箱的阻抗曲线就很明显看出 , 而且此测试信号还是恒定的 , 音箱工作时的输入信号是宽频的复合突变信号 , 因此在计论前先简要说一下喇叭的一个特征 :
我们目前绝大部分是动圈喇叭 , 其结构均为有一个产生磁场的磁铁与一个绕有导线的音圈 , 记得中学物理实验有一根导线在一个磁铁产生的磁场中切磁力线运动 , 其导线两端会产一个电压 , 同理如果咱们在喇叭端子上接一电压表 , 手来回轻按振盆会发现有一个变化不定的电压 , 并视手压的幅度大小有关 . 并且由于喇叭的损耗和非线性失真的影响 , 喇叭不可能把功放输出的电能全部转化成机械能 , 而会产生剩余电能 , 此多余电能就会在音圈中产生额外的反电动势Back emf . 喇叭工作运动中会存在一定的惯性作用下的振动 ,如前面讨论一样产生一个电压 , 并视振盆惯性大小决定电压大小 , 此电压与反电动势合并会通过初次级间感应耦合 , 反过来影响到输出变压器的初次级圈数比 .
输出变压器的圈数比计算是需要的 , 但经验实践与电路设计制作试听调整是必需的 , 再好的先进的仪器也代替不了耳朵 .
四 时间常数 变压器的初级线圈电感量决定了最低工作频率和这频率所允许的频率失真有关 , 但变压器的尺寸及材料损耗并不决定电感量 , 变压器时间常数是由初级电感量与线圈电阻的比值决定的 , 根据磁路学和电工学(此处简化推访) t=l/r=0.u//o*ScSm1/LcLm
式中Sm1 Lm1为铁心窗口初饭线圈所占的截面与平均匝长 , o为导线电阻系数 , 从上式可知变压器线圈的时间常数与线圈的圈数和导线的线径无关 , 而与线圈导线的材料 , 铁心材料及铁心与线圈形有关 , 这就为什么需用高导磁有取向铁心及为什EI铁心的输出变压器与环形与R型输出变压器声音不同的原因之一 .
五 临界功率 当变压器功率增加铁心的磁感应强度也相应地增加 , 但结果会造成磁的非线性失真 , 变压器的体积不仅与最低频率最低频率时的失真 效率有关 , 还和变压器的功率及所允许的非线牲失真有关 , 当变压器输出功率达到一定值时 , 铁心的磁感应强度也刚好达到使非线性先真到达允许值时 , 这时的功率称之为临界功率 , 当超过临界功率时铁心的磁一感应强度增加 , 使非线性失真超过允许值 , 并且还应考虑当变压器工作在最低工作频率 , 而外加电压(狺号交流电压)为最大值时 , 这时铁心的磁感应强度也达到最大值 , 因此临界功率必须从最低工作频率考虑 , 增加临界功率是个不错选择 , 这也是为何现代胆机输出变压器个头越来越太的原因 .
六 线圈的圈数计算 初级次级圈数的计算很多文章均有论述 , 这就不多谈 了 , 总之理想的线圈为 : 一 电感为无限大 , 以保证工作最低频率失真度最小 ; 二 漏感与分布电容为零 ; 当然这是不可能的 , 此三者是相互矛盾关系 , 在实际制作应三者兼顾 , 从平衡考虑 ,
线圈的计算符合 : 一 要保证线圈的电感量符合低频工作时的频率失真要求 ; 二 要保证铁心磁感应强度不超过非线性失真要求 , 因此以下几点供大家参考 :
一 , 一般层次交替数取三就够了 , 这时漏感最小分布电容最小效果最好 , 层次增多效果不明显 , 但绕线工艺却复杂多了 ; 二 ,绝缘材料的重视 , 层间组间采肉用厚薄不一的电缆纸是不错的选择 , 骨架也极为重要 , 电木骨架是最理想了 , 尽量避免塑胶骨架与聚脂薄膜类绝缘材料 ; 三 , 用高导磁率的铁心 , 这样在保证足够的电感量时 , 圈数可减少 , 分布电容与漏感也就相应减小 , 并且保证大功率增加时 , 铁心的磁感应强度不致于因铁心本身导磁率低时而引起非线牲矢
在线时间5697 小时
阅读权限120
经验3840 点
金钱942 ¥
最后一贴:终于灌完了
累死了!!灌够 了1000篇,可是也不是龙王!俺就发大水冲了他龙王庙!哈哈!各位DX认为有用就拍砖吧
在线时间5697 小时
阅读权限120
经验3840 点
金钱942 ¥
如何选择器材承架?
如何选择器材承架?
& & 不少发烧友投资相当多金钱到音响系统去,但就是疏忽,或不愿意花精神选择较佳的承架,导致音响效果未能合符身价。
& & 一款合符标准的音响器材承架,并不一定在乎它有多重,而是侧重于结构是否扎实。这不单止要求其垂直方向不能有疏松现象,同样重要的是,水平方向也不可有任何摆动,否则即使承架再重,声音必定含糊,缺乏弹跳力。要知道,尽管是解码器,没有黑胶唱盘或CD盘那么让人了解避震的重要性,查实其精密电路一样需要稳定不起震动的理想工作环境。倘若不信,可试为解码器加上钉脚,无论钉脚质量是高是低或是否合适使用,我们会即时听到用钉与不同钉的分别。这个当然,解码器本身的塑料脚,由于被不同物质的钉脚所取代,效果不一,声音给改变了也是原因之一。
& & 经验告诉我们,将器材的机脚置于承板下为垂直柱脚的位置上,声音愈见稳定,这是由于该处结构最为扎实,谐震比承板中央地方较少,音染自然低,舞台感更明确。
& & 一般相信,不同物料制造承架,即使撇除结构模式不论,声音都不一样,这是正确的。这是由于不同物质,其结构不同,全频谐震,自不一样,对外来震动(包括直接或本自空气)的反应也各有不同,间接影响了承于其上,受其不同震动的影响,其情况一如使用不同钉脚,声音便发生相应的变化。故此严格来说,纯木制花梨架,金属柱配木板或花岗石板,效果都不一样。其中的声音差异往往可以用线材或钉脚加以调整,达到更合符所需的要求,但总体而论,承架必需结构扎实,是为大原则。
]承器材用的钉的垫有何用途?
& & 自从一款被定名为Tip Tocs的铜钉,在香港市场发售后,钉脚这种利用物理退交方式导走谐震的角色,就一直引用至今,普通发烧友家里几乎都安放有几套不同的品种。当中有木、金属、宝石(石头?),甚至软胶配合铜材等等物质制成的钉或垫。像一些应用软性橡胶制作的承机脚垫,无疑是可以吸收震荡,但承于其上的器材像放在一张弹簧睡床上,显出下盘不稳,将恶声连带分析力及高频延伸一起带走;就是低音也显得乏力。今天推出的音响器材,质量多不坏,像这类好处与缺点一样的脚垫,再无用武之地,价值已失。
& & 有朋友喜欢木制的钉脚,亦不呈半球体或立方体状物。据说音质非常优美,即所谓木声也。事关小提琴、古典结他等等都以木片来制作(那么金管乐器又如何?),但无论如何,我们无需过分批评之类东西分析力不及铜钉,毕竟器材讲搭配,口味也因人而异。论到音响特性,想将音响舞台中一举一动敏锐而灵巧地展现出来,铜钉甚至比钢钉更为理想。
& & 没错,纯铜钉质地较软,用手锯已可切割铜料,声音较钢钉醇一点、厚道一点、低音亦浓一些,就是跃动感、弹跳力不及钢钉。市面上有些铜钉由两种不同硬度的铜材打嵌而成,其中空芯部分,填充一种带阻尼特性的软性物料,吸收器材或铜钉本身卸之不去,残留下来的余震。亦有些同类型产品,在钉身外圈挖一条幼细的坑槽,然后加上一条橡胶圈,实行内外夹攻,进一步吸收谐震,成效相当显著,音响画面透明度更高,全频动态更为活跃。像木结他低音弦这类难以重播的乐器,都有相应的声音改进。
& & 事实上,各类型钉皆标榜着改善(也包括了改变)音响效果,然而钉、垫顶部与器材底部,都没可能完全光滑,较为精糙,致令二者接触时不能百分百呈紧密状态,效果必定打上折扣。但总体而论,还是利多于弊。
& & 就物理性而论,三颗钉尖那么小的面积,却承受了器材的总重量,可想而知其质量相当之高,基于面积强,从上而下的重力与谐震,只会透过钉尖顺利导向器材承架去。钉尖的秘密源之于此。在器材底部摆设钉脚亦须讲究技巧,最重要的一至两枚应放在变压器。CD碟仓的底下,因为这些地方具最强烈的震动。余下的钉尖只要能令整件器材保持平衡即可。
在线时间5697 小时
阅读权限120
经验3840 点
金钱942 ¥
发烧的入门之道
不经不觉在这发烧漫淡的栏目已写了不短的日子。由于笔者一向醉心于音响技术,和大家谈发烧经总是集中在理论和技术层面,这样往往一谈到一些大道理时,便理所当然地都把读者看成同行人,谈的东西一般需要有一定根底才能理解,于是不止一次编辑向我发出要求,希望我写的东西能尽量深入浅出,对发烧初哥多加照顾。最近有读者向我询问,他把我的第一篇文章是谈电源的,读了很多遍,但仍是不明白,皆因他对音乐音响有浓厚的兴趣,对很多器材及各种玩法都充满好奇,唯独物理和电学方面的知识不够,故欲改进而不知从何入手。他的提问对我很有启发性,今天的年青人当面对计算机软件时可能会得心应手,但被问到一些基础知识时却会哑口无言。我想要推广发烧的乐趣,圈内人士确需要多做一些给入门者引导的工作,而我们拿笔的就更有责任把道理尽量解释得浅白易明。
& & 返本归源,什么是发烧之道?我想这不能简单地等同是有能力或愿意拥有昂贵的音响器材。要知道,只胡乱地把一大堆贵价的东西接上,往往出来的只是一些很平凡的效果。我想发烧需要一些基本的条件,有客观的,如有一定水准表现的器材和合理的聆听环境,有主观的,如对音乐的热爱,对音响完美的追求,而最重要的是掌握一定的调音校声的本领,和一双能与此相辅相成的耳朵(鉴听能力)。谈到调音校声本领,就不得不谈到一个专用名词TWEAK,在GORDON HOLT的经典力作“THE AUDIO GLOSSARY”中,TWEAK解释为把东西微调到完美的极至(to fine tune something to the nth degree of perfection)。这说得很对,发烧友的冲动源于对完美极至的追求。这里我们可以把 TWEAK 解释为把回放系统或聆听环境加进任何改变而导致你对音乐享受的增加。这些改变可以是把音箱在室内不断左右前后推移去寻找一个理想的位置,也可以是打开机器进行摩机,如电源部份换大水塘,或更换各种交连电容。
& & 把音箱推前移后,可能只花几分钟时间,但如在高手主理下,出来的效果会是惊人的。因为高手是了解这套回放器材和聆听环境间出现矛盾和不协调的症结所在,移到新的位置后面是有一定的理论根据的,譬如是用以压抑某个频率的响应波?,或用以破坏某个初次反射面的作用等。要摩机,所花的时间更多更长,动辄以小时计。当然前者可能只用几分钟而不用花任何金钱,后者要用上几个小时,而所花金钱则可以丰俭由人。这两者不能简单以经济效益来衡量,因为比较的另一个重要指针,这就是改变的幅度,至今没有一个客观公认的基准。但两者都有一个共同点,这就是发烧友在过程中所得到的兴趣和享受,是非笔墨所能形容的,再者,在经历各种改变的过程,是一种很好的学习,所得到的经验对提高自身的鉴听能力很有帮助。
& & 好了,既然一位读者的提问,引发了我写这篇文章,我便力图更显浅地去解释他的疑问;电源问题。我以前已经提过,对电源的认识的确是发烧友的一项必不可少的基本功,因为这不花钱的TWEAKING带来的效益太大,太明显了。
& & 提出关注电源极性的影响的,据我记忆所及应是在1981年ENID LUMLEY在TAS发表的文章,之后在主流Hi Fi杂志和机电工程师之间断断续续的进行过争议。可是到今天大部份人已认同了电源极性的影响,甚至有些器材在说明书上都有提及电源极性对声音及画面所可能带来的影响。
& & 记得十多年前,有一班前辈就懂得用耳朵在鉴别每件器材的电源极性,这可以说,当年闹过不少是非,因为电源极性的影响,因器材而异,有些很明显,有些可以是根本察觉不到,由于当年没有人系统地去解释,金耳朵以此大吹法螺,引起了不少无谓的争端,现在回想起来,会觉得好笑;可是你可曾理解到当年一些耳朵没有修炼到那么好的发烧友所曾面对过因自己听不到分别而感受到的苦恼?到今天,一切都可以解释的,有些器材,更换电源极性,变化很大,是有原因的;另一些器材,更换电源极性,没有任何分别,也是有原因的。问题是,当年的大师辈,面对根本分别不到的情况时,奈于面子,便胡乱硬说某个改变是正确,而声音又怎样怎样变化,旁边一些“擦鞋仔”推波助澜,结果是Hi Fi圈风云变突起。
& & 今天,我们可幸福得多了,要练就这基本功,你只要买一件廉价的道具就可以了。首先为求显浅,容我多说几句有关电的基本常识。目前我们接触到作为能源的电,有直流(DC)及交流(AC)两种。我们日常用的干电池,它的极性是不变的,正端永远是正端,负端永远是负端,这种供电方式我们叫它做直流(DC),而一般干电池的电压很低,电压的单位叫Volt(伏特),干电池一般是1.5V,汽车的电池是12V或24V,电压一般要到 80V左右才开始对人类安全构成威胁。另一种我们家里各种电器使用的电源,一般叫市电,香港俗称湿电,电压很高,香港是220V,而它的极性不断改变的,即电线的一端不断地正负交替,也因为这样,这种供电方式叫交流电(AC),交流电极性每秒钟内变化若干次,这次数便被称为频率,香港市电是50频的,就是说它每秒钟正负交替50次。由于效率的关系,要输送电力,都是以高压交流形式进行的。而大部份电子器材,它机内实际用电却是以直流进行,于是每部器材都需要把高压的市
在线时间5697 小时
阅读权限120
经验3840 点
金钱942 ¥
小空间如何得到饱满宽广的声音
小功率、小喇叭、小空间,却妄想得到饱满的音像与宽广的音场、低频与中频的量感也很丰富?想骗谁!如果真能这样,那幺大功率、大喇叭、大空间起不是都白搭了?如果您照我的方法做,我保证您一定可以在小空间内,利用小功率扩大机与小喇叭来得到中频与低频都很饱满的声音,而且,高频也不会刺耳。总体来说,那将会是一种中、低频饱满、高频清楚而不刺耳、音像、定位历历在目、整体平衡性相当好的声音。
软调空间加喇叭摆位就可以
& & 或许有人会开始怀疑,我刘某人不知道又要玩弄什幺把戏?是否要我们花大钱整治空间、更换昂贵的器材,否则怎幺能够得到那幺好的声音。我像您保证,您不须要更换器材,也不须要花大钱就能够得到我所说的效果。您所要做的就是复习我以前所讲过的“软调空间”以及“喇叭摆位八法”。然后,再花一点点小钱就大功告成。
先说这一点点小钱是多少,要怎幺花?这一点点小钱我估计在5万元台币以下(以五坪小空间来算)。花在哪里?花在请木工师父将房间的四面墙壁钉上石膏板或希酸钙板。为什幺要钉石膏板或希酸钙板?因为在四面水泥墙上再钉一层石膏板或希酸钙板之后,会让您的空间由硬调子变为软调子。而软调子空间是让声音好听的第一步。
& & 请木工师父钉板子要多少钱呢?以目前的行情而论,钉石膏板一尺宽约800元台币(高度都是固定8尺来算),钉希酸钙板比较贵,一尺约1,100-1,200元台币。这二种板有什幺不同呢?石膏板怕潮,希酸钙板不怕。二者都是防火材料。那种板对声音比较好?老实说,我只用过石膏板,所以无法给您答案。我想,如果府上不是淹水区,您用石膏板就可以了。石膏板要怎幺钉?很简单,木工师父会先在水泥墙上以角材钉框,然后再覆上石膏板。要注意的是石膏板与水泥墙之间的空隙要铺比较重磅的玻璃纤维棉。铺上玻璃纤维棉的用意是要吸收空腔里的振动声波,您不必塞得满满的,只要松松的铺上一层就可以。
& & 四面墙应该至少一面会有窗,一面会有门。反正在钉石膏板时就是避开门、窗去钉就是了,木工师父会帮您钉的很美观才对。钉完之后,看您喜欢什幺颜色,再请油漆工或木工师父代劳上漆,这样就大功告成了。当然,如果您预算足够,最好是将窗子加强,再做一层铝窗以隔绝噪音,甚至换过隔音效果比较好的气密窗也行。要知道,户外噪音强度如果能够降低10分贝,胜过将100瓦扩大机换成1,000瓦。就这么简单,我们就可以将原本硬调子的空间转变成软调子。至于天花板与地板,就暂时维持原状,不必去管他。当然,如果您愿意照“刘氏好声歌”去做,那将会更好。不过,这可不在5万元台币预算之内。
长边摆法加近音场正三角形摆法
& & 软调空间转换达成,接着我们要复习“喇叭摆位八法”。这次,我们要用的是近音场的“正三角形摆位法”。首先我要说明正三角形摆法的好处。通常,我们会用正三角形摆法,就是想避开空间因素的影响,以及想要靠近喇叭,节省扩大机的功率这二个原因。先说避开空间因素的影响。我们都知道任何一个房间中都会有驻波,小空间尤然,而要消除驻波要不是一件容易的事。再者,小空间中从二侧墙反射过来的反射音既多且强,这会产生定位飘移以及声音刺耳的副作用。如果我们把喇叭往房间中央摆,让二支喇叭远离侧墙(请考虑长边摆法加上正三角形摆法),这样一来侧墙的反射音就会大量减少。再来说到节省功率。您知道吗?如果我们想要让声音听起来一倍大声,那幺我们扩大机的输出功率就要大十倍才行。一部50瓦的扩大机与500瓦的扩大机价差有多少?还有,声音的强度是与“距离的平方成反比”。想想看,如果我们能够更接近喇叭来听音乐,那幺,我们岂不是可以用比较小的扩大机听到一样强而有力的声音强度(跟比较远距,更大功率相比)。
不必担心,音场既实体且宽广
& & 在此,读者们或许会有一个疑虑:聆听位置距离喇叭那幺近,耳朵所听到的岂不都是二个喇叭分开来的声音?绝对不会,您所听到的将会是喇叭消失无踪,整个音场在喇叭后面再生的声音。不过,在此我要请读者们特别注意:所谓正三角形摆法并不是要您一定将聆听位置与喇叭摆成正三角形,而是以正三角形为出发点去摆,通常我会倾向聆听位置离喇叭更近的摆法。换句话说,就是将喇叭摆得更开一些,人离喇叭更近一些,这样通常可以求得更好的音场。而且,不要担心音场会小小的。相反的,这种摆法所呈现的音场可能会比您原来的还要大。就是这幺简单吗?花一点小钱让空间转变成软调,然后再以近音场的正三角形摆法摆喇叭,凭这二个动作就可以在小空间里,用小功率扩大机、小喇叭求得饱满的中频与低频?而且高频不会刺耳?整体声音会很平衡?没错!甚至您会得到结实庞大、密度比以前还高的音像。至于定位感,无疑将会更好。事实上,我在杂志社的聆听室内就只用一对B & W CDM 7喇叭、一部Primare A-20综合扩大机加一部Sphinx Myth 9 CD唱盘,这样就得到前面我所说的声音。
不要当音响冤大头
& & 长期以来,论坛一直强调聆听空间以及喇叭摆位的重要性。不过我们也知道许多读者根本懒得动手去试试看,而宁愿花大钱去更换器材或线材。其实我们并不反对您换器材,不过我们认
在线时间5697 小时
阅读权限120
经验3840 点
金钱942 ¥
线材能改变音质吗
音响报刊杂志关于线材的文章不少,其中也不乏理论结合实践的精辟之作。然而,也有走极端的——即有不少线材发烧友对其津津乐道,也有人对其全盘否定。其中也不乏所谓音响或对音响评论的“行家”、“专家”对线材作用加以否定,或说线材的作用在音响系统中的作用微乎其微,最多起十分之一的作用。这些言论必然会使读者、特别是初入门的音响爱好者觉得无所适从:究竟应听谁的?!
& & 本文想揭示两个问题:一、线材在音响系统中的作用究竟有多大,即线材能改变音响的音质吗?二、线材运用的基础(或前提)是什么?
& & 要回答的第一个问题,又包含两方面的内容:线材的作用是什么?何谓音质?
& & 常见的音响线材大致有三种:信号线、喇叭线和电源线。其中,信号线和喇叭线的作用是:⑴传输信号;⑵阻抗变换;⑶音色修饰。
& & 信号线和喇叭线的区别是:信号线传输的是微弱的电信号,其幅度量度单位通常是电压,平均幅度最大几百毫伏至几伏;而喇叭线传输的是功放到喇叭的功率信号,通常用电压也用电流表示其功率信号。
& & 如果信号线和喇叭线传输的是普通的电信号,那么用普通的导线就符合要求了,测量其指标用电压电流也就足够了。
& & 但是,信号线喇叭线传输的是频率宽达 20Hz-20kHz的频带信号,其要求说更高了。“20Hz-20kHz的频带信号”有两层含义:(A)频率范围宽,要求线材对各种频率的信号均“一视同仁”,不要压低一些信号而抬高一些信号,更不要无端产生原先没有的新生信号——即由于两个或两个以上不同频率调制混合新的多余信号;(B)乐器(如钢琴)发出的音乐即使是一个单音符,由于含有泛音,不是单一频率信号,而是一个频带,实际的音乐合奏(如交响乐队)的信号“群”,是一个更宽的频带,即音乐频谱,不能产生相移和频率畸变。所谓相移,是指由于线材存在的感抗和容抗,使不同频率的音乐信号经过线材传输后,某些频率或频段产生了相位的超前或滞后。表现在时间轴和听感上是某些频率成分或音乐成分的超前或滞后,比如高音成分的相位滞后(相对于中、低音)听感上是低音收得太快且不同的乐器难以分清其成分或原有的某些频率成分的幅度产生基本忠实地传送原音乐信号的传输线。
& & 信号线喇叭线的第二个功能是阻抗变换作用。懂得电子技术的人知道,任何音响设备都有其输入\\输出阻抗的指标。为了使音响设备之间的连接方便,更重要的是避免各个独立设备的相互影响,通常,CD机等音源和功率放大器总是设计成高输入阻抗(几千欧姆至几兆欧姆)。低输出阻抗的CD机都很容易与任何高输入阻抗的功放连接,而用不着考虑阻抗匹配的问题。也就是说,CD机等音源与功放机之间、前级功放与后级功放之间的配接不存在什么阻抗匹配的问题,而只有音响术语“配接”、“搭配”, 它们之间只有阻抗转换是两部机之间的连接和阻抗从低向高的转换就必须连接电缆——音响线材来完成。因为每部设备不单其输出\\输入阻抗不一样,各自的输出\\输入电抗(感抗和容抗)也不相同。它们之间的连接线材不同,音乐信号的传输效果也不同,人们从喇叭听到的音响效果也就不同。还应看到,对于喇叭线来说,也有一个阻抗变换的问题。这是因为,虽然功放标示的输出阻抗是一样的(如4欧姆、6欧姆、8欧姆),其实,这样的“阻抗匹配”只是指某频率下(如1KHz处)的阻抗,更由于喇叭运行时随着功放输出音乐的频率不同,喇叭呈现的电抗阻值也不同,实际运行中的功放与音响相对于不同的频率根本不可能有阻抗匹配,两者的配接仍然要靠喇叭线来进行阻抗变换。并且这种阻抗“变换”随着音乐的播放分分秒秒都在进行。可以进一步看出,不同的电缆线材所起的阻抗变换性能和效果就不同,因而音响效果也不一样。
& & 线材的第三个功能是对音乐的修饰功能。即正确地运用不同的线材,可以对同样的音乐软体(如某CD碟)进行不同音色的修饰,得到诸如“明亮”、“暗淡”、“金属味”、“木质味”、“中气足”、“音场宽广”、“刮耳”、“平淡”等等的修饰评语或风格评语。
& & 对于线材的作用及其特性,许多文章是从以下几方面进行揭示讨论的:⑴线材金属导体所用的材料及其形状,以及其决定的特性;⑵线材的编织方法及其带来的效果;⑶线材所用的绝缘体材料,及其特性;⑷线材所用的插头的特点;⑸由上述几方面的材料及编织方法生产的线材用仪器测量得到的电阻、电容、电感的数值,以及频率特性等指标,及其对应的实际的音响效果。这些文章从另一些侧面充分地反映了线材的作用和特点,为避免重复地人云亦云,不再在这里赘述。其实,这些文章的中心都包含了对音响信号良好传输这个内容。而线材在音响系统中的“阻抗变换作用”,则是本人的观点了。当然,它并非真的会自动进行阻抗变换,但是,线材在两部机中间的阻抗过渡、“承上启下”作用的连接作用直接影响音响的音质。
& & 有了以上的观点,再来讲讲音质的含义是什么。“音质”这个词,一般笼统的意义是声音的品质。但是,在音响技术中它包含了三方面的内容:⑴声音的音高,即音频的强度和幅度;⑵声音的音调,即音频的频率或每秒变化的次数;⑶声音的
在线时间5697 小时
阅读权限120
经验3840 点
金钱942 ¥
各式电源器材的功能分类
看了上述种种的电源问题,您一定会开始审思,自己家里的电源是否也有相同问题正在发生?一般而言,电源干扰噪声的传播途径可分为下列二大类:
& & 一、普通模式(Normal Mode):简称通模,指的就是二组输入电源线之间的噪声。这些噪声大多是由开关动作或者是静态功率转换器等干扰所造成,当这些干扰与正常讯号重叠在一起时,器材组件是无法分辨的,因为正常讯号也是以通模的状态存在。
& &二、共通模式(Common Mode):简称共模,指的是电源与接地之间的噪声。这部分噪声的起因多数是因为接地设计不良、雷击、广播无线电、马达电磁或者是接地故障等种种因素所引起。
& &这二类模式是以噪声干扰的传播途径而区分,通常我们又会将其归类为电磁干扰(EMI,Electromagnetic Interference)与射频干扰(RFI,Radio Frequency Interference)等。一般家里会发生的电源问题,大致就是电磁干扰、射频干扰、电源稳定度等问题。想要解决这些问题,光靠音响器材内部的电源线路通常不够,因此才会有电源处理器材因应而生。但是,每位音响迷家中所遇到的问题都不尽相同,市面上的电源处理器材种类又相当多,因此该如何选购一部适合的电源器材,甚至自己到底应不应该增购这一类产品,也就是我们这次「彻底研究」的目的。接下来,我们将各种经常碰到电源问题整理出来,使读者能更简单易懂的进一步认识电源处理器。
电源处理器材常见的种类
& & 目前市售的电源处理器材,功能不外乎突波吸收器、电源滤波器、隔离变压器、电源稳压器等四种。它们个别负责不同的功能与作用,介绍如下。
突波吸收器(Surge Absorber)
& & 突波吸收器的主要作用,是用来抑制过高的突波电压。正常状况之下,电力公司所输送到用户家中的电源电压应为110V,但是在某些状况下会在瞬间出现高过正常的电压值,像是遭遇雷击或电力系统故障等因素。虽然电力公司设有保护措施,但因其反应速度与保护程度有一定的极限,因此还是有一些突波可能会在瞬间传送到用户家里。另外,电力公司的这些保护装置在「作动」与「复置」的瞬间往往也会产生一些突波,还有像是家里的电源开关在动作的瞬间,同样也会有突波产生。
& & 这些不正常的突波,虽然都只是在瞬间发生,但是过程中的电压、电流往往高过正常值甚多,严重时足以破坏家中的许多电器产品,尤其像是计算机、电视与音响设备等,因为这些家电产品的工作电压相对较低,所能够承受突波的能力也就相对不足。突波吸收器依动作原理、特性可分为下列三类 ─
& & 一、间隙式突波吸收器:大多适用于避雷功能,吸收电流范围在500A─500KA之间。
& & 二、半导体式突波吸收器:可分为O Varistor(吸收电流范围200A─20KA)、SiC Varistor(吸收电流范围
100A─10KA)、Se Surge Absober(吸收电流范围10A─1KA)、双向稳压二极管(吸收电流范围1A─50A)。
& & 三、滤波式突波吸收器:分为CR(电容加电阻,吸收电流范围1A─50A)与CL(电容加电感,吸收电流范围10A─1KA)二种电子电路,这也是音响电源处理器最常见的突波吸收装置。
电源滤波器
& & 电源滤波器主要是用来消除电源里面的噪声,这些电源噪声会影响音响器材的声音表现,一般说法认为它会使音质、音场定位的效果大打折扣。通常滤波器是利用电容与电感合成一组选择电路(LC),允许特定频率的讯号通过,对于非特定频率的讯号则予以衰减或阻挡。最常被采用者为EMI滤波器,它对于50KHz以上噪声有比较良好的滤除效果,而噪声衰减量的规格值约只有40dB左右。它的缺点是遇上大振幅的突波噪声时,易使电感线圈因饱和而降低其噪声衰减特性,不过当串联多只EMI滤波器使用时效果将可因此改善。这次介绍的电源处理器材中,只要是针对滤波功能设计的产品都是采用这种方式。另外,电源滤波器使用时记得一定要接地,如此才能发挥其效能。
隔离变压器
& & 隔离变压器一般泛指为防止噪声用变压器的总称。电源在进入各类电器产品之前,虽然会先经过电源变压器,但是高频噪声仍然可以藉由变压器初级与次级线圈间的电容效应、磁性耦合或辐射等方式通过次级,再进入电器产品的线路内。因此,要想防止噪声干扰的最简单又有效之方法,便是使用隔离变压器来加以隔绝。在各种噪声滤除的电源器材中,隔离变压器的效果是最好的,因为隔离变压器除了能消除电源、日光灯激活器、空中各种射频的噪声外,它对于电源开关瞬间突波也有很好的滤除效果,只是滤除频率和前述的「电源滤波器」不尽相同。
& & 隔离变压器如果以隔离特性来区分,可分为下列三种 ─
& & 一、绝缘变压器:这是在初级与次级之间加上一层特殊的绝缘体,藉以将初级传导至次级的噪声予以适度衰减。不过,这种方式并无法将所有的噪声隔绝,像是电源的开关动作等通模干扰便无法滤除。
& & 二、屏蔽变压器:除了具备有绝缘变压器的构造外,在初级与次级线圈外围又利用金箔纸等绝缘材料予以包覆,藉以降低二线圈绕组之间的电容效应。与绝缘变压器作比较起来,屏蔽变压器对高频干扰的特性虽然更优异,但依然还是无法去除通模噪声。
& & 三、噪声滤除变压器:也就
在线时间5697 小时
阅读权限120
经验3840 点
金钱942 ¥
电源处理器到底有没有效
直接进入正题:电源处理器到底有没有效?
& & 我敢很肯定的告诉您:绝对有效!
& & 那么,电源处理器值得买吗?
& & 让我先来说自己的使用经验。以前Tice刚流行的时候,市面上还有一些其它品牌的电源处理器,形形色色的产品各自宣称都有效,音响店老板也大力宣扬这些价格昂贵的小东西很值得买。不过,对于器材升级计划永远是一大串的我来说,毕竟没有感受到迫切的电源处理需求,所以也提不起兴致去理会这些东西。后来居住Boston期间,公寓里摆设了一些录音器材与音响,才开始感受到电源处理的重要性。新英格兰地区的夏天不长,最炎热的时候顶多也只有27、28度而已,所以冷气机并非家家必备的电器,房子里自然不会有220V专用电源。想要用冷气机就只能买110V的机种。而且,Boston的老房子在电源方面不如台湾讲究,像我的公寓只有一个电源回路,包括录音器材等所有电器产品全部仰赖这组15安培电源,所以一旦冷气机的压缩器激活时,正在进行的录音就宣告报销。租来的公寓不可能改电源,许多宣称具有突波吸收的电源排插也都起不了作用,所以唯一的办法就是买电源处理器。于是,我就买了当时刚推出第三代机种的Tice Power BlockⅢ,还有几款Furman专业用的电源处理器。
针对自己的需求方向选择
& & 如果纯粹就解决冷气机强大突波的目的来说,包括Tice在内几款用上了隔离变压器、滤波线路的电源处理器都确实有效,比起那些超级市场贩售的各式电源排插好用多了。而且,Tice具有稳压的功能,应付冷气机激活所引起的严重压降也有帮助,所以我一直很庆幸这笔钱没有白花。
& & 问题是,对于音响迷来说,电源处理器除了解决电源的问题以外,还要能够带来「好声」的效果才够。所以在我确定Tice能够解决突波与压降的问题后,又特别注意它是否能够提供提升音质的附加价值。即使起初的器材并不算理想,但我还是能从TEAC VRDS-20唱盘搭配STAX Lambda Dignature/SRM-T-1耳机的组合中,听到了声音变稳、解析力变好的优点,后来买进的Basis/Boulder/Westlake系统就更不用说了。
& & 回到台湾以后,Furman就在录音室里当作电源排插使用,Tice则跟着我的家用音响系统,接连在几间没有电源专线的聆听室里继续服役。在这段期间,强大突波的问题不复存在,但是它对于稳定电压的效果仍然相当显着,比起录音室里高价的稳压设备来说,我仍然认为这款Tice相对划算许多。不过,去年搬新家前彻底规划了聆
听室电源专线,而且新社区的电压非常稳定,Tice解决问题的功能变得英雄无用武之地。因此,我一方面将它纯粹当作排插来使用,另一方面也仔细地评估另一个实用方向:包括Tice Power Block III在内的诸多电源处理器,在电源纯净的环境中到底能提供多少好处?或者,它们真的是「多只香炉多只鬼」的不必要装置?
& & 从过去年多的不断比较,还有这次试听最新机种的经验中,我的结论有二:
& & 一、 在电源状况恶劣的环境中,电源处理器通常可以明显带来好处,对于解决电源问题的帮助也有相当水准。
& & 二、 在电源状况良好的环境中,电源处理器的好处比较不容易被察觉 - 因为解决问题的功能没得发挥。不过,它们也确实能够带来「改变声音」的效果。
电源环境决定电源处理器的实用性
& & 上述的状况是一种「通式」,您若想要追求电源处理器的极致,希望它的设计能够为您带来最大好处,还是得要先了解它的应用方向为何。比方说,您最困扰的电源问题是突波太严重,就必须找真正设计来解决突波问题的滤波器,某些制品便无法帮上您的忙。如果您长期为电压不稳定所困绕,就必须用上具有稳压设计的电源处理器,这时候最好的方法就是以三用电表实际去量输出电压,看看哪些电源处理器是真正具有稳压作用的产品。或是您的聆听室电磁波干扰严重,电源相位波形严重失真等,市面上也都有针对特定范围提供「解决问题」的产品。重点是,您必须选对电源处理器,让它们针对您所遇到的问题去解决,如此才有可以带来明显的好处。
& & 严重的突波可以靠耳朵听出来,电压稳定的程度则可以拿三用电表来量测,这些都是我们比较容易察知的部份。不过,电磁波干扰与波形失真的问题对一般音响迷来说,就比较没有那幺容易自行测量,因此我建议:如果您的聆听室电源没有严重突波干扰,输出电压也相当稳定,而您又希望藉由电源处理器带来提升声音品质的好处,请不妨实际试过了再做决定。无论器材的设计取向、产品定位为何,最终还是要回归到声音表现的原点上,所以您如果能够经由电源处理器听到好处,它们也理所当然为您解决了某些问题。
& & 此外,无论原厂如何宣称他们家的产品有何等功效,只要是在可以自己动手验证的范围内,请尽可能先了解它们的功效究竟到达何等程度。在我们量测输出电压的过程中,发现所有六款电源处理器当中只有二款能够做到「稳压」功效,一款是Tice,另一款则是Ensemble Isolink/Power Point。当天下午办公室的电压为107V,经由Tice与Ensemble输出的电压都在115V左右,其它产品则是在105V或更低。在我过去的使用经验中,Tice即使遇上了140V左右的电压(工业区晚上停工时),输出电压还是能控制在120V
在线时间5697 小时
阅读权限120
经验3840 点
金钱942 ¥
音响用电十四问
问一:为何音响开机时,电灯会闪一下?
& & 答:这是因为音响器材开机时,由于器材内部大容量电容,在关机前处于空载的放电状态,按下电源开关时,电容马上从变压器吸取电力,由于吸取的电流极大(称为充电电流),以致于电力突然下降,日光灯自然会暗一下了。
& & 一般的后级只要滤波电容容量总和超过20,000μF,开机时就会发生此现象。因此部份设计完善的大功率扩大机,在开机时具有“缓冲电路”,也就是说开机时会经过大型水泥电阻缓冲,让内部电容慢慢充电,一段时间后(约几秒钟)再以继电器接通,如此既可以保护保险丝不会一下子烧断,也可以避免电灯闪一下的困扰。
& & 问二:台电的供电真的很烂吗?
& & 答:当大家遇到电源不稳定时,总不管三七二十一先把责任怪到台电再说。如果了解台电的人,则一定会大力辩解,并且提出合理的解释。事实上,台电的供电一点问题也没有,电力不稳定的现象,是配送过程中受到干扰而来的。
& & 先从发电厂说起好了,目前台弯主要的发电厂分成两大类,其一是核能发电,另一则是火力发电厂。不论是核能发电或火力发电,他们皆采用蒸气的力量,驱动蒸气涡轮带动发电机。这是一套极为精密的发电设备,涡轮的转速关系到频率的稳定性,大型的发电机与涡轮之间,具有计算机控制的变速系统,以确保在各种负载下维持稳定的输出频率(60Hz)。再者,涡轮发电机输出的电压绝对是稳定的正弦波电压,这是基本的物理原理,换句话说,要制造出扭斜的正弦波还有问题呢!所以,从台电送出的电力绝对是稳定的60Hz正弦波电力。至于干扰及电压不稳的问题,请见下题。
& & 问三:为何电力传输时,总是使用高压电,这不是很危险吗?
& & 答:电压超过100V时,就存在着危险性,但为何台电的配送电力总在22KV以上呢?这不是很危险吗?当然危险,所以高压电塔上总是挂着醒目的招牌,警告闲人勿近,否则容易发生触电的危险。使用高压传输,最主要是为了节省配线时电缆的用铜量,同时也降低电力传送时的损耗,因此从发电厂送出的电力是以超高压的方式传送。超高压传送的最大好处,就是电压高、电流小,电子流经导体时,发热量是以电流的比例计算,而不是以电压计算,因此有效降低导体的电流量,就能降低损耗,因此虽然危险,但只要做好防范措施,就可以避免危险发生。以高压传送的另一个理由,是为了降低客户端的电压变动率。如果以1:1传送,也就是说台电送出110V的电力直接到家庭,台电每降低1V电压,客户端的电压也会随之降1V。但如果以目前普遍使用的22KV传送,当电厂送出的电压有1V的震动时,客户端几乎没有任何感觉。
& & 问四:为何我家的电压经常不稳定?
& & 答:电压不稳定的情形经常发生在各种用电户,尤其是工业区附近。当建筑物申请台电配接管线时,会依照申请表格的数字,配接适当的电力给建筑物,但这只是一个预估值,如果用电户的用电量超过当初申请的电力容量,则容易产生电压下降等电力不足的现象。这不是台电不给你充足的电力,而是用户应该提出更大的用电申请。例如,某工业园区原来申请一万千瓦的用电量,台电当然依照申请配接一万千瓦的用电供应,如果工业园区的用电量超过额定负载,电力当然会发生吃紧的现象,电压自然会不敷使用而下降了。光口头骂骂没有用,其实只要向台电提出更大的用电申请,供电不足的情形就容易解决。所以下次电力下降的时候,请不要动不动就咒骂,赶快衡量自己的用电量,看看是不是超过了用电契约上的额定供电量?如果长期处于低压状态(例如电压低于100V),也可以向台电反应,他们会派员改变用户变压器的抽头,让您的电压恢复正常。
& & 问五:一般家庭使用的电力供应如何?
& & 答:家庭用电与工业用电不同,不但供电的形式不同,用电容量也不同。一般家庭没有大型电器设备,最耗电的电力器材顶多是冷气机或电热器,这些器材使用的电压不会超过220V,因此一般家庭用电多为乙类用电,110V单相三线供应。如何判断?看看自己的电表是不是圆形的?如果是,就表示为110V单相三线供应,如果是方形电表,则是最普通的110V单相双线供应。
& & 单相三线具有两条火线及一条水线,两条火线是互为反相的110V/60Hz,经过适当的连接,可以分别拉出两股100V或一股220V的电线,其中110V供应一般电器使用,而220V则提供冷气机及电热水器使用。使用单相三线供电方式的理由,最主要还是为了节省电力传送过程的损耗。经由适当的配线,从两条火线拉出去的两股100V电线,如果两边用电量均等,则依照相位抵销的原理,水线将不会产生任何电流,这就表示可以降低水线的线径,也可以避免无谓的电力损耗。换句话说,如果您家中维持固定的电力消耗量,在最理想的配线组合下,还有机会节省用电度数。
& & 问六:电力干扰哪里来?
& & 答:刚刚说道,台电送出的电力为完美的60Hz正弦波,但干扰从哪里来?其实,最主要的干扰源,仍然来自用电户本身。试着想想看家中有多少电器用品?当这些电器用品全部插上插头使用时,会产生多少干扰?冷气机、电风扇、日光灯等,没有一样是纯电阻负载,它们具有感抗也有容抗,只要开启就会回授干扰电力系统,
在线时间5697 小时
阅读权限120
经验3840 点
金钱942 ¥
电源有什么困扰
到底电源有什么好困扰的呢?对于一般居家电器,电源没什么好困扰的,但是对于重放音乐的音响器材,电源就有几个恼人的地方。首先,从家里墙壁传出来的交流电源一定会有噪声串在里面,这不仅是您府上所有加调光器、变压器的灯具、具有马达、压缩机的家电制品会影响到电源,外面电源主线里的噪声也会透过共享电源线而传到您府上。噪声有什么坏处呢?它会让电源产生谐波失真,导致声音的劣化,这也是许多音响迷发现音响愈晚愈好听的原因,因为夜间邻居使用电器的机会降低,电源干扰与电压稳定的自然就改善了。所以,市面上有许多的电源滤波器,其目的就是想让音响器材得到纯净的电源,这些滤波器主要是滤除EMI(电磁干扰)或RFI(射频干扰)。
医了头痛,带来脚痛
& & 电源滤波器有没有效呢?这是长久以来争论不休的问题。事实上大部份电源滤波器所滤除的频率大约在100KHz,以下的噪声滤除能力并不强。此外,滤波器的滤波组件无法承受大电流的通过,也限制了后级扩大机的使用。
& & 除了电源滤波器之外,还有没有别的消除噪声方法呢?有的,另外一种常见的方法就是使用隔离变压器来隔离噪声,这是工业界很普遍方法,不过它还是遭遇了同样的问题:电源必然会受制于必须经过的组件。假若小功率使用便罢,假若要提供大功率使用,隔离变压器本身的容量就要非常巨大,工业用隔离变压器动辄上百公斤就是这个道理。以前废五金还能进口时代,许多音响迷家里都有重达50公斤以上的隔离变压器,不知现在它们是否还在服役?除了噪声问题之外,都市人口集中地区还有电压下降以及不稳定的问题。电压不稳定会降低电器用品的寿命,电压不足则会使需要吃功率的扩大机软脚,这二者都会让声音劣化,甚至让电源变压器处于不正常的工作下而发出哼声。许多音响迷家里的纯A类扩大机摸起来才温温的,就是因为电压不足所造成。
& & 电压不足很容易用三用电表量出来,要解决这个问题也不难,大部份比较高级的前级里都有稳压线路,提供稳定的电压。后级扩大机的功率级通常不会有稳压线路,因为它所需的电流那么大,制作起来成本很高。此外,更重要的原因是稳压线路会让电源的供应无法如讯号般快速反应,反而造成速度迟滞。
& & 总而言之,无论是滤波器、隔离变压器或稳压器,它们对于解决主要问题上都有效。不过,通常主要问题解决了之后,难免也衍生了其它新的问题。这就好象医生常说「药」从另一个角度来看也是「毒」的道理一样,长期吃药的人可以抑制疾病不至于快速恶化,但同时也长期在损伤肝与肾功能。
电源另类疗法
& & 既然这么说,到底有没有一种方法是有效而负面效果最小的呢?其实是有的,那就是从波形与相位着手,上文介绍的Burmester 948便是如此设计。如果您用示波器来看从墙壁插座输送过来的交流电源,就会发现除了噪声谐波之外还有削波,也就是60Hz的波峰或波谷被削平了。这个现象就等于是交流电源的中点(也就是零点)没有维持在该有的位置上,使得交流电源的上下半波无法完全一致,也产生了相位不正确的问题。
& & 当交流电的零点无法保持在正确的位置上时,就会在正确的零点与不正确的零点之间产生相位飘移,这个相位飘移就等于产生直流成分(DC Component)。当器材内的变压器与这个直流成分耦合时,就会在变压器里的线圈中产生强烈的电磁偏压。更要命的是,愈高级、愈大的变压器就更容不下这小小的直流成分,甚至小于10mV的直流都会导致变压器哼声。这也就是有些音响迷家里后级会发出变压器哼声的原因之一。
& & 到底要如何来维持交流电零点的正确位置,使交流电正负半波维持一个上下完全平衡的局面呢?最彻底的方法就是再造一个完美交流正负半波。当然,再造正负半波的方法应该不是只有一种,但最有效的肯定不多,所以Burmester就把他们家的方法拿去申请专利,也早已获得专利。
自生电源发电厂
& & 这次我在CES看到一部令我好奇的电源处理器,那就是PS Audio的Power Plant发电厂。PS Audio的前老板Paul McGowan在1998年离开Genesis之后,再把原来已经卖给别人的PS Audio品牌买回来,这次不是推出一般的全频段扩大机,而是针对60Hz放大的扩大机,这个60Hz扩大机就是电源发电厂。
& & 在会场上,我遇到Paul,他拉着我看计算机监视器上所显示的波形。上面有其它厂牌电源处理器的波形以及墙上交流电的波形,当然还有经过他家电源发电厂处理过之后的波形。的确,在这样的比较下,Power Plant很有说服力,因为您不必有金耳朵,只要用看的就知道噪声消除的情况与波形正确与否。不过,Paul也没有在现场准备很多种电源处理器以供比较,所以我不排除其它产品也同样有效。为什么我会提到PS Audio?因为我读过它的目录后,发现它就是一个交流电合成器(AC Synthesizer)。说得白话些,就是以电子线路自行产生出一个110V/60Hz的交流电源,这个新「自生」出来的交流电源自然就把墙上插座输送过来的交流电源中的噪声去除了。请注意,它并不是把墙上输送过来的交流电处理之后使用,而是利用墙上的交流电来让发电厂动作,产生自己的纯净正确交流电,以供您的音响器材使用。
在线时间5697 小时
阅读权限120
经验3840 点
金钱942 ¥
线材制作大揭密
音响导线是怎么做出来的?我们一边讶异于电源线、讯号线、喇叭线,甚至小小一条数字线对于声音所造成的变化,一方面又对越来越昂贵的高级线材望而兴叹。要报导线材的制造秘密,当然得找万隆不可,这是我第一个浮现的想法。事实上,台湾一直是全世界最大的高级音响导线OEM基地,而位于云林古坑的万隆公司又是个中佼佼者,许多国外名厂的线材都是委由万隆加工制造。碍于合约关系,我们无法告诉你哪些线是从万隆出来的,不过希望你看过这篇简单的报导后,对线材的神话与迷思可以有更进一步的认识与化解。
台湾的唯一
& & 根据经济部两年前的一篇报告,指出从1970年起,全球铜消耗量以每年2.5%左右温和成长,成为使用量仅次于钢铁及铝的金属。铜具有优异之热/电传导性、良好之抗蚀性及良好之成形性等特性,为3C产品零组件之重要原材料。台湾是世界第六大精炼铜消费国,十年来复合年增率达11%,居全球之冠,每人精炼铜消费量达28.4公斤,居全球第二,但是间接外销比例大。铜半成品可分为电线盘条及伸铜品两大产业,产值合占我国金属制品业的17%,下游关联产业主要有电线电缆、电子信息、家电、机械五金、建筑、饰品等。目前一贯作业制造厂商约有56家,1998年产值为555亿元,总产量约77万公吨,电线电缆占68%,伸铜品占32%。不过与其它工业国相比,台湾的竞争力较差,专家推荐台湾较具发展潜力产品包括电解铜箔、轧延铜箔、导线架铜片、精密黄铜片、磷青铜片、ACR内螺纹卷管、无铅黄铜棒、铜包钢接地棒、高纯度线材(OCC)、高传导极细线、161KV超高压电缆线等。
& & 从这篇报告中我们可以发现,台湾的铜制品产量相当的大,其中电线电缆又占了大宗,而且制造厂家众多,不过整体竞争力却不佳。OCC算是较高附加价值的技术之一,尤其是用在音响导线上。目前接受工研院材料所移植OCC制程(Ohno Continuous Casting Process)的公司有两家,一家是上市公司台一国际,一家就是万隆。台一国际成立有三十多年,目前在杨梅、新竹、观音等地分别设有炼铜、漆包线、电线电缆、绝缘材料四个事业部。炼铜事业部主要产品包括从0.32mm-8mm的无氧铜线以及OCC 单结晶无氧铜线。台一国际与太平洋电缆等是国内重要的光纤电缆厂商,对音响用线着墨较少,所以音响迷的焦点仍得放在万隆公司身上。
什么是OCC?
& & 其实万隆不单是台湾第一家以OCC技术制造音响导线的厂商,在全世界也都算是少有。据我了解,除了万隆之外,日本的住友 (Sumitomo) 及古河 (Furukawa)也都有类似产品。但古河只卖成品,不卖材料,而住友又对音响市场用力不深,因此万隆一枝独秀,吸引了许多国外的OEM订单。OCC技术是日本千叶大学理工学院(Chiba Institute of Technology)大野教授所研发的「大野连续铸造法」,可提炼出纯度至少4N,最高达到6N的纯铜或纯银线材,OCC的结晶长度比一般无氧铜(OFC)长达50-100倍以上,平均结晶长度为125m。由于这种铸造法有十多国专利,因此后面必须加上OCC,前面则由生产商自订,古河称为PCOCC,而万隆称为UPOCC (Ultra Pure Copper by Ohno Continuous Casting Process)。
& & OCC制程是一种热模连续铸造制程,与一般传统连续铸造最大差异在于利用加热的铸模,而非传统所用的水冷模。铸模内壁温度保持在铸造金属的凝固温度以上,使金属凝固时不会从模壁凝固结晶,而是沿铸模口外之铸造拉引方向呈单方向组织凝固。此一制程技术可应用于生产纯铝、铝合金、纯铜、铜合金、纯银与其它合金及高温合金(Tm&1200℃)。同时也可制造不同形状的连续产品,例如线材(1.5-12mmψ)、板材(5-130mmω)、管材、异形材等。OCC材料的特色为单方向结晶或单晶组织,内部组织偏析少、杂质低,具有良好加工性(伸线、压延),具有电子信号高传真性,另外也适用于直接铸造加工性困难的高合金线材及板材。在工业上,OCC材料的运用包括音讯、视讯导线、喇叭;IC所用连接材料;焊接及接点材料;高性能热交换器管,以及高精密零件用材料(要求加工性)。
纯度与结构
& & 最早万隆是想向日本古河购买材料来加工,但古河只卖成品,不卖材料,迫使万隆从1991年开始参与工研院材料所的研究,并完成技术转移。从简单的电解铜,进步到无氧铜OFC,大结晶的无氧铜LCOFC,以及今天的单结晶铜OCC,究竟这些材料与导线之间有什么关系?我们可以这么说,影响导线声音表现的要素有三,分别是材料、绝缘与包覆,加上线材的结构。在材料部份,这些年来,设计者莫不把全力放在材料纯度的提升与结晶结构的改良。
& & 以最常使用的铜来说,材料就包括便宜的电解铜TPC(Tough Pitch Copper)、进一步除去TPC内所含的氧化杂质等不纯物的高纯度无氧铜OFC、让铜形成大的结晶,使其结晶粒子的界面空隙减少而成的LCOFC(线形结晶无氧铜)、以及讯号传送方向的结晶粒子界面理论上为零的OCC(单结晶状高纯度无氧铜)。我愿意多花一点篇幅介绍万隆,或者介绍OCC,主要也是想破除所谓高纯度铜的迷思。
& & 市面上有太多号称6N甚至8N的线材,最离谱的还有所谓9N银线。N是金属材料纯度的表示,与材料的种类无关,例
在线时间5697 小时
阅读权限120
经验3840 点
金钱942 ¥
发烧信号线
一套优秀的发烧音响器材,有必要配置高级线材、而选用什么档次的线材、线材的制作材料及制作工艺对其整体品质的影响等一系列问题均要与器材本身的档次挂钩。一套廉价的音响使用高级线树与选用普通线材所得到的还音差别并不大,而一套中高档次的音响在使用高级线材与选用普通线材时所得到的重播质量却存在着明显的差别。这种差别不大与差别明显的不同结果,是由音响器材本身的品质决定的。但从另一角度来看,如果想仅仅凭借几条高级的音响线来使低档次音响器材的重播效果明显地改观却是不现实的;而在一套合理的中高档次器材搭配中,忽略线材的配置则会直接限制音响器材潜力的充分发挥,使重播的音质、解析力等受到一定的影响。因此,正确地认识线材在音响系统中的位置,是很有必要的。
& & 从表面上看,好的线材与差的线材在通以直流电信叼的状态下电阻值都非常小,似乎没有个么太大的差异。其实,这是个简单的错误。由于音响器材所重播的信号是不同频率的交变信号,而非恒定不变的直流信号,因此,在传输音频信号时,好线材的传输准确,传送的频率范围宽、表现真实、层次丰富;而相对较差的线材所传送的信号则会随着频率的变化而有所改变,其信号失真的程序也会因频段的不同而各异,两种线材的差别这时会相对明显。发烧音响线材基本上可分为;信号线、音箱线(喇叭线)、电源线三大类。
发烧信号线
& & 信号线是用来传送由音源(信号源)所产生的音响信号的线材。它主要包括同轴信号线(RCA)(AV信号线)、数码信号线、当缆信号线、平衡信号线。
& & 同轴信号线是最为普及的标准信号线,它的两头均为RCA同轴插头(俗称莲花插头),可对目前市场上出售的标准曩碟机、CD机、VCD机、DVD机、LD机、卡座、调谐器、LP唱机、MD等音源设备与HI-FI发烧功放、AV功效等音频处理/放大设备进行连接,这种线使用广泛,属不平衡传输类型,具有一定的抗干能力。
& & 数码信号线是同轴信号线的一种,它与同轴信号线外观相同,并可相互串用。与同轴信号线不同的是,它的传输速率快,传送频带宽(在视频范围)、抗干扰能力强。数码信号线的主要用途是在高档器材搭配中用来连接CD转盘与D/A转换器(数/模转换器)传送单一的数码讯号,以及DVD的数码输出至AV功放的D/A转换器信号传输。
& & 光纤(缆)信号线与数码信号线的作用相同,只是它所传送的是来自于CD转盘/DVD机的数码光信号。由于数码电信号在CD转盘中进行了电/光转换,变成了光信号在光纤中传送,又因为在光纤信号线中传送的光信号不受外界电磁波的影响,而且光纤传输可使两者之间信号浮地,没有公共的接地,避免公共地线的干扰,所以光纤信号线的抗干扰能力要强于数码信号线。光纤信号线使用光纤插头,本身由光导纤维制成怕折,在使用时应尽量避免卷屈及振动。
& & 平衡信号线是高档次音频信号传送线,在传输过程中可抑制共模干拢,通过内部差分放大器自然地抵消掉,从而起到了抗干扰的作用,平衡式信号传输的特点主要有如下几方面。平衡式放大线路的优点已经在近年来逐渐为那些高级音响发烧友和厂方所认识,它的原理是把信号分为正相信号(热端)和反相信号(冷端)传输。两者对地阻抗相同而极性相反,当采用双芯屏蔽线在传输过程中,外界的干扰信号对它们来说是同相的,这样可以在传输后的末端利用输入级的差分放大器共模型抑制和抵消放大输过程中的各种电磁、电源、湿度造成的外界噪声或内部噪声干扰,使音质更为纯净和通透。由于平衡传输在输出的有用信号是相加,其信号输出辐度在理论上是原来的2倍,因此平衡线路放大器不但具有最小的噪声,而且输出强劲,驱动控制力极佳也是其最大优点之一,在信号电平越低的情况下,平衡线路的传输纯净的优点就越能显示,而用在功率放大器相比较,采用平衡线路放大器相具有更好的清晰度通透感,瞬变更为快捷利落,高低频延伸更好,分析力方面更加细致,声场显得更为深远阔大。中低档音响器材的信号传输几乎都采用单端不平衡方式传输,即利用两根单芯屏蔽线和两对RCA插头插座就可传输一路两声道立体声信号。普通的单端传输线和RCA接插件制造方便、价格便宜,因此单端不平衡传输在中低档音响器材中获得了广泛的应用。而在许多高档前后级分离式音响器材中,通常采用双端平衡传输方式,即采用两根双芯屏蔽线和两对XLR平衡插座传输双声道立体声信号。双端平衡传输方式在同档次的传输器材造价也较高,但高档次的传输器材广泛应用双端平衡传输,说明在传输效果方面要胜于单端不平衡传输。
& & 一般认为屏蔽线可有效消除外界电场对内芯传输信号的干扰,从而保证了信号良好地传输。事实上并非如此,即使屏蔽良好的屏蔽线也还会引入一定的电场干扰,另外,对信号产生干扰的不仅仅是电场,诸如磁场、振动、温度等均可对信号造成干扰,在信号传输过程中受到干扰的程度与信号线质量和传输距离有很大关系,信号线质量越差、传输距离越长则受到干扰的程度就越大。在单端不平衡传输过程中对于已引入到信号线中的干扰是无法消除或削弱的。在许多情况下,这些干扰会有令人察觉的表现,轻则掩盖了一些音乐的细节,造成
在线时间5697 小时
阅读权限120
经验3840 点
金钱942 ¥
三极管王300B知多少
电子管机发烧友大概已有一个共识,就是三极管的声音较好,功率管中又发直热式三极管为上品。原理上三极管线性较好,所产生的谐波少,虽然直热式三极管比旁热式的好声难以在工程学上得出证明,只是人人皆知此说,我等也只能随俗而人云亦云了。
& & 由于内部结构和材料不同,直热式三极管中不同编号的如300B及2A3,其发声便有所有分别。即使是同一编号的管子,不同厂家的产品也大为不同,主要也是材料、手工及制造机械相异之故。有些厂家的品质控制比较严格,如&西电&(WEC)及Bendix等,堪称一流,其产品贵精不贵多。大路货中以RCA公推第一,GE及Sylvania则略逊一筹,其它杂牌厂货则更差了。
& & 一只管子之所以能成为经典,主要在其声音出类拔萃,而不是以测量数据取胜。今日300B有很多厂家生产,它们的互导率、屏阻等特性是一样的,但唯独&西电&WE300B独领风骚,其中原因如上述。笔者最近收集了一些有关300B的资料,荼余饭后的谈话题材。
& & WE300B的源流应追溯到1930年&西电&推出的WE252A,当时用以抗衡Westinghouse及RCA的UX-250,两种管子的特性相近,作单端输出时功率达8W。此管只有洋葱头一种外形,主要用于&西电&的75A、59A、59B及67A几种扩音机上,在酒店、百货商店及舞池歌厅场合使用。WE 252A于30年代中期便告停产,今日已成为无价宝,可遇而不可求了。
& & 1933年&西电&推出特性相近的300A代替252A,管身改成ST19型,即与今日见300B一样。管座为标准四脚UX-4式,但座身上有定位针。管子可使用811A大发射管有护颈套的管座或平板型(Wafer)四脚座。300A设计用于10W以内的输出,适合工作于较低屏压电路上,系列内包括86A、87A、91A及92A等扩音机,300A于1940年完全为300B取代而停产。
& & 300B早于1938年便开始生产,特性与300A一样,但管座身上的定位针作了45°改变,这使两种管不能互换于有金属护颈的管座上,但一般的平板四脚座则无影。300B最重要的改进是灯丝结构(见图一)。WE300的灯丝颇为复杂,为两个M形而以弹簧悬挂,总长度超过一般同等大小的管子。300A的灯丝为首尾接出式,300B则有中心轴头,灯丝首尾接在一起为一端,中心轴头则为另一端,这是一个十分重要的改良。如果灯丝是以直流点燃时,300B的电子发射数量亦然。即使以交流点燃时,也会因灯丝较粗较短而减低交流声。300A则在直流灯丝供应时,电子发射集中在负极的一端,沿灯丝线减少到接正电端处最少,屏极表面吸收的电子分布甚不平均,这事实上会对声音造成影响的。如果用交流点燃灯丝时,也会因灯丝较长而导致较大的交流声。
& & 300A的生产期为7年左右,相信只有管座刻字的一种产品,在30年代这是一种流行形式。300B则生产期长,早期为斜体字而有WE的闪电标记,70年代改为正方字体,最后停产前及近两年复产的又改回早期的黄色斜体字,原因是日本人认为黄斜体了的WE300B必定较为好听。 300B与Hi-Fi世界 因为&西电&的产品质量高,并非一般大路货色如GE或Sylvania的可比,价钱也远比其他厂同效能的管子贵,这就大大地限制了其流行程度,正因如此一只如此优良的WE300B,多年来竟然无藉藉之名。
& & 二次大战前,300B只有在&西电&生产的电影声带扩音机上才能见到,&西电&为当时最大的电影扩音机制造厂,以租凭形式供电影院使用,并提供保养服务,所以其旧机的状态都保持甚佳。这些扩音机中最著名的当推91A,此机用一只300B作单端输出,功率达到8W之大,可算用尽了300B的功能,而另一型号92A也不遑多让,它以两只300B推挽,有12~15W输出。两种型号今日都价值连城,成了所谓&西电&传奇。 照当时的美国工业标准,电影扩音机的频率响应为80~10000Hz时衰减会达到20HB之多。相信所有的美制电影声带扩音机都跳不出这个框框。这种频率响应与今日的H-iFi标准20~20kHz相差实在太大了,简直成了一种中低频放大器。但事实上,80~10kHz已能囊括大部分乐器的声音,更不要说人声了,所以这种扩音机显然也能真实地得播某些乐器不多的音乐,如爵士及歌曲等,虽然不免有其局限性,但在其狭窄的频率范围内,有十分出色的表现也是可能的。 &西电&这引起戏院扩音战后被新一代的机种取代,多为Altec-Lansing的几种型号如和1570等,这些产吕的频应已达60~20kHz,今日也相继成为古董,但不大受欢迎,因无特异之处。拆出的&西电&机则以工业废料形式运往日本,日本人甚喜爱西方各牌,其中部分小型的型号如91A及92A,这种机大小适中,甚合地方狭小的日本居室使用,而且它们一直由&西电&保养,基本情况良好,于是最为吃音。货源有限,转眼间价钱涨到天高了。
& & 日本发烧友以WE91A(8W单端)配以高灵敏度的号角音箱,据称声音好得惊人。这种情况若非新耳听闻者实在难以理解。原理上这种300B单端扩音机,其失真率是以1%/W而递增的,即在1W输出时失真为1%,在最大输出8W时即达8%,即使不计其狭窄的频率响应范围,在5W的普通音乐响度时,其谐波也达5%之多,结果会产生甚大的音染。而大型号角音箱竟然也是以音染大闻名的。日本人以此两种音染奇大的怪异组合,却认为梦幻组合。其实这件事情上日本人只算老二,首先发现的是法国人。早
在线时间5697 小时
阅读权限120
经验3840 点
金钱942 ¥
什么是真空管?
什么是真空管?
电子管从根本上说就是控制电子流量的阀门。它的外观有点像灯杀(通常由玻璃制成),其中已经被抽至几近真空。在这个近乎真空的密闭腔体内有两个主要设备:一个被称为加热极,位于电子管的中央位置,在电子管工作时会发出橙色的光(某些真空管有不止一个加热极);另一个是由阴极、金属栅极和金属板(也被称为阳极)组成。阳极板是您能在电子管中看到的最大的金属构件。所有元件都用云母和陶瓷垫片定位和分隔。
电子管玻璃上的银色物质是什么?
银色物质被称为&吸氧剂&,它的目的是帮助增加电子管内的真空度。不同真空管的颜色可能

我要回帖

更多关于 变压器线圈匝数和电压 的文章

 

随机推荐