微纳金属3d打印可以打印金属吗技术应用:AFM探针

[图片] 注意特指使用金属原材料嘚3d打印可以打印金属吗技术、材料和应用范畴,包括但不限于SLS、SLM、EBM技术以及球形钛粉、不锈钢粉末等。希望大家就你所…

原标题:金属3d打印可以打印金属嗎需要注意些什么

银纳科技:金属3d打印可以打印金属吗需要注意些什么?文章来源于银纳科技

在金属3d打印可以打印金属吗的过程中可能会出现各种问题,比如:孔隙、残余应力、密度、翘曲、裂纹及表面光洁度等问题出现那操作金属3d打印可以打印金属吗机的工作人员需要注意些什么呢?下面我们与银纳小编一起来看看。

孔隙:我们需要知道的一点是金属3d打印可以打印金属吗的过程中就会产生小孔,当粉末的尺寸大于层厚或者激光搭接过于稀疏,就会出现小孔熔化的金属没有完全流到相应的区域也会造成小孔出现。金属3d打印可鉯打印金属吗机的操作员需要对特定的材料和任务来调试设备对特定的材料和任务,设备参数(如激光功率、光斑尺寸、光斑形状)需偠调整来使孔隙最少

密度:良好的金属3d粉末流动性对于确保铺粉的平整度、密度非常必要,它会影响到产品的孔隙量和致密度,金属3d打印可鉯打印金属吗粉末堆积密度越大,零件孔隙量越低致密度越高,零件的致密度与孔隙量成反比零件气孔越多,密度越低在受力环境丅越容易出现疲劳或者裂纹,所以针对于关键性应用零件的致密度需要达到99%以上。

表面光洁度:采用金属3d打印可以打印金属吗方式打印絀来的金属零件之类的产品表面是比较粗糙的,为提高表面光洁度可采用更细的粉末、更小的层厚。

银纳科技拥有专业的检测设备財能为生产研发、为客户提供更精准、更快速的检测服务。在完善检测流程制定检测标准的道路上,广东银纳一直在前进更多3d打印可鉯打印金属吗技术相关讯息可在银纳科技官网中查看,银纳科技为您服务

河南省交通高级技工学校河南駐马店

的行动计划制定,作为制造行业最具有发展前景的金属

技术因其自身具备减少生产耗材、降低生产成本、可实现远程加工等特性,使得其重要性逐

渐凸显出来本文通过查阅国内外先进金属

印的现状简单阐述了金属

打印技术,并详细分析了现阶段

打印发展的关键技術和瓶

打印技术的发展进行了展望

打印技术;金属打印;中国制造

打印技术是一种快速成形技术,相对于传统机加工制造行业的减材制慥是一种增材

制造方式,利用三维设计软件进行设计或者通过逆向工程采集相关数据转变为模型后利用切

片工具对其进行逐层平面切爿,然后由

打印机把不同的材料按切片的图形进行叠加最终

堆积成需要的实体的一种技术。随着科技的发展材料技术的不断提升,

长足的进步使得利用快速成形技术直接打印金属功能零件也得以实现,而且这一技术也将会

成为金属加工的主要发展方向

打印技术也将會改变着人们传统的生产方式和生活方式,

行动计划我国也把这一技术提上日程,快速发展

打印技术所采用的加工方法和材料目前主偠分为以下几种。

技术采用标准喷墨打印技术,材料多为液体打印模型可以有多种色彩,样品

立体平版印刷技术多采用计算机对模型进行分层,并处理各分

层截面及堆积路径信息进行逐层堆积直到得到相应的三维实体模型。材料多为塑料树脂

等。这种方法打印速喥快、能实现较高的自动化加工形成实体的形状复杂,精度较高

熔融层积成型技术。这种技术也是利用层积的方式逐层打印,材料哆为塑料多用于

选区激光烧结技术。多用激光烧结技术对每层金属粉末在计算机控制

下按照一定的路径进行烧结层层堆积成型。这种方法工艺简单材料可为金属,主要用于模

激光成型技术类似于第二种的

立体平版印刷技术,不过

它加工更快材料多为塑料。

核心提示:来自爱尔兰I-Form高级制造研究中心的三位研究人员发表了一篇论文“用于3d打印可以打印金属吗过程中316L粉末可回收性分析的X射线断层扫描,AFM和纳米压痕测量”重點在于更好地理解和表征金属粉末的回收,并评估“粉末颗粒的孔隙率”以优化粉末床熔化过程中回收粉末的实际可重复使用次数。

为叻减少材料浪费节约资金,实验室经常会对剩余的金属粉末进行再利用来自爱尔兰I-Form高级制造研究中心的三位研究人员发表了一篇论文,“用于3d打印可以打印金属吗过程中316L粉末可回收性分析的X射线断层扫描AFM和纳米压痕测量”,重点在于更好地理解和表征金属粉末的回收并评估“粉末颗粒的孔隙率”,以优化粉末床熔化过程中回收粉末的实际可重复使用次数

    许多“抗风险应用”,例如在航空和生物医學行业中将不会使用回收粉末,因为任何可追溯到材料的部件异常可能都是不安全且昂贵的用再生粉末打印的部件3D需要具有与新粉末蔀件相当的机械性能,例如硬度和有效模量

    为了在二次制造周期中重复使用回收的粉末,全面的表征对于监控3d打印可以打印金属吗机中受激光热影响的粉末的表面质量和微观结构变化至关重要在增材制造工艺及其环境中,大多数粉末都有表面氧化、聚集和形成孔隙的风險[1,2]我们的最新分析证实了回收粉末中的氧化和多孔颗粒的增加,这是316L不锈钢粉末的主要危险变化[3,4]

    再利用回收粉末之前的一个常见做法昰筛分,但这不会降低颗粒的孔隙率或表面氧化此外,“随后使用再生粉末”可以改变最终部件的机械强度而不是更好。

    在这里研究人员报告了我们最新的努力,即使用X射线计算技术来测量回收粉末中形成的孔隙分布并将这些分析与通过AFM粗糙度测量和纳米压痕获得嘚粉末的机械性能(硬度和有效模量)相关联技术。

    使用316L不锈钢粉末并在EOSINTM280SLM3d打印可以打印金属吗机上打印了9个5x5x5毫米的测试立方体。他们在嫃空条件下从粉末床中取出了回收的粉末然后在使用前过筛。打印完成后他们再次收集了样品粉末并将其标记为再生粉末。

    通过XCT和纳米压痕等多种技术对原始粉末和回收粉末进行了分析XCT是通过X射线计算机断层扫描(XCT)进行的,测量是用Xradia500VersaX射线显微镜进行的XCT的加速电压為80kv,7w3D扫描阈值为2微米。

    为了测量原始粉末和回收粉末的粗糙度我们使用布鲁克尺寸ICONAFM进行了原子力显微镜(AFM)和共聚焦显微镜。平均粗糙度是使用Gwyddion软件去除噪声并在图像上应用中值滤波器作为非线性数字滤波技术计算得出的

    研究人员还在250?N的力下,对多个粉末颗粒进行叻纳米压痕时间不超过十秒钟,以确定“孔隙率对回收粉末的硬度和有效模量的影响”并使用光学显微镜对确定粉末上的孔区域。

    粉末的XCT成像(a)900张记录的CT图像的3D渲染图像;(b)感兴趣的区域;(c)2D切片显示的颗粒中的内部孔;(d)在图像处理后识别出粒子内部的孔。

    对XCT图像进行了分析并选择了“感兴趣区域”,如上所示从中提取了孔径和内部颗粒分布。

    原子力显微镜在颗粒上的图像显示了模具囷钢的边界以及测量表面粗糙度的区域

    使用软件处理原始粉末和回收粉末的AFM形貌图像,该团队以250微米的力在颗粒的不同位置上应用了纳米压痕

    (a)将粉末颗粒放在硬化模具上以进行纳米压痕,以及(b)在颗粒表面施加压痕

他们确定了再利用的粉末颗粒的孔隙率比原始粉末高约10%,原始粉末的粉末颗粒表面平均粗糙度为4.29纳米而回收的粉末表面为5.49纳米。这意味着3d打印可以打印金属吗“可能会增加回收颗粒的表面粗糙度”纳米压痕测量表明,再生粉末的平均硬度为207GPa平均有效模量为9.60GPa,相比之下原始粉末的平均硬度为236GPa和9.87GPa,“这可以与表媔下方产生的孔隙率相关”

    在XCT测量中从图像处理中提取的原始粉末和回收粉末的孔径分布。

    与原始粉末相比再生粉末的孔径分布更广。原始粉末中的主要孔尺寸约为1-5微米略微减小至较大尺寸,但较小的尺寸回收粉中的孔也较大,但人口较少另一方面,从原始粉末(约10微米大小)中观察到更高的孔密度我们认为金属元素在激光照射过程中会扩散到表面。

    AFM测量得出的粉末颗粒表面粗糙度图通过Gwyiddion软件计算平均粗糙度。

    再生粉末的硬度小于原始粉末“可归因于再生颗粒中较高的孔密度”,因为孔隙率使粉末“更容易受到外力而导致硬度降低”

    虽然改变粉末颗粒的粒度会导致机械性能下降,但该团队的AFM和SEM结果并未显示出回收粉末中有大量颗粒重新分布但是,他们嘚纳米压痕和XCT结果确实发现较高的粉末孔隙率会降低颗粒的硬度和模量,这“将损害所制造部件的机械性能”

    纳米压痕法测定新鲜颗粒和原始颗粒的硬度和有效模量。

“我们之前已经介绍了使用SEM和XPS分析在表面和尺寸分析上取得的成就在这里,我们专注于两种粉末中的孔分布并将其与从粉末颗粒的纳米压痕分析获得的表面粗糙度,硬度和有效模量相关联”研究人员总结道。“结果表明受激光热量囷粉末中氧的夹杂/捕集的影响,再生粉末中的孔数量增加了约10%这反过来增加了表面粗糙度,但降低了再生粉末的硬度和模量孔中充滿了气体(例如氩气或氧气),因为这些气体无法跳过熔体并且在整个固化过程中在熔体中的溶解度较低。”

我要回帖

更多关于 3d打印可以打印金属吗 的文章

 

随机推荐