有没有什么电路板上的电子元件件,类似于三极管但是给它通电时,断路,不通电,开路?

扫二维码下载作业帮
3亿+用户的选择
下载作业帮安装包
扫二维码下载作业帮
3亿+用户的选择
NPN三极管发射结正偏导通,集电极开路,此时集电极的电位为什么会等于发射极的电位?
作业帮用户
扫二维码下载作业帮
3亿+用户的选择
这种情况,是属于三极管饱和的状态.当Ib出现后,贝塔倍的Ib,如果大于Ic的当前数值,就是饱和了.现在,集电极开路,Ic显然是0,贝塔倍的Ib,大于0,毋庸置疑.饱和时,集电极的电位,和发射极的电位,相差无几,可以认为是相等.
为您推荐:
其他类似问题
扫描下载二维码【电子元件】三极管组成的光控开关电路原理图
阅读(51)
:本文首先介绍了光控开关概念与功能和用途,其次介绍了四款光控开关电路图,最后介绍了三极管组成的光控开关电路原理图。
  什么是光控开关  光控开关/光控时控器采用先进的嵌入式微型计算机控制技术,融光控功能和普通时控器两大功能为一体的多功能高级时控器(时控开关),根据节能需要可以将光控探头(功能)与时控功能同时启用,将达到最佳节能效果。& & & &是路灯、景观灯、广告灯箱、霓虹灯等设备的最佳节能控制装置;可广泛应用于街道、铁路、车站、航道、学校及供电部门等一切需要时间控制的应用场所。现在国内主要的品牌有灯联网、艾贝斯等,代表型号有ET101.1、ET102.1等。  光控开关功能和用途  本系列智能光控开关,可以根据用户设定的时间(光照度门限)值,自由控制用电器的电源开关。广泛用于路灯、霓虹灯、广告灯等需要按时间控制电源开关的用电设备。  用户可以根须需求设定四组开关灯时间,可以实现多时段开关灯。用户也可以利用光控探头采集当地光照度,实现根据光照度开关灯。  四款光控开关电路图  电路图一:  光控开关在室内5~6 米范围内,可用手电光进行遥控,可以很方便地开启或关闭家用电器。  工作原理:  电路如图192 所示。由三极管VT1、光电二极管等组成光接收电路。每接收到光照一次,就使由三极管VT2、VT3组成的双稳态电路发生翻转,通过三极管VT4 去驱动继电器K 工作,以控制家用电器的电源开关。  电路图二:  声光控节能灯座节电效果显著,采用该灯座白天灯不亮,夜间有声音灯即亮 该灯座电路简洁,声控部分采用了驻极体话筒,电路见附图所示  220V电源经桥式整流 220kΩ电阻降压 100μF电容滤波后得到5V电压供给数字集成电路HD14011工作 白天有光照时,光电二极管2CU呈低阻状态,IC的{1} {2}脚为低电位,{3}脚为高电位,白天不论有无声音,即不论{4}脚电位如何,{13}脚始终钳位于高电位,{12}脚也为高电位 因此{11}脚为低电位。& & & &可控硅截止,灯泡不亮 夜晚无光照时,U呈高阻状态,{3}脚为低电位,这时若有人发出声响,驻极体话筒拾取信号,经{5} {6}脚输入到放大器放大后由臆脚输出 当{4}脚为低时,{13}脚也为低,{11}脚为高,触发可控硅BT169导通,灯泡点亮 同时10μF电容充电,充电之初{8} {9}脚为高电位,使{12}脚为低电位 声音过后,{13}脚恢复高电位,但由于{12}脚为低电位。& & & &所以{11}脚继续保持高电位,灯继续点亮 10μF电容继续充电 几十秒钟后,{8} {9}脚为低电位,{11}脚也翻转为低电位,可控硅截止,灯灭。  下图:VD1-VD4是IN4007,VD5是2CW56(8V),VD6是4148,VT7是9013,VS是MCR100-8;R1是22k,R2是22m, R3是33k,R4是47k,R5是1.5m,R6是5.1欧,R7是240k(全部是1/8碳膜电阻);C1是瓷介电容104(0.1uf),C2是电解电容22uf/16v,C3是100uf/16v;MIC(B) 是CRZ-113F驻极体电容话筒;GR是光敏电阻MG45;IC是CD4011。  电路图三:  这种制作简单、成本低廉的光控开关使用时串接于白炽灯照明电路内,如图所示。常态下,交流电通过白炽灯、VD4~ VD7整流桥、电阻R9组成的分压电路及VD3、C4组成的稳压电路形成回路,回路电流小于0.9mA,功耗小于0.2W,照明灯不亮。当声敏元件接收到声波后,声波信号转化为电信号,经IC1a、IC1b两级放大,再经耦合电容C1去除低频振动产生的干扰信号。& & & 当环境光较强时,该信号由光敏二极管VD1旁路,不向后级输出;当环境光较弱时,VD1开路,前级输出的声波信号由IC1C及1C1d放大,VD2、C2、R4组成整流滤波电路,将IC1d输出的音频信号(经VD2单向快速向C2充电)整流成直流信号,同时C2、R4兼有延时作用,延时时间为RC=22s。& & & & 当IC1d输出的声波信号为较短暂的干扰信号时,C2输出端电平由低到高的跳变时间要比R5、C3组成的延时回路的电平跳变时间短,这时C2的输出信号不能影响C3输出电平变化,干扰信号被屏蔽; 当声波信号正常时,C2输出的电平信号经由R5、C3、 IC1f、R8,延时接通SCR,白炽灯点亮,该最终输出信号同时通过R7作用于VT1,使得在白炽灯点亮期间声波信号不能向后级输入,保证开关一次触发,点亮时间一定。& & & &如果没有VT1、 R7,假定白炽灯发出的光不能照到自身声光控开关上,只要声源发出的声波间隔时间小于点亮延迟时间,白炽灯一直点亮,而且在最后一个声波结束后,还要延迟一个点亮时间周期才能熄灭,这样将造成电能的良费。  电路图四:  该光控开关电路由电源电路、时基集成电路ICl(NE555)、D触发集成电路IC2(74LS74)、双向晶闸管VT和光敏晶体管V等组成,如图3-59所示。  电源电路由电源开关S、降压电容器C5、整流二极管VDl、VD2、稳压二极管VS、发光二极管VLl和滤波电容器C4等组成。  接通S后,交流220V电压经C5降压、VDl和VD2整流、C4滤波、VLl限流降压及VS稳压后,产生5V左右的直流电压 (Vcc)供给ICl和IC2,同时VLl点亮。  光敏晶体管V与电位器RP、电阻器Rl组成分压电路,决定lCl的2脚和6脚电位的高低。在无光照射到光敏晶体管V时,ICl的2脚和6脚电压高于2Vcc/3,1C1的3脚输出低电平。& & & &当用手电筒照射光敏晶体管V时,V导通,其内阻变小,使ICl的 脚、 6脚电压降低,当该电压低于Vcc/3时,ICl内部电路翻转,由稳态变为暂态,其3脚由低电平变为高电平,发光二极管Vl2点亮,便IC2内电路翻转,IC2的5脚由低电平变为高电平,双向晶闸管VT受该高电平触发而导通,将用电器 (负载)的电源接通。  在V短时间导通又截止后,Vcc电压经RP和Rl对电容器Cl充电,使ICl的2脚和6脚电压逐渐升高。当此电压升高至Zp,。73时,IC1内电路又翻转,由暂态变为稳态,其3脚也由高电平变为低电平。IC2的3脚虽变为低电平,但其5脚仍维持输出高电平不变,直到下一个触发脉冲到来。  当再次用手电筒照射光敏晶体管V时,IC1的3脚又由低电平变为高电平,使IC2内电路翻转,其5脚由高电平变为低电平,发光二极管Vl2熄灭,双向晶闸管VT关断,将用电器的供电电源切断。  电阻器R3和电容器C3组成延时电路。在刚接通电源开关S或瞬间停电又恢复时,Vcc电压经R3对C3充电,此时IC2的1脚电压较低,其5脚被强制为低电平。当C3充电结束后,IC2才能恢复正常工作状态。  电阻器R6和电容器C6组成VT的保护电路,可以防止感性负载损坏VT。  三极管组成的光控开关电路原理图  图1是一个简单的亮通开关。RP为光控阈值调节电位器,通过它可调节光控灵敏度(下面几个电路均相同)。白天光线较强,光敏电阻器RG呈低阻值,三极管VT导通,继电器K吸合,其常开触点闭合,接通被控电器工作。夜间,光线较暗,RG呈高电阻,VT截止,K释放,被控电器停止工作。  图2为典型的暗通开关,它利用VT2反相原理将原来的亮通改为暗通。白天RG呈低电阻,VT1导通,其集电极输出低电平,故VT2截止,K不动作。当夜间光线较暗时,RG呈高电阻,VT1截止,其集电极输出高电平,VT2导通,K吸合动作,从而实现暗通的操作。  上述两电路,如果将光敏电阻器RG与电位器RP位置互换,则亮通就变为暗通,暗通则变为亮通。  图3是一个实用的光控延迟开关,工作条件是:需要为RG外面制作一个遮光筒,这样平时无论外面光线强弱如何,只要无直射光线射入遮光筒,RG均无强光照射而呈高电阻。图3~图5电路均有此要求。电路工作过程是:平时RG为高电阻,VT1截止,VT2也同样截止,K不动作。& & & &当用手电筒或激光笔对准遮光筒里的RG照射一下,RG立刻呈低电阻,VT1导通,因VT1导通时其等效电阻很小,C1很快充满电荷,VT2也导通,K吸合,被控电器工作。停止光照后,VT1虽恢复截止,但C1所储存的电荷可通过R向VT2发射结放电,仍能维持VT2保持导通态。& & & &C1电荷随放电逐渐减少,当不足以维持VT2导通时,VT2即截止,K释放,被控电器停止工作。电路延迟时间主要由R与C1放电时间常数决定,但VT2的β值对延迟时间影响很大,若β值较小,就限制了R的取值,故要求β值在200以上,VT2最好能采用达林顿复合管。  图4为双敏感器光控开关,RG1为“关”敏感器,RG2为“开”敏感器。电路工作过程为:用电筒或激光笔照一下RG2,VT2立刻导通,K吸合,其常开触点之一K-1闭合对电路自锁,另一个常开触点可使被控电器通电工作。& & & &需要关机时,只要再照射一下RG1,使VT1迅速导通,VT1的导通就将VT2的基极电位下拉迫使VT2截止,K释放,被控电器停止工作。VD2的作用是抬高VT2在导通时的基极电位,有利于照射RG1的关机操作。VD2如改用发光二极管,还能起到开关机状态指示。  图5是单敏感器光控开关,用激光笔或电筒照射时能实现点按一下“开机”,长按一下“关机”的操作。工作过程是:对RG短暂照射一下,VT1导通,电流一路经VT1、VD1、R2注入VT3基极,使VT3迅速导通,K动作吸合,其一个常开触点K-1闭合对电路自锁,另一个常开触点可使被控电器通电,实现“开机”操作。& & & 电流另一路经VT1、R1向C1充电,使C1两端电位上升,但由于RG受光照射时间很短,C1两端电位不可能上升到VT2的开门电平,故对电路无影响。需要关机时,只要照射RG的时间稍长些,使C1两端电位升至0.65V左右,VT2即导通,使VT3的基极电位下拉,迫使VT3截止,K释放,所有常开触点跳开,从而实现“关机”操作。VD3的作用与图4中的VD2相同,也可用发光二极管代替。  上述所有电路中的敏感元件RG均可采用MG45型光敏电阻器。敏感元件也可采用光敏二极管或光敏三极管,电路不必改动。了解更多信息,请点击(http://www.hqbuy.com/dzq/dzqsy.html)!
[上一篇:]
[下一篇:]
阅读:1227
阅读:1032
阅读:1254
阅读:1453
阅读:1637
阅读:1565
&|&nbsp&|&nbsp&|&nbsp&|&nbsp&|&nbsp&|&nbsp&|&nbsp&|&nbsp&|&nbsp&|&nbsp&|&nbsp&|&nbsp&|&nbsp&|&nbsp&|&nbsp&|&nbsp&|&nbsp&|&nbsp&|&nbsp三极管,管压降太大怎么办?负载电压不够。 - 电子元器件论坛 -
中国电子技术论坛 -
最好最受欢迎电子论坛!
后使用快捷导航没有帐号?
林超文手把手教你学!
教你1000种电路设计思路
张飞硬件电路之PFC全集
参与免费送VIP+原创视频
运放、ADC、电磁兼容
三极管,管压降太大怎么办?负载电压不够。
17:04:49  
三极管NPN 型 c2500&&
如图电路。&&负载电压Vc& & 只有不到4.2v。& &电源用的5v电源。
R1电阻。我自己算的结果是230欧左右。& &然后分别用的1K电阻到 30欧电阻测试。&&1k是三极管烫。 30欧时三极管也开始发热。
最合适的是100欧。 Vc 最大 4.18v& &三极管不热。
是我的电路错误还是什么原因&&怎么才4.18v&&是三极管本身管压降太厉害么?
三极管参数如图&&另外 这个Vces&&和Vceo的区别? 一个导通时的击穿?一个开路的击穿?&&不太明白。
(129.61 KB, 下载次数: 14)
17:04 上传
(71.33 KB, 下载次数: 4)
17:04 上传
(111.86 KB, 下载次数: 3)
17:04 上传
已退回5积分
09:20:47  
负载电阻RC多大?你想用2SC2500 做什么?
10:10:56  
负载电阻RC多大?你想用2SC2500 做什么?
做开关用。&&负载RC 大概在不到10欧 左右
10:11:37  
负载电阻RC多大?你想用2SC2500 做什么?
做开关用。&&负载RC 大概在不到10欧 左右
10:51:10  
基极接个电阻到地分流
11:47:42  
改用MOS管吧,Rdo&0.05欧的。绝对OK了。
11:54:24  
晶体管主要按电流计算& & 10欧5v电流0.5A 偏流为0.5A/电流放大倍数& & 管子要进入饱合区偏流乘2-3倍&&?
10:42:47  
谢谢 各位& &我找到原因了。 是我的电源问题, 空载时 电压是5V 一旦负载 实际是 4.3v&&谢谢~
林超文手把手教你学!
教你1000种电路设计思路
张飞硬件电路之PFC全集
参与免费送VIP+原创视频
运放、ADC、电磁兼容
Powered by
供应链服务
版权所有 (C) 深圳华强聚丰电子科技有限公司emouse原创文章,转载请注明出处 仍然是目前在写的教材中的一部分,先把基本结构写出来,后面慢慢补充,有何意见建议欢迎交流。 1.1.1 接口相关电路及概念 1. 集电极开路输出 在电路中常会遇到漏极开路(Open Drain)和集电极开路(Open Collector)两种情形。漏极开路电路概念中提到的“漏”是指 MOSFET的漏极。同理,集电极开路电路中的“集”就是指三极管的集电极。在数字电路中,分别简称OD门和OC门。 典型的集电极开路电路如图所示。电路中右侧的三极管集电极什么都不接,所以叫做集电极开路,左侧的三极管用于反相作用,即左侧输入“0”时左侧三极管截止,VCC通过电阻加到右侧三极管基极,右侧三极管导通,右侧输出端连接到地,输出“0”。
从图中电路可以看出集电极开路是无法输出高电平的,如果要想输出高电平可以在输出端加上上拉电阻。因此集电极开路输出可以用做电平转换,通过上拉电阻上拉至不同的电压,来实现不同的电平转换。 用做驱动器。由于OC门电路的输出管的集电极悬空,使用时需外接一个上拉电阻Rp到电源VCC。OC门使用上拉电阻以输出高电平,此外为了加大输出引脚的驱动能力,上拉电阻阻值的选择原则,从降低功耗及芯片的灌电流能力考虑应当足够大;从确保足够的驱动电流考虑应当足够小。 将OC门输出连在一起时,再通过一个电阻接外电源,可以实现“线与”逻辑关系。只要电阻的阻值和外电源电压的数值选择得当,就能做到既保证输出的高、低电平符合要求,而且输出三极管的负载电流又不至于过大。 集电极开路输出除了可以实现多门的线与逻辑关系外,通过使用大功率的三极管还可用于直接驱动较大电流的负载,如继电器、脉冲变压器、指示灯等。 2. 漏极开路输出 和集电极开路一样,顾名思义,开漏电路就是指从MOSFET的漏极输出的电路。典型的用法是在漏极外部的电路添加上拉电阻到电源如图所示。完整的开漏电路应由开漏器件和开漏上拉电阻组成。这里的上拉电阻R的阻值决定了逻辑电平转换的上升/下降沿的速度。阻值越大,速度越低,功耗越小。因此在选择上拉电阻时要兼顾功耗和速度。标准的开漏脚一般只有输出的能力。添加其它的判断电路,才能具备双向输入、输出的能力。
很多单片机等器件的I/O就是漏极开路形式,或者可以配置成漏极开路输出形式,如51单片机的P0口就为漏极开路输出。在实际应用中可以将多个开漏输出的引脚连接到一条线上,这样就形成“线与逻辑”关系。注意这个公共点必须接一个上拉电阻。当这些引脚的任一路变为逻辑0后,开漏线上的逻辑就为0了。在I2C等接口总线中就用此法判断总线占用状态。 同集电极开路一样,利用外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经上拉电阻,再经MOSFET到GND。IC内部仅需很下的栅极驱动电流,因此漏极开路也常用于驱动电路中。 3. 推挽输出 在功率放大器电路中经常采用推挽放大器电路,这种电路中用两只三极管构成一级放大器电路,如图所示。两只三极管分别放大输入信号的正半周和负半周,即用一只三极管放大信号的正半周,用另一只三极管放大信号的负半周,两只三极管输出的半周信号在放大器负载上合并后得到一个完整周期的输出信号。
推挽放大器电路中,一只三极管工作在导通、放大状态时,另一只三极管处于截止状态,当输入信号变化到另一个半周后,原先导通、放大的三极管进入截止,而原先截止的三极管进入导通、放大状态,两只三极管在不断地交替导通放大和截止变化,所以称为推挽放大器。输出既可以向负载灌电流,也可以从负载抽取电流 4. 上拉电阻与下拉电阻 在嵌入式接口的相关应用中经常提到上拉电阻与下拉电阻,顾名思义,上拉电阻就是把端口连接到电源的电阻,下拉电阻就是把端口连接到地的电阻。虽然电路形式非常简单,然而上拉电阻与下拉电阻在很多场合却扮演着非常重要的作用。 简单的说,上拉电阻的主要作用在于提高输出信号的驱动能力、确定输入信号的电平(防止干扰)等,具体的表现为: l 当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V), 这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。 l OC门电路必须加上拉电阻,以提高输出的搞电平值。 l 为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。 l 在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。 l 芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。 l 提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。 l 长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。 上拉电阻阻值的选择原则包括: l 从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。 l 从确保足够的驱动电流考虑应当足够小;电阻小,电流大。 l 对于高速电路,过大的上拉电阻可能边沿变平缓。 综合考虑以上三点,通常在1K到10K之间选取。对下拉电阻也有类似道理。 5. 嵌入式微控制器的I/O配置 上面介绍了嵌入式系统接口设计中相关的接口电路和概念,嵌入式微控制器的I/O是在嵌入式系统设计中最常用到的接口,很多微控制器的I/O口可以进行灵活配置,以本书中介绍的STM32F10X为例,STM32F10X的I/O可以配置成如表中所示的8中模式。因此在I/O的应用中更为灵活。
GPIO_Mode_AIN
GPIO_Mode_IN_FLOATING
GPIO_Mode_IPD
GPIO_Mode_IPU
GPIO_Mode_Out_OD
GPIO_Mode_Out_PP
GPIO_Mode_AF_OD
复用开漏输出
GPIO_Mode_AF_PP
复用推挽输出 STM32F10X端口位的基本结构如图所示,从图中可以看到典型的推挽输出电路与上下拉电阻,当N-MOS被激活时就变成了典型的开漏输出模式,当N-MOS和P-MOS同时被激活时就变成了典型的推挽输出模式,通过上拉电阻和下拉电阻的开关控制可以使端口处于上拉或者下拉输入模式。 根据开漏输出和推挽输出的特点,可以很容易判断在以下应用中应当工作在推挽输出模式(或者复用推挽输出): l 驱动应用中,驱动LED、蜂鸣器等 l USART_TX、USART_CK、USART_RTS、MOSI、SPI主模式SCK、CAN_TX等需要较强驱动能力的场合 而在I2C等接口总线应用中,由于需要“线与”判断总线占用状态,以及需要使用电平转换的场合需要将I/O配置成开漏输出的模式。
阅读(...) 评论()

我要回帖

更多关于 电路板上的电子元件 的文章

 

随机推荐