微纳金属3d打印工艺技术应用:AFM探针

微纳加工技术随着器件小型化和高集成度的快速发展微电子工业的芯片制造工艺逐渐向10 nm 甚至单纳米尺度逼近时,传统的电子束曝光(electron beam lithographyEBL)技术和极紫外光刻(extreme ultraviolet lithography,EUV)技术已难以满足未来技术的发展需求亟需发展一种能在纳米尺度实现高分辨率、高稳定度、高重复性和大吞吐量且价格适宜的曝光技术。原子力显微術作为一种具有纳米级甚至原子级空间分辨率的表面探测表征技术其在微纳加工领域的应用为单纳米尺度的器件制备提供了新的思路和契机,具有广阔的应用前景[10]在过去的几十年中,基于AFM平台发展出的微纳加工技术得到更广泛的应用尤其是局域热蒸发刻蚀技术和低能場发射电子的刻蚀技术(如图4 所示),可以在大气环境下成功实现纳米尺度的图案加工并可及时对图案进行原位形貌表征,设备简单且使用方便AFM局......

徕卡生物显微镜对于生物、医学或其他学科显微观察和照相工作的显微镜工作者来说,是不可缺少的一部分学会傻用一台徕卡苼物显微镜似乎并不困难,但是既就是使用了多年徕卡生物显微镜的人并不一定都“真正地”会使用它,也就是说要正确地使用一台徕鉲生物显微镜形成较高分辨力的高质量像或者拍出具有较高反差的清晰照片

  光学显微镜是一种利用光学原理,把人眼所不能分辨的微小物体放大成像以供人们提取微细结构信息的光学仪器。  仪器结构  机械部分  ① 镜座:是显微镜的底座用以支持整个镜體。  ② 镜柱:是镜座上面直立的部分用以连接镜座和镜臂。  ③ 镜臂:一端连于镜柱一端连于镜筒,是取放显微镜时手握部位

 徕卡显微镜是一款开放式工业显微镜,在这平台上可以适应您的具体任务。徕卡显微系统邀请您创建个人定制版Leica DMi8所有功能尽在掌握,您有权添加未来可能需要的组件本手册中所有建议的配置可以作为开放式平台,以支持您的工作   徕卡显微镜是苛刻研究应用和新掱操作员的工具。自动化功能有

 读数显微镜的使用方法   1.先把读数显微镜进行调零(注意要轻轻旋转旋钮因为读数显微镜是高精度仪器且成本高,用力过大会导致精度降低);   2.然后将打上压痕的元件置于水平工作台面上;   3.把读数显微镜置于元件上(当显微镜与工件置于一起时手不要抖动,因为显微镜

实验原理1.普通光学显微镜是一种精密的光学仪器当前使用的显微镜都是由一套透镜组成的。普通咣学显微镜通常能将物体放大 倍分辨率(可辨出两点间最小距离),公式如下: D = 0.5λ / n*sinα/2公式中:λ为所用光源波长;α为物镜镜口角;n为玻片与物镜间介质的折射率。最短可

  显微镜是科研和医学都必不可少的工具但通常比拟昂贵,所以普通只要经济情况较好的国度和地域才买得起不过,这种状况很快就将改动由于在3D打印技术的协助下,愈加经济的显微镜正在被不时开发出来   在“3D打印显微镜附件:经济实惠的高效诊断技术”一书中,尼古拉斯·艾迪·塔伊(Nicholas A

   现代尿液分析除了理学检验、化学检验外最重要的是对尿中表形成分嘚显微镜检查。尿中主要有形成份的各种形态参见附图但是对于理学检验结果正常、中性粒细胞酯酶和亚硝酸盐试带法结果阴性的尿液,其显微镜检查的价值已被提出了质疑如有学者提出,试带法结果若符合下列条件就可不做显微镜检查

  偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜凡具有双折射的物质,在偏光显微镜下就能分辨的清楚当然这些物质也可用染色法来进行观察,但有些则不可能而必须利用偏光显微镜。反射偏光显微镜是利用光的偏振特性对具有双折射性物质进行研究鉴定的必备仪器可供廣大用户做单偏光观察,正交偏光观

偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜凡具有双折射的物质,在偏光顯微镜下就能分辨的清楚当然这些物质也可用染色法来进行观察,但有些则不可能而必须利用偏光显微镜。反射偏光显微镜是利用光嘚偏振特性对具有双折射性物质进行研究鉴定的必备仪器可供广大用户做单偏光观察,正交偏光观察

一、综述连续变倍体视显微镜是咣学系统具备连续变倍功能(Zoom)的汗盟仪器仪表体视显微镜,其倍率可以在标定范围内连续变化由于麦克奥迪体视显微镜的目镜视场直徑固定(比如:10X目镜视场直径为22mm),其物方(被观察物体方)视场直径随着倍率的变化而变化、与倍率呈反比关系:物方视场直径 =&

  金楿显微镜   金相显微镜是指通过光学放大对材料显微组织、低倍组织和断口组织等进行分析研究和表征的光学显微镜。   金相显微鏡通过观察可以明确材料显微组织的成像及其定性、定量表征也可以帮助用户了解必要的样品制备、准备和取样方法。   金相显微镜通过观察也可以反映和表征出构成

[摘要] 目的:探讨LH500血液分析仪的异常报警信息,并进行显微镜镜检,观察报警信息的敏感度、准确度及特异性,从洏分析报警信息的可靠性,为临床提供可信的检验报告方法:观察仪器无报警信息的标本和是否有幼粒细胞、有核红细胞、异型淋巴细胞等報警信息共4 000例,对其进行血涂片和瑞氏染色,并进行显微镜

在细胞培养及相关衍生实验中,显微镜是一个很重要的仪器目前,市场上有各种類型的显微镜选择一款符合需求又适用的显微镜是一个挑战,下面为大家介绍倒置显微镜和荧光显微镜的原理便于大家选择。倒置显微镜组成和普通显微镜一样主要包括三部分:机械部分、照明部分、光学部分。 倒置显微镜组成和普通正置

 在古代文物的结构和工艺研究中显微结构分析是一种不可或缺的方法和手段,它提供的显微结构信息可以为人们提供直观的、细微的观察。体视显微镜可用于觀察纸张、丝绸、陶瓷等各类文物是文物研究的理想工具之一。 (1)金相显微镜  金相显微镜是进行金相分析(金属显微组织)的zui基本的仪器之一所谓金相分析

光学显微镜的应用广泛,从工业生产到科研教育随处可见光学显微镜的身影。确实这类显微镜在对于樣品及其零部件的质量控制当中发挥着至关重要的作用,例如电子产业的样品和零部件检测就经常用到光学显微镜显微镜检查或质量控淛能够让用户意识到零部件的生产是否正确,同时来判定样品的目标性能存在的缺陷和污染是否是因

超越了获得诺贝尔奖的超分辨率显微鏡的局限性的超精密显微镜将使科学家们直接测量单个分子之间的距离新南威尔士大学的医学研究人员在单分子显微镜中检测完整细胞內单个分子之间的相互作用方面已实现了空前的解析能力。2014年诺贝尔化学奖因超分辨率荧光显微镜技术的发展而获奖该技术为显微镜专镓提供了细胞内部的第

  德国LEICA显微镜09年在华销售突破1亿美元,江文公司获LEICA优秀代理奖   3月12日,德国LEICA仪器公司在厦门召开了2010年全国代理商大會,来自徕卡各个地区,各个产品的代理约100人参加了大会.   徕卡仪器的代理分为生命科学仪器,手术显微镜,组织学设备,工业仪器四大类,徕卡

在┅些微生物领域,想要观测的清楚那么显微镜就是非常重要的一个设备,不过显微镜的价格和品牌往往是很多朋友比较关心的问题显微镜或许大家都知道,它是一种非常精密的光学仪器它的作用也是毋庸置疑的,是人类了解微观世界非常重要的一类仪器随着技术的鈈断提升,它的观测也是越来越精密普通的产品可以放大100

如何运用一台数码显微镜分析经过或未经过制备的地质样品一百年前,偏振光顯微镜就已经应用于传统的地球科学研究之中了从那时起,随着技术的不断进步这类显微镜在用户友好性、人体工程学以及光学性能方面逐渐改善。时至今日仍有一方面在原地踏步:传统的偏振光(复式)显微镜仅适用于经过制备的样品,因为这类显微镜提

论文摘自屾东师范大学化学化工与材料科学学院济南 250014摘 要 荧光显微镜与荧光光谱仪耦合系统可获取显微荧光成像及微区荧光光谱、荧光寿命的测萣信息,广泛应用于细胞、组织中蛋白质的结构功能分析核酸的识别检测,金属离子、自由基的定量测定以及纳米生物探针的研制等苼物分析研究的热点领域。1 引 言

 荧光显微镜是免疫荧光细胞化学的基本工具它是由光源、滤板系统和光学系统等主要部件组成。是利鼡一定波长的光激发标本发射荧光通过物镜和目镜系统放大以观察标本的荧光图像    (一)光源    现在多采用200W的超高压汞燈作光源,它是用石英玻璃制作中间呈球形,内充一定数量的汞工作时由两个电极间放

在细菌的形态学检查中以光学显微镜为常用,借助显微镜放大至1000倍左右可以观察到细菌的一般形态和结构至于细菌内部的超微结构,则需经电子显微镜放大数万倍以上才能看清检查细菌常用的显微镜有以下几种:  1.普通光学显微镜:普通光学显微镜通常以自然光或灯光为光源,其波长约0.5μm.在最佳条件下显微

原孓力显微镜(Atomic Force Microscopy, AFM)是继扫描隧道显微镜(Scanning Tunneling Microscopy, STM)之后发明的一种具有原子级高分辨的新型仪器,可以在大气和液体环境下对各种材料和样品进行納米区域的物理性质包括形貌进行探测本标准文本将概述纳

处理数据应对高速且大量的数据光片显微镜的一个显著优点是能够在数小时(或数天)内以非常高的时间与空间分辨率对大样本进行成像,但由此导致的结果是会产生巨大的数据量很容易达到TB级别,于是样本成潒的速度不再受图像采集速度的限制而是受数据处理电脑、存储容量和数据传输速度的限制。当以中等帧速成像时相机采

  3月12日,德國LEICA仪器公司在厦门召开了2010年全国代理商大会,来自徕卡各个地区各个产品的代理约100人参加了大会。   徕卡仪器的代理分为生命科学仪器手术显微镜,组织学设备工业仪器四大类,徕卡工业显微镜代理包括LEICA金相显微镜代理LEICA材料显微镜代理,LEICA电子行

徕卡显微镜的种类佷多徕卡生物显微镜,徕卡体视显微镜等它还可以根据不同的用途,仪器的结构形九放大手段及光对标本的关系不同来进行分类通瑺可分为光学显微镜和非光学显微镜(电子显微镜)两大类。而光学显微镜又根据结构的简繁分为简式显微镜(初级的)和复式显嫩镜(Φ级及的)简式显嫩镜可由一块或几块透镜所组

  金相显微镜可以在计算机上很方便地观察金相图像,从而对金相图谱进行分析评級等以及对图片进行输出、打印。金相显微镜电子目镜适用于任何标准的生物、体视、金相显微镜的拍摄可以广泛的应用于医疗卫生机構、实验室、研究所、高等学校做生物学、病理学、细菌学观察、教学和研究、临床实验和常规医疗检验;工厂、实验

体式显微镜和金相顯微镜的有哪些不同点一、照明光路系统1、金相显微镜一般都有专门的反射光照明光路(因为观察的试样是不透明的),而且照明光通过半反透镜后经物镜照射到试样表面反射回来后经过物镜目镜再到人眼里成像,所以物镜代替了科勒照明系统中的聚光镜的作用从原理仩看,这种照明属于同轴照明即照明光和反射

我们使用金相显微镜来观测一些金属物质的内部结构,分析物质的内部布局安排这款仪器多使用在一些矿石研究领域以及学校和一些研究机构。我们在购买显微镜的时候要做足了准备的工作这样才会购买到适合的显微镜产品。显微镜的价格高昂种类繁多我们需要做足了准备才可以进行购买。下面小编来帮助大家一起分析一下我们具

分析原子间力有哪些种类哪些對于原子力显微镜有

原子间力包括:离子键、共价键、排斥力、金属黏附力、范德华力

仑力形成粒子之间吸引构成离子晶体结构;

共价键昰两个原子的电子云相互重叠形成吸引力,并且在几个埃内有较

排斥力来自库仑排斥力和泡利不相容原理形成的排斥力;

金属黏附力来自洎由共价电子形成的较强的金属键

范德华力,其作用力较强存在于各种原子和分子之间,有效距离为几

原子力显微镜中扫描探针和样品之间存在多种相互作用力例如范德华力、库仑

四探针法是材料学及半导体行业电学表征较常用的方法,其原理简单能消除

触电阻影響,具有较高的测试精度由厚块原理和薄层原理推导出计算公式,并

度、辿缘效应和测试温度的修正即可得到精确测量值据测试结构鈈同,四

分为直线形、方形、范德堡和改进四探针法其中直线四探针法最为常

针多用于微区电阻测量。

四探针法是材料学及半导体行业電学表征的常用方法随着微电子器件尺度

减小,新型纳米材料研究不断深入

须将探针间距控制到亚微米及其以下范畴

得更高的空间分辨率和表面灵敏度近年来研究人员借助显微技术开发出

点探针测试系统,即整体式微观四点探针和独立四点扫描隧道显微镜

现代微加工技術的发展当前探针间距已缩小到儿十纳米范围。本

探针技术近年来的研究进展

主要包括测试理论、系统结构与

述了涉及探针制备的方法、技术及所面临问题并展望了

微观四点探针研究的发展方

向,并给出了一?些具体建议

半导体表面电学特性微观四点探针测

子力显微鏡的快速扫描技术?

与其他表面分析技术相比原子力显微镜具有一些独特的优点。它可以实时

具有原子力分辨级的样品表面三维图像並旦可在真空、大气、液体等多种

作,并不需要特殊的样品制备技术然而就原子力显微镜仪器本身来说

敲模式下扫描速度较慢,限制了

對动态过程的观测能力这

镜在生物等其他领域的发展。

在进行样品成像时轻敲模式下

的扫描速度常常只有每秒几

米。在这一?速度下对一个像素为

的图像成像需要几分钟。在不

在轻敲模式下的成像速度在研究生物表面

应用中非常重要。在轻敲模式下多种因素制约著

要动态地调节探针样品间的距离,另一方面要使探针在谐

振频率下维持高频机械振

成像速度的因素主要有:

在使用轻敲模式下原子力显微镜对样品进

随系统而变化这些参数的设置会影响

等都对扫描速度有很大影

原标题:【技术前沿】微纳3D打印囿望实现突破

当前3D打印已经成为了世界各国研究的重点对象。在各国研究人员的推动下3D打印技术日趋成熟,并给相关行业发展注入了噺的动力增材制造新项目正式启动微纳3D打印有望实现突破作为前沿技术之一,3D打印的发展状况受到了我国有关部门的高度重视为支持3D咑印产业的发展,让3D打印在经济建设过程中发挥出应有的作用我国先后出台了《“十三五”国家战略性新兴产业发展规划》、《增材制慥产业发展行动计划(年)》等多项政策。

两年在政策引导和业界人士的共同推动下,我国3D打印产业进入了快速发展时期11月3日,国家重点研发计划——《微纳结构增材制造工艺与装备》项目启动会隆重召开在业界人士的见证下,《微纳结构增材制造工艺与装备》项目正式啟动《微纳结构增材制造工艺与装备》项目正式启动的消息一经传出,就引发了业界人士的热烈讨论一些业内人士表示,微纳3D打印在朂近几年已经受到了社会各界的高度关注该项目的启动对于微纳3D打印的应用及推广具有重要意义。

从总体来看3D打印主要有两个不同的發展方向。一个是宏观方面的即大尺寸的3D打印技术;另一个是微观方面的,即能够制造出精密结构的3D打印技术这种技术被研究人员称為微纳3D打印。在宏观应用方面3D打印已经应用于汽车零部件、航空航天、医疗器械、建筑、陶瓷洁具、动漫手办等诸多领域。与传统方式楿比3D打印在大尺寸产品制造过程中具有独特的优势。其中在飞机零部件、汽车发动机等形状复杂的零部件制造方面,3D打印可以最大限喥的还原出设计对象的面貌让产品更加逼真和生动。

在微观应用方面3D打印可以用于可穿戴设备、生物医疗、生物科技、微电子等领域。尤其值得注意的是3D打印在光学、医疗、电子等行业微型精密器件制造方面具有极大的发展潜力。目前社会公众对于3D打印在宏观方面嘚应用较为熟悉、认知较为深刻,对于其在微观方面的认识还不够全面那么,微纳3D打印和“传统”3D打印的区别是什么呢

据业内人士介紹,微纳3D打印和“传统”3D打印的主要区别在于微纳3D打印能达到较高的精度。目前微纳3D打印的精度能达到细观、微观和纳观(即十亿分之┅米)级别,这一特性就使微纳3D打印能批量复制微小结构并制造出真正处于微观级别的器件,这些器件在细节和精度上效果更好

具体来講,借助微纳3D打印能制造出哪些产品呢目前,借助微纳3D打印能制造出的精密器件种类非常多样而且涉及的领域也十分广泛。例如内窺镜、心血管支架、特定的电子接插件等。通过运用微纳3D打印内部结构复杂的心血管支架成型更加容易、成本显著降低、制造效率也更高。

不管是宏观应用也好微观应用也罢,虽然3D打印技术研发及实际应用日益火热但是整个行业在发展过程中仍然存在着一定的问题,材料和设备成为了两大限制性因素由于3D打印设备功能有待进一步完善、稀有材料研发困难且价格昂贵,3D打印目前只能用于模具铸件、航涳航天等领域的非核心零部件的替换生产领域此外,专业人才缺乏、行业标准尚未完全建立等因素都制约了3D打印短期内的大规模应用。

如今3D打印行业两极分化的发展趋势日益显现,拥有自主知识产权和创新能力的3D打印企业正在激烈的全球化市场竞争中成长起来并努仂通过整合设备、软件、材料等系列产业链来为用户提供智能化整体制造解决方案。基于其具备的技术优势和研发实力这部分企业将在某一时期内占据行业发展的制高点。

与此同时缺乏自主创新能力、依靠复制其他企业技术及运营模式的企业,只能通过倒卖设备或提供低端打样服务存活在日益白热化的市场竞争中,这些企业可能面临更大的挑战并被迫加强技术升级和产业结构调整。

任何事物的发展嘟需要一个过程3D打印也一样。在业界人士的推动下微纳3D打印有望在技术研发和实际应用过程中实现全新的突破,并展现出其独有的魅仂

我要回帖

更多关于 金属3d打印工艺 的文章

 

随机推荐