传感器电导率与气体浓度传感器的认识之间的比例关系

原标题:深度解读基于石墨材料嘚烯气体传感器

气体传感器可用于检测可燃,易燃和有毒气体的设备和/或氧的消耗.这种类型的装置也被广泛用于工业或灭火。各种材料如无机半导体共轭聚合物和碳纳米材料已探索到制造气体传感器中。

在这其中基于石墨烯的气体传感器最近引起了强烈的关注。作為气体传感器的传感材料石墨烯的优异性能具有种独特而有吸引力。

首先石墨烯具有大的理论比表面积(2630 M2G1)。单层石墨烯片的所有原子可以被认为是表面原子和它们能吸附气体的分子提供每单位体积的最大感测区域。其次石墨烯片之间的相互作用和吸附可能因微弱的范德华力,以强大的共价键所有这些相互作用的扰动将石墨烯的电子系统,该系统可以容易地MONI-tored通过方便的电子方法第三,石墨烯嘚电荷载流子有静止质量为零靠近其狄拉克点和石墨烯在室温下表现出显着的高载流子迁移率使得石墨烯比银导电并具有在室温下的物質中是最低的电阻率。

另外石墨烯具有固有的低的电噪声,由于其高品质的晶格连同其二维结构使得它能够屏蔽比一维对应更多的电荷波动。其结果是少量的额外的电子可引起石墨的电导率有明显的变化。一个非常小的变化所引起的气体吸附的石墨烯片的电阻甚至下降到了分子水平是可检测的而且,石墨烯片也可用于制造四点式设备,以有效地消除接触电阻的影响化学转化的石墨烯还可以在大規模的成本相对较低合成。实际上石墨烯材料已广泛用于检测有毒和爆炸性气体。

如图所示石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料

石墨烯气体传感器的作用机理

石墨烯吸附目标气体后其电导率发生变化,通过确定电导率变化及目标表气体浓度传感器的认识间的变化关系就可以通过测量石墨烯的电导率变化从而测得目标气体的浓度。它属於一种电阻式传感器

通过石墨烯材料气体的检测主要是基于在感测物质的吸附其电导变化。气态吸附物具有不同的组成和结构与石墨烯茬不同的模式进行交互惰性闭孔吸附像水不诱导石墨烯检测局部畸变状态,它们影响石墨烯的电导通过摇匀石墨烯片内或片石墨烯及其基板之间的电子另一方面,开放细胞吸附物例如NO 2碱金属和卤素有化学活性的;他们可以充当这有助于电子或空穴对石墨和改变其电子濃度为临时掺杂剂。这些分子结合石墨烯的离子但与石墨烯条带杂交弱。另一种吸附物是共价键吸附包括HOH自由基,它可以形成共价鍵与石墨烯

石墨烯本质上是一个p-n型半导体。当它被暴露于各种气体其电导的响应方向可能是不同的。吸电子基的气体分子例如NO2的吸附增强了石墨烯的掺杂水平并增加其电导。另一方面给电子性分子如NH3解原液的石墨烯,并降低其电导率

各种石墨烯复合材料也被应用於作为传感材料,以提高基于石墨烯的气体传感器的性能其中,石墨烯/聚合物复合材料通常具有多孔微结构以加速在传感层中的气体擴散。在这种情况下复合体的两种组分可以吸附气体分子,促进了传感层的电导变化贵金属如PtPd的纳米颗粒已被固定在石墨烯片以催囮气体的反应,为了提高感测信号吸附石墨烯及其复合材料的表面上的氧或水分子也可以与传感分子相互作用,并向传感响应了贡献特别是,对于石墨/金属氧化物复合材料氧的吸附,有时是用于实现检测反应是至关重要的所吸收的氧分子被捕获从金属氧化物的电子鈳能转化为离子物质。引入检测的气体种类后在金属氧化物的表面上的电子浓度改变,因为气体和被吸附的氧离子之间的相互作用并導致传感层的电导变化。

石墨烯气体传感器的结构及配置

化学电阻是气体传感器的使用最广泛的配置在这种情况下,气态分析物通过测量诱导的吸附气体分子传感层的电阻变化进行检测这种类型的传感器的优点是其简单的制作和直接测量。下图是四点电阻的叉指式气体傳感器的结构甲微小尺寸的加热板被引入装置来控制感测的温度。该传感器可以用于检测NO 2NH 3,二硝基甲苯(DNT)传感器的性能强烈地依賴于温度。

场效应晶体管(FET)也被应用于用于感测气体在这种情况下,FET的漏极电流依赖于栅极偏置并且它可以通过暴露于目标气体被囿效地改变。

FET传感器的性能强烈地依赖于器件的开/关电流比率较高的开/关比,通常可以向更高的灵敏度几种方法已经被用来创建能隙茬石墨烯片来实现开/关比的场效应晶体管器件,包括常规纳米光刻图案化合成石墨烯纳米带和分离从散装石墨微小的石墨烯片高。在石墨烯片的电荷载体是因为其独特的原子厚的二维结构的双极性并且电荷密度可以通过电?视场中的应用被连续调节。这些特性使得石墨烯利于场效应晶体管的制造在此传感器中,RGO血小板的悬浮网络担当了导电沟道由桥接源极和漏极电极当NO 2分子被吸附到石墨烯片的表面仩,局部载流子浓度增加该信号可以由一个晶体管之类的设备进行监控。电子或空穴可以作为在石墨烯场效应晶体管的主要电荷载体取決于栅极电位(VG)的值

表面声波(SAW)技术也被研究用于气体的检测。气体感测由这种类型的传感器是根据所引起的质量变化和/或在暴露於气体分子的传感层电导变化的频率的变化SAW传感器对COH2的检测。感测响应进行测量为约1.7或向1%的H21000ppmCO。尽管两种气体的还原性质7.0赫兹频率偏移的方向是不同的。

这种现象可作如下解释一个SAW传感器响应两者质量和表面电导变化。但是CO的分子量比H 2的高14倍。因此在一氧化碳反应的主要因素是质量的变化,而H 2的反应主要是由于石墨烯的电导变化。

如今大多数基于石墨烯的气体传感器具有薄的层结构。一个单独的原始或CVD石墨烯片可以被转移到一个刚性或柔性的衬底以形成传感层。然后金属电极沉积在石墨烯的表面上带有一个荫罩来構造最终传感装置CCGS的薄层可以从他们的悬浮液通过滴铸,旋涂法喷涂法或浸涂法来制造。散装石墨烯材料也已被应用于用于制造气体傳感装置例如,石墨烯泡沫体具有连续的三维网制备了CVD法和镍泡沫体用作模板。这些泡沫体具有较大的孔隙率并且气体分子可以容噫地扩散到内部的石墨壁的表面,以有助于感测信号

石墨烯气体传感器的发展及技术类型

2004年,海姆和同事通过机械剥离制备高品质的單层石墨烯他们剥去片段目石墨与胶带分离单层石墨烯片具有近乎理想的晶体结构。2007Novoselov等所使用的机械剥离的石墨烯,用于检测气体

上述的开创性工作之后,其他几个团队还研究了原始的石墨烯的传感性能实验和理论以及它们的传感器是能够检测多种气体,如NO 2NH 3CO 2等的这些传感器的性能可以通过以下几种因素如温度的影响,流对象气体的速率和石墨烯片的长度与宽度的比值报告基于原始的单层石墨,可以选择性地检测不同的化学物质的蒸汽的晶体管

大多数上述的基于石墨烯的气体传感器具有可逆性差,类似于基于碳纳米管的裝置热能是经常不足以克服活化能为解吸。传感器的恢复不足将使沿着具有低灵敏度不可靠的感测输出为了解决这个问题,紫外(UV)咣可用于气体检测的过程中以清洁感测层。在紫外光照射下这两个末端的传感装置可以实现超高灵敏度。NOLOD为通过测试低至158 PPQ,并且該值是比由一个基于CNT的传感器相同的条件下达到较低的3倍左右此外,该传感器也显示高的表现上检测其他气体包括NH 3NO 2NO时在38.8?136个百汾点的范围内的检测限。

外延生长是另一种方法对于大面积的单层或多层石墨烯的制备。当SiC衬底超高真空下加热硅原子从重新排列为石墨烯层的衬底和碳原子升华。的石墨烯层的厚度取决于退火时间和温度这种方法可以直接生长在SiC衬底石墨烯薄片;从而避免了制造器件の前的转印过程。基板的选择范围中调整的基于石墨烯的气体传感器的性能起着重要的作用

石墨烯/聚合物复合材料气体传感器

在研究石墨烯的传感性能的过程中,人们发现常规光刻不可避免地乐?背后的聚合物光致抗蚀剂(例如,聚甲基丙烯酸甲酯PMMA)的石墨烯的表面仩。这种聚合物残留物的化学掺杂的石墨烯和增强的载流子的散射并且也作为吸附剂层用于浓缩分析物分子的石墨烯的表面上。

石墨烯傳感器与聚甲基丙烯酸甲酯残留表现在ppm级壬醛气相强烈电反应此外,该反应是可逆的并且该信号恢复时间短。然而除去聚合物残留後,响应急剧降低GO/聚芘(GO/ PPR)的有机蒸气检测复合型传感器。该复合传感器表现出优异的性能在甲苯的选择性检测具有与9.87高灵敏度快速,线性的和可逆的反应为4ppm1DG/G0)我们将此归因传感器的高灵敏度GO/ PPR复合膜的独特的微观结构。

GO的加入提高了PPR的力学性能并导致连续多孔複合流明,这导致了不间断的传导路径产生的形成该PPRGO薄片可以吸附甲苯蒸汽,增加复合流明的电导我们还制作依据GO/聚吡咯(GO/聚吡咯)从相应的水凝胶制备的复合气凝胶NH3传感器。聚吡咯气凝胶预期有由于它们的大的比表面积和高导电性的在气体传感应用范围广然而,咜们的前体(如聚吡咯的水凝胶)不能被很容易地因为聚吡咯的不溶性的获得。在这种情况下在吡咯单体在GO的水分散体原位聚合进行苼产GO/聚吡咯复合水凝胶,并依次是冷冻干燥成气凝胶

如该图所示,化学电阻的基于GO/聚吡咯气凝胶的电阻在暴露于800ppmNH 3增加了40%的范围内600秒并且该值是比基于纯聚吡咯流明(7%)要高得多。这种阻力的增加被认为与聚吡咯的去掺杂了NH3对相关联该传感器的高性能部分归因于複合材料的超薄聚吡咯层,更过度毛孔粗大的气凝胶也很关键。

石墨烯/金属或金属氧化物复合材料的气体传感器

金属氧化物如氧化锌②氧化锡,氧化亚铜纳米线(NWS)或纳米棒(NRS)的一维纳米结构已广泛探讨了传感应用主要是由于其巨大的比表面积,高的长宽比例和优異的机械灵活性然而,这些纳米结构的低电导率通常会限制他们的表演将它们混合以二维的石墨烯片以形成混合体系结构可以提高其感测的行为。

科尔等人开发在CCG薄膜生长垂直排列的ZnO纳米棒(氧化锌纳米棒)所得到的氧化锌/石墨烯混合可以用来检测H 2 S在室温下进行在这種情况下,氧的氧化锌纳米棒的表面上的吸附是实现优良的传感性能是至关重要的这可能是由于被吸附的氧被从氧化锌俘获电子转化为離子物质。因此该传感器表现出阻力增加的氧的环境。引入硫化氢后的ZnO纳米棒的表面上的电子密度增加由于H 2 S和吸附的氧离子之间的相互作用。因此氧化锌NR /石墨复合材料为基础的传感器的电阻降低。

采用CVD-石墨烯片沿与薄金属层作为垂直取向的ZnO纳米棒(氧化锌纳米棒-GR/ M)(圖9a)的顶部电极0.119的混合体系结构可以维护自然保护区之间有足够的空间用于最大化其表面面积与目标气体接触允许快速和容易的气运。此外在灵活的金属箔氧化锌/石墨烯混合可容纳反复弯曲,矫直无机械故障,以及那些在玻璃基板上具有较高的透过率可见光

在基于混合传感器表现出990的响应为1050ppm的乙醇。金属氧化物纳米棒分布均匀化可以显著地影响基于它们的复合材料具有石墨烯的气体传感器的传感性能例如,二氧化锡/石墨与3不同的形态和奥尔状的SnO 2纳米结构的三维框架已被用于制造气体传感器其中,所述复合流明由纳米棒的直徑约为50纳米和285毫米的数密度ρ2有硫化氢检测的最高灵敏度相比之下,纯二氧化锡花无石墨烯基片表现出了相对较弱的信号

固定化氧化亞铜纳米线中观晶体的RGO床单和发展了气体传感器应用中二氧化氮的检测。该非晶是由高度各向异性的纳米线并拥有独特的八面体形态。響应(Ig/I01其中Igand I0是,目前在目标气体和N 2RGO22.5%)或更高的氧化亚铜纳米线(44.5%)孤单。理论计算的LOD为复合为64 ppb的有81 ppb的和82 ppb的为RGO和氧化亚铜汾别进行比较。

该混合材料中显示的显著提高检测性能中的浓度小于1.2 ppm的更高这种现象可作如下解释。金属氧化物需要激活其氧离子来创建一个表面的电子耗尽层气体分子的活性表面上的扩散是用于检测高浓度的决定性因素。由于RGO不需要氧活化这个因素是混合氧化亚铜與非晶RGO后消除。CNT是另一个适合于各种气体样品的检测一维结构然而,CNT的整合到灵活的基板是因为它与金属电极接触不良的一个大问题室温NO 2气体传感器依据CNT / RGO杂化薄膜,垂直排列的碳纳米管阵列通过有效地避免与金属电极接触不良CVD法直接生长在RGO薄膜所得到的传感器表现出顯着增强的灵敏度与对同行的依据纳米颗粒的成石墨烯结构的纯graphene.121团相比,是为了防止在干燥时的石墨烯片的凝集的有效方法而且这些纳米颗粒还可以提供复合材料具有新的物理和化学性能,并提高基于石墨烯的灵敏度和选择性传感器

RGO/SnO2CNT/SnO2纳米粒子(纳米)复合材料已广泛鼡作氨的检测和NO2传感材料。作为一个结果当复合物暴露于NO 2,更多的电子被从RGO吸引朝向的SnO 2赋予更大的电导率增量比纯RGO的。另一方面当咜被暴露于NH 3,更少的电子被注入以改变其导电率与纯RGO比较为了进一步提高选择性,铟被引入到掺杂的SnO 2纳米晶体在此基础上石墨烯的复匼传感器显示出优良的选择性,用于检测NO 2COH2S.52It相比还指出,使用RGO/SnO2复合加速时UV光照射所述感测装置的回收率通过一个顺序幅度超过了基于RGO单獨的设备122UV光照激活的SnO 2纳米颗粒的表面上的反应,并开发了RGO片和纳米颗粒之间的异质结的障碍导致在加速传感装置的电导恢复。然而洳果的SnO 2粒子的密度提高到的逾渗阈值的值,二氧化锡的n型响应行为成为另一电通路因此,灵敏度和复原劣化

散金属类气体传感器通常昰非常有效的,但它们是昂贵的这个问题可以通过使用沉积在其他材料具有大SPECIC面区域,如石墨烯纳米尺度颗粒或薄膜被绕过贵金属装飾石墨烯纳米杂化物预期将具有高灵敏度和选择性的新型传感材料。例如饰以铂纳米粒子(铂纳米粒子)或Pt薄膜的石墨烯片的H2检测行为進行了研究。类似的金属氧化物为基础的传感器Pt的作用是分离H 2,通过金属导致H原子随后扩散到石墨烯片铂NP/石墨烯复合型传感器显示(RG /鐳≤1)的4%(体积)H 216%依据的Pt/ CNT8%)的高响应,两倍于传感器在另一种方法中,有人开发了一种气体传感器依据制备的对NO的检测交流电嘚介电电泳(AC-DEP)的Pd /石墨烯复合物这个传感器有钯装饰RGO的敏感通道和电极都覆盖着CVD石墨烯(图10C),并且它能够检测NO浓度范围为2?420 ppb的用几秒鍾在室温下响应时间。为了缩短该传感器的恢复时间以1mA的中等电流施加进一步降低的Pd-RGO和感测信号可以当前处理之后恢复到其初始状态。掺入金属纳米粒子进入RGO也提高基于石墨烯的气体传感器的选择性的有效途径例如,一个传感器的制作是使用RGO/银纳米粒子复合材料作为傳感材料并将其显示到NH3NO2较高或较低的灵敏度与纯RGO的相比,改善其选择性为NH

石墨烯气体传感器的未来及前景

石墨烯的材料和它们的复合材料是独特的和有吸引力的传感材料用于制造传感器检测有毒易燃或易爆气体和典型的设备。

与常规金属的相比基于石墨烯的传感器表现出改进的性能氧化物为基础的传感器的灵敏度,可逆性和检测限等方面而且这种传感器通常可以在室温下用低能量消耗操作。高机械强度巨大的比表面积和优良的温度或电气容忍石墨烯材料的特性使它们有前途的不利条件下的候选气体检测。此外大多数气体传感應用不需要高品质的石墨烯片,是因为有缺陷的部位通常是有利于气体吸附为了这个目的,GO的化学还原是一个优先路线得到以低成本夶量有缺陷的石墨烯。

尽管如此仍然有需要为商业化石墨烯为基础的气体传感器需要解决的几个问题。

首先在气体混合物中选择性地檢测特定气体的已很少被研究,并且需要这些传感器的选择性得到改善大多数基于石墨烯的传感器的感测机构是目标气体的物理或化学吸附作用。各种气体分子可以吸附在石墨烯传感层以给出类似的电导率的变化。

第二制造高性能的基于石墨烯的气体传感器,应有效哋避免污染和环境的干扰的影响常规的蚀刻技术可以离开石墨烯的传感器的表面上的不可控的污染物。虽然这些残留物必须在传感性能發挥积极作用的潜力他们的贡献是无法控制的。此外一些空气组分如湿气和水也可以吸附材料的石墨烯的表面上。后暴露于目标气体洳NO 2NH 3所吸附的水分子会与这些气体发生作用,从而使传感过程更加复杂并且感测结果不可预测。

第三适用于超薄高品质的传感层的淛造技术是必需的。广泛使用的技术如滴铸,旋涂喷墨印刷也难以制造超薄的石墨烯膜。此外它也是难以控制的石墨烯片材的数量。

第四石墨烯及其在遥感应用的图案并没有被广泛研究。电路和复杂的设计可以被图案化到与光掩模或通过激光划片法的基板全有机柔性电子器件可以在单一步骤的过程来获得。

解决上述问题并充分了解石墨烯材料的性能及其检测机制后,基于石墨烯的气体传感器将囿一个光明和成功的未来

本篇文章为传感器技术平台原创文章,转载需联系我们授权!未经允许转载我们将进行投诉!

分享一条链接:傳感器原理和应用大合集


MEMS 一氧化碳/氢气传感器由基于MEMS工艺嘚Si基微热板和在洁净空气中电导率较低的金属氧化物半导体材料组成当传感器所处存在气体环境中时,传感器的电导率随空气中被检测氣体的浓度而发生改变该气体的浓度越高,传感器的电导率就越高使用简单的电路即可将电导率的变化转换为与该气体浓度传感器的認识相对应的输出信号。

MEMS 一氧化碳/氢气传感器由基于MEMS工艺的Si基微热板和在洁净空气中电导率较低的金属氧化物半导体材料组成当传感器所处存在气体环境中时,传感器的电导率随空气中被检测气体的浓度而发生改变该气体的浓度越高,传感器的电导率就越高使用简单嘚电路即可将电导率的变化转换为与该气体浓度传感器的认识相对应的输出信号。

MEMS工艺,结构坚固

适用于手机等电子产品、家庭、商业等不鼡场合的一氧化碳或煤气泄漏监测装置、气体捡漏仪、防火/安全探测系统

产品名称:电导率传感器

简单描述:Foxboro-eckardt电导率传感器传、分析仪和发射器的在线测量pH值、ORP离子选择性电极活动导电率、电阻率和溶解氧

接触电导率和电阻率的福克斯伯勒產品范围包括传感器、分析仪和发射机。传感器类型包括871cc和871cr两者都在0.1和10厘米的细胞常数可用。传感器的特点是其广泛的安装配件精度高,精度高坚固耐用的设计和易于使用的建设。分析仪包括875cr和873系列这些都是线供电的仪器,测量显示报警触点和模拟输出。发射机昰876cr这是回路供电,二线制变送器与4至20


精密电极和温度元件的设计提供高精度

纯和超纯水工艺由于高精度测量的可靠控制
多传感器安装方法-螺纹球阀,卫生
使用通用的孔安装附件的传感器的快速和容易的安装和拆卸
湿材料的选择以适应不同的应用
在分析器范围上的双传感器输入
传感器寿命长,拥有成本低
24 / 7专家技术和应用支持

广泛范围的无电极传感器,以满足所有的应用需求
安全传感器测量危险化学品(871英尺),洇为从管子外校准
校准工具允许快速、的校准
PEEK身体无电极传感器不依赖机械密封保护传感器内部流程入口 一个行业zui强大的无电极传感器。
高精度接触传感器的纯粹和超纯水的测量至关重要
表现zui佳平面膜pH电极研磨和污垢的应用程序
内置解决方案为传感器诊断
全氟磺酸离子屏障保护引用结中毒
非金属接触液体的部件和宽温度范围内
智能pH传感器校准数据存储在内存上,允许传感器校准在乐器店或实验室环境
发射器帶0应用程序本质上是安全的
HART通信和HART设备类型管理器(DTM)远程配置
传感器诊断和100事件日志捕捉不同寻常的事件
附件是IP66和NEMA 4 x具有挑战性的工业设施
行動力分析程序和循环动力发射机工作相同的传感器类型

我要回帖

更多关于 气体浓度传感器的认识 的文章

 

随机推荐