这道高数定积分积分题目有会做的吗?

声明:我是公众号“数海钓鱼”的创立者,故文章内容与本期公众号推文基本一致(原创)。另外,本文是面向一般学生所写的,因此各路积佬就不要吐槽我讲的太水啦~最近有几道不定积分题流传甚广,它以表情包的形式出现在了各大数学群当中唐僧看了表示大惊失色变本加厉,第三个伽罗瓦来了也得哭泣其最初来源应该是下面这个今年年初火爆在QQ空间的表情包考试才不考呢.jpg此外还有几个和它们一并流传的“相似题”,但是这些“相似题”的确是课内难度下面按照难度顺序对以上题目做一个讲解和拓展1.求不定积分 \int {\frac{{{x^2} + 1}}{{{x^4} + 1}}{\rm{d}}x}
.解: \int {\frac{{{x^2} + 1}}{{{x^4} + 1}}{\rm{d}}x}
= \int {\frac{{1 + \frac{1}{{{x^2}}}}}{{{x^2} + \frac{1}{{{x^2}}}}}{\rm{d}}x}
= \int {\frac{1}{{{{\left( {x - \frac{1}{x}} \right)}^2} + 2}}{\rm{d}}\left( {x - \frac{1}{x}} \right)}
= \frac{1}{{\sqrt 2 }}\arctan \left( {\frac{{{x^2} - 1}}{{x\sqrt 2 }}} \right) + C 2.求不定积分 \int {\frac{{{x^2} - 1}}{{{x^4} + 1}}{\rm{d}}x}
.解: \int {\frac{{{x^2} - 1}}{{{x^4} + 1}}{\rm{d}}x}
= \int {\frac{{1 - \frac{1}{{{x^2}}}}}{{{x^2} + \frac{1}{{{x^2}}}}}{\rm{d}}x}
= \int {\frac{1}{{{{\left( {x + \frac{1}{x}} \right)}^2} - 2}}} {\rm{d}}\left( {x + \frac{1}{x}} \right) = \frac{1}{{2\sqrt 2 }}\ln \left
{\frac{{{x^2} - \sqrt 2 x + 1}}{{{x^2} + \sqrt 2 x + 1}}} \right
+ C 3.求不定积分 \int {\frac{1}{{{x^4} + 1}}{\rm{d}}x}
.解: \int {\frac{1}{{{x^4} + 1}}{\rm{d}}x}
= \frac{1}{2}\int {\frac{{\left( {{x^2} + 1} \right) - \left( {{x^2} - 1} \right)}}{{{x^4} + 1}}{\rm{d}}x}
= \frac{1}{2}\left( {\int {\frac{{{x^2} + 1}}{{{x^4} + 1}}{\rm{d}}x}
- \int {\frac{{{x^2} - 1}}{{{x^4} + 1}}{\rm{d}}x} } \right) = \frac{1}{{4\sqrt 2 }}\left( {2\arctan \left( {\frac{{{x^2} - 1}}{{\sqrt 2 x}}} \right) - \ln \left
{\frac{{{x^2} - \sqrt 2 x + 1}}{{{x^2} + \sqrt 2 x + 1}}} \right|} \right) + C 4.求不定积分 \int {\frac{1}{{{x^3} + 1}}{\rm{d}}x}
.解: 设 \frac{1}{{{x^3} + 1}} = \frac{A}{{x + 1}} + \frac{{Bx + C}}{{{x^2} - x + 1}} ,则有 A\left( {{x^2} - x + 1} \right) + \left( {Bx + C} \right)\left( {x + 1} \right) = 1 令 x =
- 1 \Rightarrow A = \frac{1}{3} ,再对比常数项得 C=\frac{2}{3} ,对比二次项得 B =
- \frac{1}{3} 因此 \frac{1}{{{x^3} + 1}} = \frac{1}{3}\left( {\frac{1}{{x + 1}} - \frac{{x - 2}}{{{x^2} - x + 1}}} \right) = \frac{1}{3}\left( {\frac{1}{{x + 1}} - \frac{1}{2}\left( {\frac{{2x - 1}}{{{x^2} - x + 1}} - \frac{3}{{{x^2} - x + 1}}} \right)} \right) 故 \begin{align} \int {\frac{1}{{{x^3} + 1}}{\rm{d}}x}
&= \int {\frac{1}{3}\left( {\frac{1}{{x + 1}} - \frac{1}{2}\left( {\frac{{2x - 1}}{{{x^2} - x + 1}} - \frac{3}{{{x^2} - x + 1}}} \right)} \right){\rm{d}}x}
\\ &= \frac{1}{3}\int {\frac{1}{{x + 1}}{\rm{d}}x - \frac{1}{6}\int {\frac{{2x - 1}}{{{x^2} - x + 1}}{\rm{d}}x + \frac{1}{2}\int {\frac{1}{{{x^2} - x + 1}}} } } {\rm{d}}x \\&=\frac{1}{3}\ln \left
{1 + x} \right
- \frac{1}{6}\ln \left
{{x^2} - x + 1} \right
+ \frac{1}{{\sqrt 3 }}\arctan \frac{{2x - 1}}{{\sqrt 3 }} + C \end{align} 5.求不定积分 \int {\frac{1}{{{x^6} + 1}}{\rm{d}}x}
.解:根据上一题的分解结果有 \frac{1}{{{x^6} + 1}} = \frac{1}{3}\left( {\frac{1}{{{x^2} + 1}} - \frac{{{x^2} - 2}}{{{x^4} - {x^2} + 1}}} \right) ,拆分一下 \frac{{{x^2} - 2}}{{{x^4} - {x^2} + 1}} 得\frac{{{x^2} - 2}}{{{x^4} - {x^2} + 1}} = \frac{1}{2}\left( {3 \cdot \frac{{{x^2} - 1}}{{{x^4} - {x^2} + 1}} - \frac{{{x^2} + 1}}{{{x^4} - {x^2} + 1}}} \right) 故 \begin{align} \int {\frac{1}{{{x^6} + 1}}{\rm{d}}x} & = \frac{1}{3}\int {\frac{1}{{{x^2} + 1}}{\rm{d}}x}
- \frac{1}{6}\left( {3\int {\frac{{{x^2} - 1}}{{{x^4} - {x^2} + 1}}{\rm{d}}x - \int {\frac{{{x^2} + 1}}{{{x^4} - {x^2} + 1}}} } {\rm{d}}x} \right) \\&
= \frac{1}{3}\arctan x - \frac{1}{2}\int {\frac{{1 - \frac{1}{{{x^2}}}}}{{{x^2} + \frac{1}{{{x^2}}} - 1}}{\rm{d}}x}
+ \frac{1}{6}\int {\frac{{1 + \frac{1}{{{x^2}}}}}{{{x^2} + \frac{1}{{{x^2}}} - 1}}{\rm{d}}x}
\\&
= \frac{1}{3}\arctan x - \frac{1}{2}\int {\frac{1}{{{{\left( {x + \frac{1}{x}} \right)}^2} - 3}}} {\rm{d}}\left( {x + \frac{1}{x}} \right) + \frac{1}{6}\int {\frac{1}{{{{\left( {x - \frac{1}{x}} \right)}^2} + 1}}} {\rm{d}}\left( {x - \frac{1}{x}} \right)
\\&
= \frac{1}{3}\arctan x - \frac{1}{{4\sqrt 3 }}\ln \left
{\frac{{{x^2} - \sqrt 3 x + 1}}{{{x^2} + \sqrt 3 x + 1}}} \right
+ \frac{1}{6}\arctan \left( {x - \frac{1}{x}} \right) + C
\end{align} 至此,难度正常的题目已经解答完毕,下面进入阴间网红题解析环节(高能预警)问题:求不定积分 \int {\frac{1}{{{x^5} + 1}}} {\rm{d}}x .这个就没有什么好办法了,不像前几个可以进行计算量可控的分拆、配凑等等。如果本题仍延续以上做法,不仅系数难算,而且算出后也都带着 \sqrt 5
和其他有理项,会冗长且复杂,另外对分解出的二次式积分实际算起来并不是一件轻松的事情,所以需要寻找其他途径。解:方程 x^5+1=0 在复数范围内有五个解:
- 1,{z_1},\overline {{z_1}} ,{z_2},\overline {{z_2}}
根据欧拉公式,设 x = {{\rm{e}}^{{\rm{i}}\theta }} ,则 {{\rm{e}}^{{\rm{5i}}\theta }} =
- 1 = \cos 5\theta
+ {\rm{i}}\sin 5\theta
于是 \cos 5\theta
=
- 1 ,即 \theta
= \frac{{2k + 1}}{5}{\rm{\pi }}\left( {k = 0,1,2,3,4} \right) , x = \cos \frac{{2k + 1}}{5}{\rm{\pi }} + {\rm{i}}\sin \frac{{2k + 1}}{5}{\rm{\pi }} 故不妨令 {{\rm{z}}_2} = \cos \frac{3}{5}{\rm{\pi }} + {\rm{i}}\sin \frac{3}{5}{\rm{\pi }} 设 \frac{1}{{{x^5} + 1}} = \frac{a}{{x + 1}} + \frac{{{a_1}}}{{x - {z_1}}} + \frac{{{b_1}}}{{x - \overline {{z_1}} }} + \frac{{{a_2}}}{{x - {z_2}}} + \frac{{{b_2}}}{{x - \overline {{z_2}} }} 去分母得 \left( {\frac{a}{{x + 1}} + \frac{{{a_1}}}{{x - {z_1}}} + \frac{{{b_1}}}{{x - \overline {{z_1}} }} + \frac{{{a_2}}}{{x - {z_2}}} + \frac{{{b_2}}}{{x - \overline {{z_2}} }}} \right)\left( {{x^5} + 1} \right) \equiv 1 令 x \to
- 1 并利用洛必达法则得 1 = \mathop {\lim }\limits_{x \to
- 1} a\frac{{{x^5} + 1}}{{x + 1}} = a\mathop {\lim }\limits_{x \to
- 1} 5{x^4} = 5a ,故 a=\frac{1}{5} 同理令 x \to {z_1} 得 1 = {a_1}\mathop {\lim }\limits_{x \to {z_1}} \frac{{{x^5} + 1}}{{x - {z_1}}} = {a_1}\mathop {\lim }\limits_{x \to {z_1}} 5{x^4} = 5{a_1}z_1^4 = \frac{{ - 5{a_1}}}{{{z_1}}} ,故 {a_1} =
- \frac{{{z_1}}}{5} 同理容易计算出 {b_1} =
- \frac{{\overline {{z_1}} }}{5} , {a_2} =
- \frac{{{z_2}}}{5} , {b_2} =
- \frac{{\overline {{z_2}} }}{5} 故 \begin{align}
\int {\frac{1}{{{x^5} + 1}}} {\rm{d}}x &= \frac{1}{5}\int {\left( {\frac{1}{{x + 1}} - \frac{{{z_1}}}{{x - {z_1}}} - \frac{{\overline {{z_1}} }}{{x - \overline {{z_1}} }} - \frac{{{z_2}}}{{x - {z_2}}} - \frac{{\overline {{z_2}} }}{{x - \overline {{z_2}} }}} \right)} {\rm{d}}x
\\& = \frac{1}{5}\left( {\ln \left( {1 + x} \right) - {z_1}\ln \left( {x - {z_1}} \right) - \overline {{z_1}} \ln \left( {x - \overline {{z_1}} } \right) - {z_2}\ln \left( {x - {z_2}} \right) - \overline {{z_2}} \ln \left( {x - \overline {{z_2}} } \right)} \right)
\end{align} 其中 {z_1},\overline {{z_1}} ,{z_2},\overline {{z_2}}
的具体值前面已经给出所以到这里可以说是做完了但是一般来说要把结果写成实数的形式,所以下面再进一步简化一下由于 \begin{align} \frac{{{z_1}}}{{x - {z_1}}} + \frac{{\overline {{z_1}} }}{{x - \overline {{z_1}} }} &= \frac{{x\left( {{z_1} + \overline {{z_1}} } \right) - 2{z_1}\overline {{z_1}} }}{{\left( {x - {z_1}} \right)\left( {x - \overline {{z_1}} } \right)}} = \frac{{x\left( {{z_1} + \overline {{z_1}} } \right) - 2}}{{{x^2} - x\left( {{z_1} + \overline {{z_1}} } \right) + 1}} = 2\frac{{x\cos \frac{{\rm{\pi }}}{5} - 1}}{{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1}}
\\& = 2\frac{{x\cos \frac{{\rm{\pi }}}{5} - 1}}{{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1}} = 2\frac{{x\cos \frac{{\rm{\pi }}}{5} - \left( {{{\sin }^2}\frac{{\rm{\pi }}}{5} + {{\cos }^2}\frac{{\rm{\pi }}}{5}} \right)}}{{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1}}
\\& = \cos \frac{{\rm{\pi }}}{5} \cdot \frac{{2x - 2\cos \frac{{\rm{\pi }}}{5}}}{{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1}} - 2{\sin ^2}\frac{{\rm{\pi }}}{5} \cdot \frac{1}{{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1}}
\end{align} 故 \begin{align}
\int {\left( {\frac{{{z_1}}}{{x - {z_1}}} + \frac{{\overline {{z_1}} }}{{x - \overline {{z_1}} }}} \right){\rm{d}}x}
&= \cos \frac{{\rm{\pi }}}{5}\int {\frac{{2x - 2\cos \frac{{\rm{\pi }}}{5}}}{{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1}}{\rm{d}}x - 2{{\sin }^2}\frac{{\rm{\pi }}}{5}\int {\frac{1}{{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1}}{\rm{d}}x} }
\\& = \cos \frac{{\rm{\pi }}}{5} \cdot \ln \left
{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1} \right
- 2{\sin ^2}\frac{{\rm{\pi }}}{5} \cdot \frac{1}{{\sqrt {1 - {{\cos }^2}\frac{{\rm{\pi }}}{5}} }}\arctan \frac{{x - \cos \frac{{\rm{\pi }}}{5}}}{{\sqrt {1 - {{\cos }^2}\frac{{\rm{\pi }}}{5}} }} + C
\\& = \cos \frac{{\rm{\pi }}}{5} \cdot \ln \left
{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1} \right
- 2\sin \frac{{\rm{\pi }}}{5} \cdot \arctan \frac{{x - \cos \frac{{\rm{\pi }}}{5}}}{{\sin \frac{{\rm{\pi }}}{5}}} + C
\end{align} 同理 \int {\frac{{{z_2}}}{{x - {z_2}}} + \frac{{\overline {{z_2}} }}{{x - \overline {{z_2}} }}} {\rm{d}}x = \cos \frac{{{\rm{3\pi }}}}{5} \cdot \ln \left
{{x^2} - 2x\cos \frac{{{\rm{3\pi }}}}{5} + 1} \right
- 2\sin \frac{{{\rm{3\pi }}}}{5} \cdot \arctan \frac{{x - \cos \frac{{{\rm{3\pi }}}}{5}}}{{\sin \frac{{\rm{\pi }}}{5}}} + C 故 \begin{align}
\int {\frac{1}{{{x^5} + 1}}} {\rm{d}}x &=
\frac{1}{5}\left( {\int {\frac{1}{{1 + x}}} {\rm{d}}x - 2\int {\frac{{x\cos \frac{{\rm{\pi }}}{5} - 1}}{{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1}}{\rm{d}}x - 2\int {\frac{{x\cos \frac{{{\rm{3\pi }}}}{5} - 1}}{{{x^2} - 2x\cos \frac{{{\rm{3\pi }}}}{5} + 1}}{\rm{d}}x} } } \right)
\\& = \frac{{\ln \left
{1 + x} \right|}}{5} - \frac{1}{5}\left( {\cos \frac{{\rm{\pi }}}{5} \cdot \ln \left
{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1} \right
- 2\sin \frac{{\rm{\pi }}}{5} \cdot \arctan \frac{{x - \cos \frac{{\rm{\pi }}}{5}}}{{\sin \frac{{\rm{\pi }}}{5}}}} \right) \\& - \frac{1}{5}\left( {\cos \frac{{{\rm{3\pi }}}}{5} \cdot \ln \left
{{x^2} - 2x\cos \frac{{{\rm{3\pi }}}}{5} + 1} \right
- 2\sin \frac{{{\rm{3\pi }}}}{5} \cdot \arctan \frac{{x - \cos \frac{{{\rm{3\pi }}}}{5}}}{{\sin \frac{{\rm{\pi }}}{5}}}} \right)
\end{align} 这里三角函数就不用写成根式了,因为意义不大,并且会让式子看起来更复杂那对于一个不了解复数、单位根等知识的同学来说,这种题能不能做呢?能否用仅有高数课本上的“通法”拆分并计算不定积分呢?答案是...理论上是肯定的,实际上是否定的以下简单展示一下这爆炸的计算量:先对目标分式进行拆分:因为 \frac{1}{{{x^5} + 1}} = \frac{1}{{\left( {x + 1} \right)\left( {{x^4} - {x^3} + {x^2} - x + 1} \right)}} 其中 \frac{{{x^4} - {x^3} + {x^2} - x + 1}}{{{x^2}}} = {x^2} + \frac{1}{{{x^2}}} + 1 - \left( {x + \frac{1}{x}} \right) = {\left( {x + \frac{1}{x}} \right)^2} - \left( {x + \frac{1}{x}} \right) - 1 由于方程 {t^2} - t - 1 = 0 的两根为 t = \frac{{1 \pm \sqrt 5 }}{2} 故 \frac{{{x^4} - {x^3} + {x^2} - x + 1}}{{{x^2}}} = {\left( {x + \frac{1}{x}} \right)^2} - \left( {x + \frac{1}{x}} \right) - 1 = \left( {x + \frac{1}{x} - \frac{{1 + \sqrt 5 }}{2}} \right)\left( {x + \frac{1}{x} - \frac{{1 - \sqrt 5 }}{2}} \right) 即{x^4} - {x^3} + {x^2} - x + 1 = \left( {{x^2} - \frac{{1 + \sqrt 5 }}{2}x + 1} \right)\left( {{x^2} - \frac{{1 - \sqrt 5 }}{2}x + 1} \right) 所以可设 \frac{1}{{{x^5} + 1}} = \frac{{ax + b}}{{{x^2} - \frac{{1 + \sqrt 5 }}{2}x + 1}} + \frac{{cx + d}}{{{x^2} - \frac{{1 - \sqrt 5 }}{2}x + 1}} + \frac{m}{{x + 1}} 注意因式分解结果 {x^5} + 1 = \left( {{x^2} - \frac{{1 + \sqrt 5 }}{2}x + 1} \right)\left( {{x^2} - \frac{{1 - \sqrt 5 }}{2}x + 1} \right)\left( {x + 1} \right) 求 m : 1 = \left( {\frac{{ax + b}}{{{x^2} - \frac{{1 + \sqrt 5 }}{2}x + 1}} + \frac{{cx + d}}{{{x^2} - \frac{{1 - \sqrt 5 }}{2}x + 1}}} \right)\left( {{x^5} + 1} \right) + m\left( {{x^4} - {x^3} + {x^2} - x + 1} \right) 令 x=-1 得到 m = \frac{1}{5} (这是唯一一个好算的系数),下面再求 a,b 1 = \left( {ax + b} \right)\left( {{x^2} - \frac{{1 - \sqrt 5 }}{2}x + 1} \right)\left( {x + 1} \right) + \left( {\frac{{cx + d}}{{{x^2} - \frac{{1 - \sqrt 5 }}{2}x + 1}} + \frac{m}{{x + 1}}} \right)\left( {{x^5} + 1} \right) 其中方程 {x^2} - \frac{{1 + \sqrt 5 }}{2}x + 1 = 0 有两个根 {x_{1,2}} = \frac{{1 + \sqrt 5
\pm \sqrt {2\sqrt 5 \left( {1 - \sqrt 5 } \right)} }}{4} (虚数根)代入有 1 = \left( {a{x_{1,2}} + b} \right)\left( {x_{1,2}^2 - \frac{{1 - \sqrt 5 }}{2}{x_{1,2}} + 1} \right)\left( {{x_{1,2}} + 1} \right) ,是两个关于 a,b
的一元一次方程至此,对于一个正常人来讲,往下继续计算的欲望为零下面直接贴出计算结果,虽然结果并不复杂,但是过程会非常麻烦!至于另外一种“常规解法”:拆分后直接去分母对比系数......这,一眼看去就知道计算量完全无法控制啊,首先是通分整理,其次是五个字母对应五个方程,然后是各种恶心的系数,不适合交给人类计算(具体不演示了)看到这里,对比以上几种思路和方法,可以看出“单位根”的做法具有普适性,换句话说,我们可以将同样的方法应用到更一般的情形,下面不加证明的直接给出此类不定积分的一般结论(实际上证明方法完全和上面的题目一致,只是将其抽象的写成了求和形式而已)结论一:\begin{align} \int {\frac{1}{{1 + {x^{2n}}}}{\rm{d}}x = \frac{1}{n}\sum\limits_{k = 1}^n {\sin \left( {\frac{{2k - 1}}{{2n}}{\rm{\pi }}} \right)} } \arctan \frac{{x - \cos \frac{{2k - 1}}{{2n}}{\rm{\pi }}}}{{\sin \frac{{2k - 1}}{{2n}}{\rm{\pi }}}}
- \frac{1}{{2n}}\sum\limits_{k = 1}^n {\cos \left( {\frac{{2k - 1}}{{2n}}{\rm{\pi }}} \right)\ln \left
{{x^2} - 2x\cos \left( {\frac{{2k - 1}}{{2n}}{\rm{\pi }}} \right) + 1} \right
+ C}
\end{align} 结论二:\begin{array}{l} \int {\frac{1}{{1 + {x^{2n + 1}}}}{\rm{d}}x = \frac{2}{{2n + 1}}\sum\limits_{k = 1}^n {\sin \left( {\frac{{2k - 1}}{{2n + 1}}{\rm{\pi }}} \right)} } \arctan \frac{{x - \cos \frac{{2k - 1}}{{2n + 1}}{\rm{\pi }}}}{{\sin \frac{{2k - 1}}{{2n + 1}}{\rm{\pi }}}} + \frac{{\ln \left
{1 + x} \right|}}{{2n + 1}}
{\rm{ }} - \frac{1}{{2n + 1}}\sum\limits_{k = 1}^n {\cos \left( {\frac{{2k - 1}}{{2n + 1}}{\rm{\pi }}} \right)\ln \left
{{x^2} - 2x\cos \left( {\frac{{2k - 1}}{{2n + 1}}{\rm{\pi }}} \right) + 1} \right
+ C}
\end{array} 至此,该类型的不定积分题目完美解决现在还剩下“表情包”中的最后一个不定积分题目——伽罗瓦见了都得投降这根本就拆分不了嘛,咋个积法…?显然分母没有根式解,于是若想求出不定积分,只能设出它的根问题:求不定积分 \int {\frac{1}{{{x^5} - x + 1}}{\rm{d}}x}
.解:设方程 {x^5} - x + 1 = 0 的全部根为 {z_1},{z_2},{z_3},{z_4},{z_5} 则 \frac{1}{{{x^5} - x + 1}} = \sum\limits_{k = 1}^5 {\frac{{{a_k}}}{{x - {z_k}}}}
,采用洛必达法则计算各个系数 {a_k} 1 = \mathop {\lim }\limits_{x \to {z_i}} \sum\limits_{k = 1}^5 {\frac{{{a_k}\left( {{x^5} - x + 1} \right)}}{{x - {z_k}}} = } \mathop {\lim }\limits_{x \to {z_i}} \frac{{{a_i}\left( {{x^5} - x + 1} \right)}}{{x - {z_i}}} = {a_i}\mathop {\lim }\limits_{x \to {z_i}} \left( {5{x^4} - 1} \right) = {a_i}\left( {5z_i^4 - 1} \right) 由于 z_i^5 = {z_i} - 1 ,故 {a_i} = \frac{1}{{5z_i^4 - 1}} = \frac{{{z_i}}}{{4{z_i} - 5}} 故 \int {\frac{1}{{{x^5} - x + 1}}{\rm{d}}x}
= \int {\left( {\sum\limits_{k = 1}^5 {\frac{{{z_k}}}{{4{z_k} - 5}} \cdot \frac{1}{{x - {z_k}}}} } \right)} {\rm{d}}x = \sum\limits_{k = 1}^5 {\frac{{{z_k}}}{{4{z_k} - 5}}\ln \left( {x - {z_k}} \right)}
+ C 而实际上稍微改一下题目,就可以进行因式分解,并且算出它准确的根:问题:求不定积分 \int {\frac{1}{{{x^5} + x + 1}}{\rm{d}}x}
.解:由于 {x^5} + x + 1 = \left( {1 + x + {x^2}} \right)\left( {1 - {x^2} + {x^3}} \right) ,故可以算出根式解但不意味着它好算!经过一番计算,其结果如下:好了,本期的内容到此结束,感谢观看觉得有用的话就给一个三连吧~~~
声明:我是公众号“数海钓鱼”的创立者,故文章内容与本期公众号推文基本一致(原创)。另外,本文是面向一般学生所写的,因此各路积佬就不要吐槽我讲的太水啦~最近有几道不定积分题流传甚广,它以表情包的形式出现在了各大数学群当中唐僧看了表示大惊失色变本加厉,第三个伽罗瓦来了也得哭泣其最初来源应该是下面这个今年年初火爆在QQ空间的表情包考试才不考呢.jpg此外还有几个和它们一并流传的“相似题”,但是这些“相似题”的确是课内难度下面按照难度顺序对以上题目做一个讲解和拓展1.求不定积分 \int {\frac{{{x^2} + 1}}{{{x^4} + 1}}{\rm{d}}x}
.解: \int {\frac{{{x^2} + 1}}{{{x^4} + 1}}{\rm{d}}x}
= \int {\frac{{1 + \frac{1}{{{x^2}}}}}{{{x^2} + \frac{1}{{{x^2}}}}}{\rm{d}}x}
= \int {\frac{1}{{{{\left( {x - \frac{1}{x}} \right)}^2} + 2}}{\rm{d}}\left( {x - \frac{1}{x}} \right)}
= \frac{1}{{\sqrt 2 }}\arctan \left( {\frac{{{x^2} - 1}}{{x\sqrt 2 }}} \right) + C 2.求不定积分 \int {\frac{{{x^2} - 1}}{{{x^4} + 1}}{\rm{d}}x}
.解: \int {\frac{{{x^2} - 1}}{{{x^4} + 1}}{\rm{d}}x}
= \int {\frac{{1 - \frac{1}{{{x^2}}}}}{{{x^2} + \frac{1}{{{x^2}}}}}{\rm{d}}x}
= \int {\frac{1}{{{{\left( {x + \frac{1}{x}} \right)}^2} - 2}}} {\rm{d}}\left( {x + \frac{1}{x}} \right) = \frac{1}{{2\sqrt 2 }}\ln \left
{\frac{{{x^2} - \sqrt 2 x + 1}}{{{x^2} + \sqrt 2 x + 1}}} \right
+ C 3.求不定积分 \int {\frac{1}{{{x^4} + 1}}{\rm{d}}x}
.解: \int {\frac{1}{{{x^4} + 1}}{\rm{d}}x}
= \frac{1}{2}\int {\frac{{\left( {{x^2} + 1} \right) - \left( {{x^2} - 1} \right)}}{{{x^4} + 1}}{\rm{d}}x}
= \frac{1}{2}\left( {\int {\frac{{{x^2} + 1}}{{{x^4} + 1}}{\rm{d}}x}
- \int {\frac{{{x^2} - 1}}{{{x^4} + 1}}{\rm{d}}x} } \right) = \frac{1}{{4\sqrt 2 }}\left( {2\arctan \left( {\frac{{{x^2} - 1}}{{\sqrt 2 x}}} \right) - \ln \left
{\frac{{{x^2} - \sqrt 2 x + 1}}{{{x^2} + \sqrt 2 x + 1}}} \right|} \right) + C 4.求不定积分 \int {\frac{1}{{{x^3} + 1}}{\rm{d}}x}
.解: 设 \frac{1}{{{x^3} + 1}} = \frac{A}{{x + 1}} + \frac{{Bx + C}}{{{x^2} - x + 1}} ,则有 A\left( {{x^2} - x + 1} \right) + \left( {Bx + C} \right)\left( {x + 1} \right) = 1 令 x =
- 1 \Rightarrow A = \frac{1}{3} ,再对比常数项得 C=\frac{2}{3} ,对比二次项得 B =
- \frac{1}{3} 因此 \frac{1}{{{x^3} + 1}} = \frac{1}{3}\left( {\frac{1}{{x + 1}} - \frac{{x - 2}}{{{x^2} - x + 1}}} \right) = \frac{1}{3}\left( {\frac{1}{{x + 1}} - \frac{1}{2}\left( {\frac{{2x - 1}}{{{x^2} - x + 1}} - \frac{3}{{{x^2} - x + 1}}} \right)} \right) 故 \begin{align} \int {\frac{1}{{{x^3} + 1}}{\rm{d}}x}
&= \int {\frac{1}{3}\left( {\frac{1}{{x + 1}} - \frac{1}{2}\left( {\frac{{2x - 1}}{{{x^2} - x + 1}} - \frac{3}{{{x^2} - x + 1}}} \right)} \right){\rm{d}}x}
\\ &= \frac{1}{3}\int {\frac{1}{{x + 1}}{\rm{d}}x - \frac{1}{6}\int {\frac{{2x - 1}}{{{x^2} - x + 1}}{\rm{d}}x + \frac{1}{2}\int {\frac{1}{{{x^2} - x + 1}}} } } {\rm{d}}x \\&=\frac{1}{3}\ln \left
{1 + x} \right
- \frac{1}{6}\ln \left
{{x^2} - x + 1} \right
+ \frac{1}{{\sqrt 3 }}\arctan \frac{{2x - 1}}{{\sqrt 3 }} + C \end{align} 5.求不定积分 \int {\frac{1}{{{x^6} + 1}}{\rm{d}}x}
.解:根据上一题的分解结果有 \frac{1}{{{x^6} + 1}} = \frac{1}{3}\left( {\frac{1}{{{x^2} + 1}} - \frac{{{x^2} - 2}}{{{x^4} - {x^2} + 1}}} \right) ,拆分一下 \frac{{{x^2} - 2}}{{{x^4} - {x^2} + 1}} 得\frac{{{x^2} - 2}}{{{x^4} - {x^2} + 1}} = \frac{1}{2}\left( {3 \cdot \frac{{{x^2} - 1}}{{{x^4} - {x^2} + 1}} - \frac{{{x^2} + 1}}{{{x^4} - {x^2} + 1}}} \right) 故 \begin{align} \int {\frac{1}{{{x^6} + 1}}{\rm{d}}x} & = \frac{1}{3}\int {\frac{1}{{{x^2} + 1}}{\rm{d}}x}
- \frac{1}{6}\left( {3\int {\frac{{{x^2} - 1}}{{{x^4} - {x^2} + 1}}{\rm{d}}x - \int {\frac{{{x^2} + 1}}{{{x^4} - {x^2} + 1}}} } {\rm{d}}x} \right) \\&
= \frac{1}{3}\arctan x - \frac{1}{2}\int {\frac{{1 - \frac{1}{{{x^2}}}}}{{{x^2} + \frac{1}{{{x^2}}} - 1}}{\rm{d}}x}
+ \frac{1}{6}\int {\frac{{1 + \frac{1}{{{x^2}}}}}{{{x^2} + \frac{1}{{{x^2}}} - 1}}{\rm{d}}x}
\\&
= \frac{1}{3}\arctan x - \frac{1}{2}\int {\frac{1}{{{{\left( {x + \frac{1}{x}} \right)}^2} - 3}}} {\rm{d}}\left( {x + \frac{1}{x}} \right) + \frac{1}{6}\int {\frac{1}{{{{\left( {x - \frac{1}{x}} \right)}^2} + 1}}} {\rm{d}}\left( {x - \frac{1}{x}} \right)
\\&
= \frac{1}{3}\arctan x - \frac{1}{{4\sqrt 3 }}\ln \left
{\frac{{{x^2} - \sqrt 3 x + 1}}{{{x^2} + \sqrt 3 x + 1}}} \right
+ \frac{1}{6}\arctan \left( {x - \frac{1}{x}} \right) + C
\end{align} 至此,难度正常的题目已经解答完毕,下面进入阴间网红题解析环节(高能预警)问题:求不定积分 \int {\frac{1}{{{x^5} + 1}}} {\rm{d}}x .这个就没有什么好办法了,不像前几个可以进行计算量可控的分拆、配凑等等。如果本题仍延续以上做法,不仅系数难算,而且算出后也都带着 \sqrt 5
和其他有理项,会冗长且复杂,另外对分解出的二次式积分实际算起来并不是一件轻松的事情,所以需要寻找其他途径。解:方程 x^5+1=0 在复数范围内有五个解:
- 1,{z_1},\overline {{z_1}} ,{z_2},\overline {{z_2}}
根据欧拉公式,设 x = {{\rm{e}}^{{\rm{i}}\theta }} ,则 {{\rm{e}}^{{\rm{5i}}\theta }} =
- 1 = \cos 5\theta
+ {\rm{i}}\sin 5\theta
于是 \cos 5\theta
=
- 1 ,即 \theta
= \frac{{2k + 1}}{5}{\rm{\pi }}\left( {k = 0,1,2,3,4} \right) , x = \cos \frac{{2k + 1}}{5}{\rm{\pi }} + {\rm{i}}\sin \frac{{2k + 1}}{5}{\rm{\pi }} 故不妨令 {{\rm{z}}_2} = \cos \frac{3}{5}{\rm{\pi }} + {\rm{i}}\sin \frac{3}{5}{\rm{\pi }} 设 \frac{1}{{{x^5} + 1}} = \frac{a}{{x + 1}} + \frac{{{a_1}}}{{x - {z_1}}} + \frac{{{b_1}}}{{x - \overline {{z_1}} }} + \frac{{{a_2}}}{{x - {z_2}}} + \frac{{{b_2}}}{{x - \overline {{z_2}} }} 去分母得 \left( {\frac{a}{{x + 1}} + \frac{{{a_1}}}{{x - {z_1}}} + \frac{{{b_1}}}{{x - \overline {{z_1}} }} + \frac{{{a_2}}}{{x - {z_2}}} + \frac{{{b_2}}}{{x - \overline {{z_2}} }}} \right)\left( {{x^5} + 1} \right) \equiv 1 令 x \to
- 1 并利用洛必达法则得 1 = \mathop {\lim }\limits_{x \to
- 1} a\frac{{{x^5} + 1}}{{x + 1}} = a\mathop {\lim }\limits_{x \to
- 1} 5{x^4} = 5a ,故 a=\frac{1}{5} 同理令 x \to {z_1} 得 1 = {a_1}\mathop {\lim }\limits_{x \to {z_1}} \frac{{{x^5} + 1}}{{x - {z_1}}} = {a_1}\mathop {\lim }\limits_{x \to {z_1}} 5{x^4} = 5{a_1}z_1^4 = \frac{{ - 5{a_1}}}{{{z_1}}} ,故 {a_1} =
- \frac{{{z_1}}}{5} 同理容易计算出 {b_1} =
- \frac{{\overline {{z_1}} }}{5} , {a_2} =
- \frac{{{z_2}}}{5} , {b_2} =
- \frac{{\overline {{z_2}} }}{5} 故 \begin{align}
\int {\frac{1}{{{x^5} + 1}}} {\rm{d}}x &= \frac{1}{5}\int {\left( {\frac{1}{{x + 1}} - \frac{{{z_1}}}{{x - {z_1}}} - \frac{{\overline {{z_1}} }}{{x - \overline {{z_1}} }} - \frac{{{z_2}}}{{x - {z_2}}} - \frac{{\overline {{z_2}} }}{{x - \overline {{z_2}} }}} \right)} {\rm{d}}x
\\& = \frac{1}{5}\left( {\ln \left( {1 + x} \right) - {z_1}\ln \left( {x - {z_1}} \right) - \overline {{z_1}} \ln \left( {x - \overline {{z_1}} } \right) - {z_2}\ln \left( {x - {z_2}} \right) - \overline {{z_2}} \ln \left( {x - \overline {{z_2}} } \right)} \right)
\end{align} 其中 {z_1},\overline {{z_1}} ,{z_2},\overline {{z_2}}
的具体值前面已经给出所以到这里可以说是做完了但是一般来说要把结果写成实数的形式,所以下面再进一步简化一下由于 \begin{align} \frac{{{z_1}}}{{x - {z_1}}} + \frac{{\overline {{z_1}} }}{{x - \overline {{z_1}} }} &= \frac{{x\left( {{z_1} + \overline {{z_1}} } \right) - 2{z_1}\overline {{z_1}} }}{{\left( {x - {z_1}} \right)\left( {x - \overline {{z_1}} } \right)}} = \frac{{x\left( {{z_1} + \overline {{z_1}} } \right) - 2}}{{{x^2} - x\left( {{z_1} + \overline {{z_1}} } \right) + 1}} = 2\frac{{x\cos \frac{{\rm{\pi }}}{5} - 1}}{{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1}}
\\& = 2\frac{{x\cos \frac{{\rm{\pi }}}{5} - 1}}{{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1}} = 2\frac{{x\cos \frac{{\rm{\pi }}}{5} - \left( {{{\sin }^2}\frac{{\rm{\pi }}}{5} + {{\cos }^2}\frac{{\rm{\pi }}}{5}} \right)}}{{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1}}
\\& = \cos \frac{{\rm{\pi }}}{5} \cdot \frac{{2x - 2\cos \frac{{\rm{\pi }}}{5}}}{{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1}} - 2{\sin ^2}\frac{{\rm{\pi }}}{5} \cdot \frac{1}{{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1}}
\end{align} 故 \begin{align}
\int {\left( {\frac{{{z_1}}}{{x - {z_1}}} + \frac{{\overline {{z_1}} }}{{x - \overline {{z_1}} }}} \right){\rm{d}}x}
&= \cos \frac{{\rm{\pi }}}{5}\int {\frac{{2x - 2\cos \frac{{\rm{\pi }}}{5}}}{{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1}}{\rm{d}}x - 2{{\sin }^2}\frac{{\rm{\pi }}}{5}\int {\frac{1}{{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1}}{\rm{d}}x} }
\\& = \cos \frac{{\rm{\pi }}}{5} \cdot \ln \left
{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1} \right
- 2{\sin ^2}\frac{{\rm{\pi }}}{5} \cdot \frac{1}{{\sqrt {1 - {{\cos }^2}\frac{{\rm{\pi }}}{5}} }}\arctan \frac{{x - \cos \frac{{\rm{\pi }}}{5}}}{{\sqrt {1 - {{\cos }^2}\frac{{\rm{\pi }}}{5}} }} + C
\\& = \cos \frac{{\rm{\pi }}}{5} \cdot \ln \left
{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1} \right
- 2\sin \frac{{\rm{\pi }}}{5} \cdot \arctan \frac{{x - \cos \frac{{\rm{\pi }}}{5}}}{{\sin \frac{{\rm{\pi }}}{5}}} + C
\end{align} 同理 \int {\frac{{{z_2}}}{{x - {z_2}}} + \frac{{\overline {{z_2}} }}{{x - \overline {{z_2}} }}} {\rm{d}}x = \cos \frac{{{\rm{3\pi }}}}{5} \cdot \ln \left
{{x^2} - 2x\cos \frac{{{\rm{3\pi }}}}{5} + 1} \right
- 2\sin \frac{{{\rm{3\pi }}}}{5} \cdot \arctan \frac{{x - \cos \frac{{{\rm{3\pi }}}}{5}}}{{\sin \frac{{\rm{\pi }}}{5}}} + C 故 \begin{align}
\int {\frac{1}{{{x^5} + 1}}} {\rm{d}}x &=
\frac{1}{5}\left( {\int {\frac{1}{{1 + x}}} {\rm{d}}x - 2\int {\frac{{x\cos \frac{{\rm{\pi }}}{5} - 1}}{{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1}}{\rm{d}}x - 2\int {\frac{{x\cos \frac{{{\rm{3\pi }}}}{5} - 1}}{{{x^2} - 2x\cos \frac{{{\rm{3\pi }}}}{5} + 1}}{\rm{d}}x} } } \right)
\\& = \frac{{\ln \left
{1 + x} \right|}}{5} - \frac{1}{5}\left( {\cos \frac{{\rm{\pi }}}{5} \cdot \ln \left
{{x^2} - 2x\cos \frac{{\rm{\pi }}}{5} + 1} \right
- 2\sin \frac{{\rm{\pi }}}{5} \cdot \arctan \frac{{x - \cos \frac{{\rm{\pi }}}{5}}}{{\sin \frac{{\rm{\pi }}}{5}}}} \right) \\& - \frac{1}{5}\left( {\cos \frac{{{\rm{3\pi }}}}{5} \cdot \ln \left
{{x^2} - 2x\cos \frac{{{\rm{3\pi }}}}{5} + 1} \right
- 2\sin \frac{{{\rm{3\pi }}}}{5} \cdot \arctan \frac{{x - \cos \frac{{{\rm{3\pi }}}}{5}}}{{\sin \frac{{\rm{\pi }}}{5}}}} \right)
\end{align} 这里三角函数就不用写成根式了,因为意义不大,并且会让式子看起来更复杂那对于一个不了解复数、单位根等知识的同学来说,这种题能不能做呢?能否用仅有高数课本上的“通法”拆分并计算不定积分呢?答案是...理论上是肯定的,实际上是否定的以下简单展示一下这爆炸的计算量:先对目标分式进行拆分:因为 \frac{1}{{{x^5} + 1}} = \frac{1}{{\left( {x + 1} \right)\left( {{x^4} - {x^3} + {x^2} - x + 1} \right)}} 其中 \frac{{{x^4} - {x^3} + {x^2} - x + 1}}{{{x^2}}} = {x^2} + \frac{1}{{{x^2}}} + 1 - \left( {x + \frac{1}{x}} \right) = {\left( {x + \frac{1}{x}} \right)^2} - \left( {x + \frac{1}{x}} \right) - 1 由于方程 {t^2} - t - 1 = 0 的两根为 t = \frac{{1 \pm \sqrt 5 }}{2} 故 \frac{{{x^4} - {x^3} + {x^2} - x + 1}}{{{x^2}}} = {\left( {x + \frac{1}{x}} \right)^2} - \left( {x + \frac{1}{x}} \right) - 1 = \left( {x + \frac{1}{x} - \frac{{1 + \sqrt 5 }}{2}} \right)\left( {x + \frac{1}{x} - \frac{{1 - \sqrt 5 }}{2}} \right) 即{x^4} - {x^3} + {x^2} - x + 1 = \left( {{x^2} - \frac{{1 + \sqrt 5 }}{2}x + 1} \right)\left( {{x^2} - \frac{{1 - \sqrt 5 }}{2}x + 1} \right) 所以可设 \frac{1}{{{x^5} + 1}} = \frac{{ax + b}}{{{x^2} - \frac{{1 + \sqrt 5 }}{2}x + 1}} + \frac{{cx + d}}{{{x^2} - \frac{{1 - \sqrt 5 }}{2}x + 1}} + \frac{m}{{x + 1}} 注意因式分解结果 {x^5} + 1 = \left( {{x^2} - \frac{{1 + \sqrt 5 }}{2}x + 1} \right)\left( {{x^2} - \frac{{1 - \sqrt 5 }}{2}x + 1} \right)\left( {x + 1} \right) 求 m : 1 = \left( {\frac{{ax + b}}{{{x^2} - \frac{{1 + \sqrt 5 }}{2}x + 1}} + \frac{{cx + d}}{{{x^2} - \frac{{1 - \sqrt 5 }}{2}x + 1}}} \right)\left( {{x^5} + 1} \right) + m\left( {{x^4} - {x^3} + {x^2} - x + 1} \right) 令 x=-1 得到 m = \frac{1}{5} (这是唯一一个好算的系数),下面再求 a,b 1 = \left( {ax + b} \right)\left( {{x^2} - \frac{{1 - \sqrt 5 }}{2}x + 1} \right)\left( {x + 1} \right) + \left( {\frac{{cx + d}}{{{x^2} - \frac{{1 - \sqrt 5 }}{2}x + 1}} + \frac{m}{{x + 1}}} \right)\left( {{x^5} + 1} \right) 其中方程 {x^2} - \frac{{1 + \sqrt 5 }}{2}x + 1 = 0 有两个根 {x_{1,2}} = \frac{{1 + \sqrt 5
\pm \sqrt {2\sqrt 5 \left( {1 - \sqrt 5 } \right)} }}{4} (虚数根)代入有 1 = \left( {a{x_{1,2}} + b} \right)\left( {x_{1,2}^2 - \frac{{1 - \sqrt 5 }}{2}{x_{1,2}} + 1} \right)\left( {{x_{1,2}} + 1} \right) ,是两个关于 a,b
的一元一次方程至此,对于一个正常人来讲,往下继续计算的欲望为零下面直接贴出计算结果,虽然结果并不复杂,但是过程会非常麻烦!至于另外一种“常规解法”:拆分后直接去分母对比系数......这,一眼看去就知道计算量完全无法控制啊,首先是通分整理,其次是五个字母对应五个方程,然后是各种恶心的系数,不适合交给人类计算(具体不演示了)看到这里,对比以上几种思路和方法,可以看出“单位根”的做法具有普适性,换句话说,我们可以将同样的方法应用到更一般的情形,下面不加证明的直接给出此类不定积分的一般结论(实际上证明方法完全和上面的题目一致,只是将其抽象的写成了求和形式而已)结论一:\begin{align} \int {\frac{1}{{1 + {x^{2n}}}}{\rm{d}}x = \frac{1}{n}\sum\limits_{k = 1}^n {\sin \left( {\frac{{2k - 1}}{{2n}}{\rm{\pi }}} \right)} } \arctan \frac{{x - \cos \frac{{2k - 1}}{{2n}}{\rm{\pi }}}}{{\sin \frac{{2k - 1}}{{2n}}{\rm{\pi }}}}
- \frac{1}{{2n}}\sum\limits_{k = 1}^n {\cos \left( {\frac{{2k - 1}}{{2n}}{\rm{\pi }}} \right)\ln \left
{{x^2} - 2x\cos \left( {\frac{{2k - 1}}{{2n}}{\rm{\pi }}} \right) + 1} \right
+ C}
\end{align} 结论二:\begin{array}{l} \int {\frac{1}{{1 + {x^{2n + 1}}}}{\rm{d}}x = \frac{2}{{2n + 1}}\sum\limits_{k = 1}^n {\sin \left( {\frac{{2k - 1}}{{2n + 1}}{\rm{\pi }}} \right)} } \arctan \frac{{x - \cos \frac{{2k - 1}}{{2n + 1}}{\rm{\pi }}}}{{\sin \frac{{2k - 1}}{{2n + 1}}{\rm{\pi }}}} + \frac{{\ln \left
{1 + x} \right|}}{{2n + 1}}
{\rm{ }} - \frac{1}{{2n + 1}}\sum\limits_{k = 1}^n {\cos \left( {\frac{{2k - 1}}{{2n + 1}}{\rm{\pi }}} \right)\ln \left
{{x^2} - 2x\cos \left( {\frac{{2k - 1}}{{2n + 1}}{\rm{\pi }}} \right) + 1} \right
+ C}
\end{array} 至此,该类型的不定积分题目完美解决现在还剩下“表情包”中的最后一个不定积分题目——伽罗瓦见了都得投降这根本就拆分不了嘛,咋个积法…?显然分母没有根式解,于是若想求出不定积分,只能设出它的根问题:求不定积分 \int {\frac{1}{{{x^5} - x + 1}}{\rm{d}}x}
.解:设方程 {x^5} - x + 1 = 0 的全部根为 {z_1},{z_2},{z_3},{z_4},{z_5} 则 \frac{1}{{{x^5} - x + 1}} = \sum\limits_{k = 1}^5 {\frac{{{a_k}}}{{x - {z_k}}}}
,采用洛必达法则计算各个系数 {a_k} 1 = \mathop {\lim }\limits_{x \to {z_i}} \sum\limits_{k = 1}^5 {\frac{{{a_k}\left( {{x^5} - x + 1} \right)}}{{x - {z_k}}} = } \mathop {\lim }\limits_{x \to {z_i}} \frac{{{a_i}\left( {{x^5} - x + 1} \right)}}{{x - {z_i}}} = {a_i}\mathop {\lim }\limits_{x \to {z_i}} \left( {5{x^4} - 1} \right) = {a_i}\left( {5z_i^4 - 1} \right) 由于 z_i^5 = {z_i} - 1 ,故 {a_i} = \frac{1}{{5z_i^4 - 1}} = \frac{{{z_i}}}{{4{z_i} - 5}} 故 \int {\frac{1}{{{x^5} - x + 1}}{\rm{d}}x}
= \int {\left( {\sum\limits_{k = 1}^5 {\frac{{{z_k}}}{{4{z_k} - 5}} \cdot \frac{1}{{x - {z_k}}}} } \right)} {\rm{d}}x = \sum\limits_{k = 1}^5 {\frac{{{z_k}}}{{4{z_k} - 5}}\ln \left( {x - {z_k}} \right)}
+ C 而实际上稍微改一下题目,就可以进行因式分解,并且算出它准确的根:问题:求不定积分 \int {\frac{1}{{{x^5} + x + 1}}{\rm{d}}x}
.解:由于 {x^5} + x + 1 = \left( {1 + x + {x^2}} \right)\left( {1 - {x^2} + {x^3}} \right) ,故可以算出根式解但不意味着它好算!经过一番计算,其结果如下:好了,本期的内容到此结束,感谢观看觉得有用的话就给一个三连吧~~~

提交成功是否继续回答问题?
手机回答更方便,互动更有趣,下载APP
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
下载百度知道APP,抢鲜体验使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。扫描二维码下载
×个人、企业类侵权投诉
违法有害信息,请在下方选择后提交
类别色情低俗
涉嫌违法犯罪
时政信息不实
垃圾广告
低质灌水
我们会通过消息、邮箱等方式尽快将举报结果通知您。说明
做任务开宝箱累计完成0
个任务
10任务
50任务
100任务
200任务
任务列表加载中...

我要回帖

更多关于 高数定积分 的文章