下载什么软件才能打开3下D图片?

流(Streaming),在时代为数据流处理,就像水流一样,是数据流;既然是数据流处理,就会想到数据的流入、数据的加工、数据的流出。

日常工作、生活中数据来源很多不同的地方。例如:工业时代的汽车制造、监控设备、工业设备会产生很多源数据;信息时代的电商网站、日志服务器、社交网络、金融交易系统、黑客攻击、垃圾邮件、交通监控等;通信时代的手机、平板、智能设备、物联网等会产生很多实时数据,数据流无处不在。

平时用户都有网上购物的经历,用户在网站上进行的各种操作通过 Streaming流处理技术可以被监控,用户的购买爱好、关注度、交易等可以进行行为分析。在金融领域,通过Spark Streaming流处理技术可以对交易量很大的账号进行监控,防止罪犯洗钱、财产转移、防欺诈等。在网络安全性方面,黑客攻击时有发生,通过Spark Streaming流处理技术可以将某类可疑IP进行监控并结合训练模型匹配出当前请求是否属于黑客攻击。其他方面,如:垃圾邮件监控过滤、交通监控、网络监控、工业设备监控的背后都是Spark Streaming发挥强大流处理的地方。

大数据时代,数据价值一般怎么定义?

所有没经过流处理的数据都是无效数据或没有价值的数据;数据产生之后立即处理产生的价值是最大的,数据放置越久或越滞后其使用价值越低。以前绝大多数电商网站盈利走的是网络流量(即用户的访问量),如今,电商网站不仅仅需要关注流量、交易量,更重要的是要通过数据流技术让电商网站的各种数据流动起来,通过实时流动的数据及时分析、挖掘出各种有价值的数据;比如:对不同交易量的用户指定用户画像,从而提供不同服务质量;准对用户访问电商网站板块爱好及时推荐相关的信息。

Spark Streaming是一个准实时流处理框架,而 MR是一个离线、批处理框架;很显然,在数据的价值性角度,Spark Streaming完胜于Hadoop MR。

Spark Streaming是一个准实时流处理框架,处理响应时间一般以分钟为单位,也就是说处理实时数据的延迟时间是秒级别的;Storm是一个实时流处理框架,处理响应是毫秒级的。所以在流框架选型方面要看具体业务场景。需要澄清的是现在很多人认为Spark Streaming流处理运行不稳定、数据丢失、事务性支持不好等等,那是因为很多人不会驾驭Spark

1、提供了丰富的API,企业中能快速实现各种复杂的业务逻辑。

2、流入Spark Streaming的数据流通过和结合,完成机器模拟和图计算。

Storm处理数据的方式是以条为单位来一条一条处理的,而Spark Streaming基于单位时间处理数据的,SparkStreaming能不能像Storm一样呢?答案是:可以的。

业界一般的做法是Spark Streaming和Kafka搭档即可达到这种效果,入下图:

Kafka业界认同最主流的分布式消息框架,此框架即符合消息广播模式又符合消息队列模式。

Kafka内部使用的技术:

4、  Zero-Copy技术让Kafka每秒吞吐量几百兆,而且数据只需要加载一次到内核提供其他应用程序使用

外部各种源数据推进(Push)Kafka,然后再通过Spark Streaming抓取(Pull)数据,抓取的数据量可以根据自己的实际情况确定每一秒中要处理多少数据。

这里是运行一个Spark Streaming的程序:统计这个时间段内流进来的单词出现的次数. 它计算的是:他规定的时间段内每个单词出现了多少次。

1、先启动下Spark集群:

我们从集群里面打开下官方网站

接受这个数据进行加工,就是流处理的过程,刚才那个WordCount就是以1s做一个单位。

刚才运行的时候,为什么没有结果呢?因为需要数据源。

新开一个命令终端,然后输入:

现在我们拷贝数据源进入运行:

没有输入数据会打印的是空结果:

 但是实际上,Job的执行是Spark Streaming框架帮我们产生的和开发者自己写的Spark代码业务逻辑没有关系,而且Spark Streaming框架的执行时间间隔可以手动配置,如:每隔一秒钟就会产生一次Job的调用。所以在开发者编写好的Spark代码时(如:flatmap、map、collect),不会导致job的运行,job运行是Spark Streaming框架产生的,可以配置成每隔一秒中都会产生一次job调用。
Spark Streaming框架中,作业实例的产生都是基于rdd实例来产生,你写的代码是作业的模板,即rdd是作业的模板,模板一运行rdd就会被执行,此时action必须处理数据。RDD的模板就是DStream离散流,RDD之间存在依赖关系,DStream就有了依赖关系,也就构成了DStream 有向无环图。这个DAG图,是模板。Spark Streaming只不过是在附在RDD上面一层薄薄的封装而已。你写的代码不能产生Job,只有框架才能产生Job.
如果一秒内计算不完数据,就只能调优了.

使用Spark Streaming可以处理各种数据来源类型,如:数据库、HDFS,服务器log日志、网络流,其强大超越了你想象不到的场景,只是很多时候大家不会用,其真正原因是对Spark、spark streaming本身不了解。

1、开发前准备:假定您以搭建好了集群。

设置本地master,如果指定local的话,必须配置至少二条线程,也可通过sparkconf来设置,因为Spark Streaming应用程序在运行的时候,至少有一条线程用于不断的循环接收数据,并且至少有一条线程用于处理接收的数据(否则的话无法有线程用于处理数据),随着时间的推移,内存和磁盘都会不堪重负)。

对于集群而言,每隔exccutor一般肯定不只一个Thread,那对于处理Spark Streaming应用程序而言,每个executor一般分配多少core比较合适?根据我们过去的经验,5个左右的core是最佳的(段子:分配为奇数个core的表现最佳,例如:分配3个、5个、7个core等)

接下来,让我们开始动手写写代码吧!

  我们将数据来源配置为本地端口9999(注意端口要求没有被占用):

第四步:我们就像对RDD编程一样,基于DStream进行编程,原因是DStream是RDD产生的模板,在Spark Streaming发生计算前,其实质是把每个Batch的DStream的操作翻译成为了RDD操作。

除了print()方法将处理后的数据输出之外,还有其他的方法也非常重要,在开发中需要重点掌握,比如SaveAsTextFile,SaveAsHadoopFile等,最为重要的是foreachRDD方法,这个方法可以将数据写入,DB,DashBoard等,甚至可以随意的定义数据放在哪里,功能非常强大。

第四步,reduce操作:

第五步,print()等操作:

使用Spark Streaming可以处理各种数据来源类型,如:数据库、HDFS,服务器log日志、网络流,其强大超越了你想象不到的场景,只是很多时候大家不会用,其真正原因是对Spark、spark streaming本身不了解。


  • 提供了各种创建DStream的方法接收各种流入的数据源(例如:Kafka、Flume、Twitter、ZeroMQ和简单的TCP套接字等);

  • 将接收的数据流传入DStreams对象中;

  • 通过Spark Streaming对象实例的start方法启动当前应用程序的流计算框架或通过stop方法结束当前应用程序的流计算框架;

三、Receiver功能及源码剖析:

1、Receiver代表数据的输入,接收外部输入的数据,如从Kafka上抓取数据;

4、Receiver是抽象类,其抓取数据的实现子类如下图所示:

5、  如果上述实现类都满足不了您的要求,您自己可以定义Receiver类,只需要继承Receiver抽象类来实现自己子类的业务需求。

数据数据在流进来之后最终会生成Job,最终还是基于Spark

使用Spark Streaming可以处理各种数据来源类型,如:数据库、HDFS,服务器log日志、网络流,其强大超越了你想象不到的场景,只是很多时候大家不会用,其真正原因是对Spark、spark streaming本身不了解。


  1. 启动HDFS,如下图所示:

通过web端查看节点正常启动,如下图所示:

2.启动Spark集群,如下图所示:

通过web端查看集群启动正常,如下图所示:

此时Spark Streaming会每隔5秒执行一次,不断的扫描监控目录下是否有新的文件。

  1. 而我们在具体实现的时候覆写了该方法,内部就是调用createContext方法来具体实现。上述实战案例中我们实现了createContext方法。

  在开始和结束的时候每个batch都会进行checkpoint

流式处理中过一段时间数据就会被清理掉,但是可以通过remember可以延长数据在程序中的生命周期,另外延长RDD更长的时间。

假设数据流进来,进行ML或者Graphx的时候有时需要很长时间,但是bacth定时定条件的清除RDD,所以就可以通过remember使得数据可以延长更长时间。/**

 


  1. 重新启动程序的时候,他会从曾经checkpoint的目录中,如果没有做额外配置的时候,所有的信息都会放在checkpoint的目录中(包括曾经应用程序信息),因此下次再次启动的时候就会报错,无法初始化ShuffleDStream。

 

使用Spark Streaming可以处理各种数据来源类型,如:数据库、HDFS,服务器log日志、网络流,其强大超越了你想象不到的场景,只是很多时候大家不会用,其真正原因是对Spark、spark streaming本身不了解。

  

  flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用。Flume 初始的发行版本目前被统称为 Flume OG(original generation),属于 cloudera。但随着 FLume 功能的扩展,Flume OG 代码工程臃肿、核心组件设计不合理、核心配置不标准等缺点暴露出来,尤其是在 Flume OG 的最后一个发行版本 0.94.0 中,日志传输不稳定的现象尤为严重,为了解决这些问题,2011 年 10 月 22 号,cloudera 完成了 Flume-728,对 Flume 进行了里程碑式的改动:重构核心组件、核心配置以及代码,重构后的版本统称为 Flume NG(next

  flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(比如文本、HDFS、等)的能力 。
  flume的数据流由事件(Event)贯穿始终。事件是Flume的基本数据单位,它携带日志数据(字节数组形式)并且携带有头信息,这些Event由Agent外部的Source生成,当Source捕获事件后会进行特定的格式化,然后Source会把事件推入(单个或多个)Channel中。你可以把Channel看作是一个缓冲区,它将保存事件直到Sink处理完该事件。Sink负责持久化日志或者把事件推向另一个Source。
  当节点出现故障时,日志能够被传送到其他节点上而不会丢失。Flume提供了三种级别的可靠性保障,从强到弱依次分别为:end-to-end(收到数据agent首先将event写到磁盘上,当数据传送成功后,再删除;如果数据发送失败,可以重新发送。),Store on

  值得注意的是,Flume提供了大量内置的Source、Channel和Sink类型。不同类型的Source,Channel和Sink可以自由组合。组合方式基于用户设置的配置文件,非常灵活。比如:Channel可以把事件暂存在内存里,也可以持久化到本地硬盘上。Sink可以把日志写入HDFS,

1、Flume集群采集外部系统的业务信息,将采集后的信息发生到Kafka集群,最终提供Spark Streaming流框架计算处理,流处理完成后再将最终结果发送给Kafka存储,如下图:

2、Flume集群采集外部系统的业务信息,将采集后的信息发生到Kafka集群,最终提供Spark Streaming流框架计算处理,流处理完成后再将最终结果发送给Kafka存储,同时将最终结果通过Ganglia监控工具进行图形化展示,架构如下图:

Streaming流框架计算处理,流处理完成后再将最终结果发送给Kafka存储,将最终结果同时存储在()、内存中间件(Redis、MemSQL)中,同时将最终结果通过Ganglia监控工具进行图形化展示,架构如下图:

一种是Receivers,这个方法使用了Receivers来接收数据,Receivers的实现使用到Kafka高层次的消费者API,对于所有的Receivers,接收到的数据将会保存在 分布式的executors中,然后由Spark Streaming启动的Job来处理这些数据;然而,在默认的配置下,这种方法在失败的情况下会丢失数据,为了保证零数据丢失,你可以在Spark Streaming中使用WAL日志功能,这使得我们可以将接收到的数据保存到WAL中(WAL日志可以存储在HDFS上),所以在失败的时候,我们可以从WAL中恢复,而不至于丢失数据。

另一种是DirectAPI,产生数据和处理数据的时候是在两台机器上?其实是在同一台数据上,由于在一台机器上有Driver和Executor,所以这台机器要足够强悍。

Flume集群将采集的数据放到Kafka集群中,Spark Streaming会实时在线的从Kafka集群中通过DirectAPI拿数据,可以通过Kafka中的topic+partition查询最新的偏移量(offset)来读取每个batch的数据,即使读取失败也可再根据偏移量来读取失败的数据,保证应用运行的稳定性和数据可靠性。

1、Flume集群数据写入Kafka集群时可能会导致数据存放不均衡,即有些Kafka节点数据量很大、有些不大,后续会对分发数据进行自定义来解决数据存放不均衡问题。

2、个人强烈推荐在生产环境下用DirectAPI,但是我们的发行版,会对DirectAPI进行优化,降低其延迟。

  实际生产环境下,搜集分布式的日志以Kafka为核心。

使用Spark Streaming可以处理各种数据来源类型,如:数据库、HDFS,服务器log日志、网络流,其强大超越了你想象不到的场景,只是很多时候大家不会用,其真正原因是对Spark、spark streaming本身不了解。


第一部分,讲解Kafka的概念、和用例场景;

第二部分,讲解Kafka的安装和实战。

由于时间关系,今天的课程只讲到如何用官网的例子验证Kafka的安装是否成功。后续课程会接着讲解如何集成 Streaming和Kafka。

一、Kafka的概念、架构和用例场景

Apache Kafka是分布式发布-订阅消息系统。它最初由LinkedIn公司开发,之后成为Apache项目的一部分。Kafka是一种快速、可扩展的、设计内在就是分布式的,分区的和可复制的提交日志服务。zookeeper和kafka和是不只能用于大数据的,集群启不启动,它都可以使用,也可以用于server普通的企业级平台上。

以帅哥和美女聊天为例,帅哥如何和美女交流呢?这中间通常想到的是、QQ、电话、邮件等通信媒介,这些通信媒介就是消息组件,帅哥把聊天信息发送给消息组件、消息组件将消息推送给美女,这就是常说的生产者、消费者模型,kafka不仅仅说是生产者消费者模式中广播的概念,也可以实现队列的方式,kafka的消费者中有一个group的概念,group中可以有很多实体,也可以只有一个实体,group中只有一个实体的话,就是队列的方式,所以从消息驱动的角度讲,它是广播的方式和队列的方式的完美结合体。而且在发送信息时可以将内容进行分类,即所谓的Topic主题。Kafka就是这样的通信组件,将不同对象组件粘合起来的纽带, 且是解耦合方式传递数据。

完善的流处理系统的特点:

1)能在线的以非常低的延迟,来处理数据,而且是稳定可靠的

2)能对流进来的数据进行非常复杂的分析,而不是简单的仅仅统计的分析

3)不仅能处理当前在线的数据,也能处理过去一天,一周,一个月甚至一年的数据

Apache Kafka与传统消息系统相比,有以下不同的特点:

  • 分布式系统,易于向外扩展;

  • 在线低延迟,同时为发布和订阅提供高吞吐量;

  • 流进来的数据一般处理完后就消失了,也可以将消息存储到磁盘,因此可以处理1天甚至1周前内容,所以kafka不仅是一个消息中间件,还是一个存储系统

Kafka既然具备消息系统的基本功能,那么就必然会有组成消息系统的组件:

代表一种数据的类别或类型,工作、娱乐、生活有不同的Topic,生产者需要说明把说明数据分别放在那些Topic中,里面就是一个个小对象,并将数据数据推到Kafka,消费者获取数据是pull的过程。一组相同类型的消息数据流。这些消息在Kafka会被分区存放,并且有多个副本,以防数据丢失。每个分区的消息是顺序写入的,并且不可改写。

- Kafka Cluster(Kafka集群):把推到Kafka系统的消息保存起来的一组服务器,也叫Broker。因为Kafka集群用到了Zookeeper作为底层支持框架,所以由一个选出的服务器作为Leader来处理所有消息的读和写的请求,其他服务器作为Follower接受Leader的广播同步备份数据,以备灾难恢复时用。

- Consumer(消费者):从Kafka系统订阅消息的任何对象。

消费者可以有多个,并且某些消费者还可以组成Consumer Group。多个Consumer Group之间组成消息广播的关系,所以各个Group可以拉相同的消息数据。在Consumer Group内部,各消费者之间对Consumer Group拉出来的消息数据是队列先进先出的关系,某个消息数据只能给该Group的一个消费者使用,同一个Group中的实体是互斥的,对一个消息,这样是避免重复消费。如果有多个group,每个group中只有一个实体,这就是队列的方式了,因为它是互斥的。如果不是一个实体,则是广播模式,如下图所示,广播只能广播给一个group中的一个消费实体

kafka的数据传输是基于kernel(内核)级别的(传输速度接近0拷贝-ZeroCopy)、没有用户空间的参与。本身是软件,软件启动时第一个启动进程叫init,在init进程启动后会进入用户空间;kafka是用java写的,是基于jvm虚拟机的。例如:在分布式系统中,机器A上的应用程序需要读取机器B上的Java服务数据,由于Java程序对应的JVM是用户空间级别而且数据在磁盘上,A上应用程序读取数据时会首先进入机器B上的内核空间再进入机器B的用户空间,读取用户空间的数据后,数据再经过B机器上的内核空间分发到网络中(之所以要再经过B的内核,因为要通过网络通信,不通过内核,哪里来的网络通信),机器A网卡接收到传输过来的数据后再将数据写入A机器的内核空间,从而最终将数据传输给A的用户空间进行处理。如下图:网络本身是一种硬件,磁盘只是硬件的一种。

正常情况下,外部系统从Java程序中读取数据,传输给内核空间并依赖网卡将数据写入到网络中,从而把数据传输出去。其实Java本身是内核的一层外衣, Socket编程,操作的各种数据都是在JVM的用户空间中进行的。而Kafka操作数据是放在内核空间的,通常内核空间处理数据的速度比用户空间快上万倍,因为没用用户态和内核态的切换,所以通过kafka可以实现高速读、写数据。只要磁盘空间足够大,可以无限量的存储数据,kafka的数据就是存储在磁盘中的,不是存在内核中的。而很多消息组件是把数据存内存中的。kafka用zookeeperg管理元数据,而且按顺序写数据,比随机写要快很多。又有副本!

类似,手机和邮箱等等这样大家熟悉的消息组件,Kafka也可以:

从内容消费的角度,Kafka把邮箱中的邮件类型看成是Topic。

二、Kafka的安装和实战

进入,你可以选择其他镜像网址去下载,用官网推荐的镜像:。提示:可以直接下载群里的Zookeeper安装文件。

提示:下面的步骤发生在master服务器。

以ubuntu14.04举例,把下载好的文件放到/root目录,用下面的命令解压:

解压后在/root目录会多出一个zookeeper-3.4.6的新目录,用下面的命令把它剪切到指定目录即安装好Zookeeper了:

提示:下面的步骤发生在master服务器。

# 配置Zookeeper的日志和服务器身份证号等数据存放的目录。

# 千万不要用默认的/tmp/zookeeper目录,因为/tmp目录的数据容易被意外删除。

# 在文件最后新增3行配置每个服务器的2个重要端口:Leader端口和选举端口

# server.A=B:C:D:其中 A 是一个数字,表示这个是第几号服务器;

# C 表示的是这个服务器与集群中的 Leader 服务器交换信息的端口;

# D 表示的是万一集群中的 Leader 服务器挂了,需要一个端口来重新进行选举,

# 选出一个新的 Leader,而这个端口就是用来执行选举时服务器相互通信的端口。

# 如果是伪集群的配置方式,由于 B 都是一样,所以不同的 Zookeeper 实例通信

# 端口号不能一样,所以要给它们分配不同的端口号。

  1. 创建并打开myid文件

提示:下面的步骤发生在master服务器。

以ubuntu14.04举例,把下载好的文件放到/root目录,用下面的命令解压:

解压后在/root目录会多出一个kafka_2.10-0.9.0.1的新目录,用下面的命令把它剪切到指定目录即安装好Kafka了:

提示:下面的步骤发生在master服务器。

过一会儿,你会看到打印的消息内容:

至此,代表Kafka已经安装和配置成功。

使用Spark Streaming可以处理各种数据来源类型,如:数据库、HDFS,服务器log日志、网络流,其强大超越了你想象不到的场景,只是很多时候大家不会用,其真正原因是对Spark、spark streaming本身不了解。


我要回帖

更多关于 三D软件 的文章

 

随机推荐