关联规则是否满足传递性和什么叫图形的对称性性的性质?举例说明。

1.1机器学习概述机器学习简介机器学习,通俗地讲就是让机器拥有学习的能力,从而改善系统自身的性能。这里的“学习”指的是从数据中学习,从数据中产生模型的算法,即学习算法。有了学习算法,只要把经验数据提供给它,它就能够基于这些数据产生模型,在面对新的情况时,模型能够提供相应的判断,进行预测。机器学习实质上是基于数据集的,它通过对数据集进行研究,找出数据集中数据之间的联系和数据的真实含义。机器学习的发展机器学习的应用前景1.数据分析与挖掘数据挖掘是“识别出巨量数据中有效的、新颖的、潜在有用的、最终可理解的模式的过程”数据分析则通常被定义为“指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用,是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程”。
2.模式识别
模式识别研究主要集中在两个方面:一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴;二是在给定的任务下,如何用计算机实现模式识别的理论和方法,这些是机器学习的长项。
模式识别的应用领域广泛,包括计算机视觉、医学图像分析、光学文字识别、自然语言处理、语音识别、手写识别、生物特征识别、文件分类、搜索引擎等,而这些领域也正是机器学习大展身手的舞台,因此模式识别与机器学习的关系越来越密切。
3.更广阔的领域研究和应用机器学习的最终目标是全面模仿人类大脑,创造出拥有人类智慧的机器大脑。1.2机器学习的分类监督学习监督学习是指利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。1.监督学习概述监督学习表示机器学习的数据是带标记的,这些标记可以包括数据类别、数据属性及特征点位置等。具体实现过程是通过大量带有标记的数据来训练机器,机器将预测结果与期望结果进行比对;之后根据比对结果来修改模型中的参数,再一次输出预测结果;再将预测结果与期望结果进行比对,重复多次直至收敛,最终生成具有一定鲁棒性的模型来达到智能决策的能力。常见的监督学习有分类(Classification)和回归(Regression),分类是将一些实例数据分到合适的类别中,其预测结果是离散的;回归是将数据归到一条“线”上,即为离散数据生产拟合曲线,因此其预测结果是连续的。
2.监督学习的应用判断邮件是否为垃圾邮件无监督学习根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题,称为无监督学习。1.无监督学习概述无监督学习的训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律。无监督学习表示机器从无标记的数据中探索并推断出潜在的联系。常见的无监督学习有聚类(Clustering)和降维(Dimensionality Reduction)两种。在聚类工作中,由于事先不知道数据类别,因此只能通过分析数据样本在特征空间中的分布,如基于密度或基于统计学概率模型,从而将不同数据分开,把相似数据聚为一类。降维是将数据的维度降低,由于数据本身具有庞大的数量和各种属性特征,若对全部数据信息进行分析,则会增加数据训练的负担和存储空间。因此可以通过主成分分析等其他方法,考虑主要因素,舍弃次要因素,从而平衡数据分析的准确度与数据分析的效率。在实际应用中,可以通过一系列的转换将数据的维度降低。2.无监督学习的应用数据挖掘,用于在大量无标签数据中寻找信息。3.监督学习与无监督学习的区别(1)监督学习是一种目的明确的训练方式;而无监督学习是没有明确目的的训练方式。(2)监督学习需要给数据打标签;而无监督学习不需要给数据打标签。(3)监督学习由于目的明确,因此可以衡量效果;而无监督学习几乎无法衡量效果如何。半监督学习机器学习的核心是从数据中学习,从数据出发得到未知规律,利用规律对未来样本进行预测和分析。监督学习需要大量已标记类别的训练样本来保证其良好的性能;无监督学习不使用先验信息,利用无标签样本的特征分布规律,使得相似样本聚到一起,但模型准确性难以保证。获取大量无标记样本相当容易,而获取大量有标记样本则困难得多,且人工标注需要耗费大量的人力和物力。如果只使用少量的有标记样本进行训练,往往导致学习的泛化性能低下,且浪费大量的无标记样本数据资源。因此,使用少量标记样本作为指导,利用大量无标记样本改善学习性能的半监督学习成为研究的热点。
半监督学习包括半监督聚类、半监督分类、半监督降维和半监督回归 4 种学习场景。常见的半监督分类代表算法包括生成式方法、半监督支持向量机(Semi-supervised Support Vector Machines,S3VMs)、基于图的半监督图方法和基于分歧的半监督方法共 4 种算法。常见的假设模型有混合高斯模型、混合专家模型、朴素贝叶斯模型,采用极大似然方法作为参数估计的优化目标,选择最大期望(Expectation-Maximization,EM)算法进行参数的优化求解。常见的 S3VMs 方法有直推式支持向量机(Transductive Support Vector Machine,TSVM)、拉普拉斯支持向量机(Laplacian Support Vector Machine,Laplacian SVM)、均值标签半监督支持向量机(Mean Semi-supervised Support Vector Machine,MeanS3VM)、安全半监督支持向量机(Safe Semi-supervised SVM,S4VM)、基于代价敏感的半监督支持向量机(Cost-sensitive Semi-supervised SVM,CS4VM)。
基于图的半监督方法是利用有标签和无标签样本之间的联系得到图结构,利用图结构进行标签传播。典型的基于图的半监督方法有标签传播算法、最小割算法以及流形正则化算法。迁移学习迁移学习是运用已存有的知识对不同但相关领域的问题进行求解的一种新的机器学习方法。按照迁移学习方法采用的技术划分,可以把迁移学习方法分为 3 类:基于特征选择的迁移学习、基于特征映射的迁移学习和基于权重的迁移学习。根据源领域和目标领域中是否有标签样本,可将迁移学习方法划分为 3 类:目标领域中有少量标注样本的归纳迁移学习(Inductive Transfer Learning)、只有源领域中有标签样本的直推式迁移学习(Transductive Transfer Learning)、源领域和目标领域都没有标签样本的无监督迁移学习。根据源领域中是否有标签样本,把归纳迁移学习方法分为 2 类:多任务迁移学习和自学习强化学习强化学习(Reinforcement Learning,RL)又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一,用于描述和解决智能体在与环境的交互过程中,通过学习策略以达成回报最大化或实现特定目标的问题。强化学习主要包括智能体、环境状态、奖励和动作 4 个元素以及一个状态。
强化学习是带有激励机制的,即如果机器行动正确,则施予一定的“正激励”;如果机器行动错误,则会给出一定的惩罚,也可称为“负激励”。在这种情况下,机器将会考虑在一个环境中如何行动才能达到激励的最大化,具有一定的动态规划思想。强化学习的应用机械狗AlphaGo Zer1.3 机器学习常用算法回归算法回归算法是一种应用极为广泛的数量分析方法。该算法用于分析事物之间的统计关系,侧重考察变量之间的数量变化规律,并通过回归方程的形式描述和反映这种关系,以帮助人们准确把握变量受其他一个或多个变量影响的程度,进而为预测提供科学依据。回归算法的分类线性回归(Linear Regression)逻辑回归(Logistic Regression)多项式回归(Polynomial Regression)逐步回归(Step-wise Regression)岭回归(Ridge Regression)套索回归(Lasso Regression)弹性回归(Elastic Net Regression)聚类算法聚类就是将相似的事物聚集在一起,将不相似的事物划分到不同类别的过程,是数据挖掘中一种重要的方法。聚类算法的目标是将数据集合分成若干簇,使得同一簇内的数据点相似度尽可能大,而不同簇间的数据点相似度尽可能小。聚类能在未知模式识别问题中,从一堆没有标签的数据中找到其中的关联关系。1.聚类算法概述聚类技术是一种无监督学习,是研究样本或指标分类问题的一种统计分析方法。聚类与分类的区别是其要划分的类是未知的。常用的聚类分析方法有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法和聚类预报法等。聚类分析注意点(1)可伸缩性
(2)处理不同类型属性的能力
(3)发现任意形状的聚类
(4)输入参数的选择
(5)处理“噪声”数据的能力
(6)对于输入记录的顺序不敏感
(7)高维度
(8)基于约束的聚类
(9)可解释性和可用性
2.聚类算法的分类
(1)基于划分的聚类算法K-Means 算法K-Medoids 算法CLARANS 算法(2)基于层次的聚类算法BIRCH 算法CURE 算法Chameleon 算法(3)基于密度的聚类算法DBSCAN 算法OPTICS 算法DENCLUE 算法(4)基于网格的聚类算法STING 算法CLIQUE 算法Wave-Cluster 算法(5)基于模型的聚类算法统计的方法神经网络的方法(6)传递闭包法、布尔矩阵法、直接聚类法、相关性分析聚类法降维算法1.降维算法概述降维就是一种针对高维度特征进行的数据预处理方法,是应用非常广泛的数据预处理方法。降维算法指对高维度的数据保留下最重要的一些特征,去除噪声和不重要的特征,从而实现提升数据处理速度的目的。在实际的生产和应用中,在一定的信息损失范围内,降维可以节省大量的时间和成本。机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。2.降维算法的分类主成分分析(Principal Component Analysis,PCA)法试图在保证数据信息丢失最少的原则下,对多个变量进行最佳综合简化,即对高维变量空间进行降维处理。因子分析(Factor Analysis,FA)法因子分析法是从假设出发。因子分析法有几个主要目的:一是进行结构的探索,在变量之间存在高度相关性的时候希望用较少的因子来概括其信息;二是把原始变量转换为因子得分后,使用因子得分进行其他分析,从而简化数据,如聚类分析、回归分析等;三是通过每个因子得分计算出综合得分,对分析对象进行综合评价。3.降维算法的应用场景降维算法通常应用于数据压缩与数据可视化中决策树算法贝叶斯算法贝叶斯算法是对部分未知的状态进行主观概率估计,并使用贝叶斯公式对发生概率进行修正,最后利用期望值和修正概率做出最优决策。支持向量机算法支持向量机算法是一种支持线性分类和非线性分类的二元分类算法。经过演进,其现在也支持多元分类,被广泛地应用在回归以及分类当中。支持向量机算法在垃圾邮件处理、图像特征提取及分类、空气质量预测等多个领域都有应用,已成为机器学习领域中不可缺少的一部分。关联规则算法关联规则算法常用来描述数据之间的相关关系,关联规则模式属于描述型模式。遗传算法遗传算法是一种启发式的寻优算法,该算法是以进化论为基础发展出来的。它是通过观察和模拟自然生命的迭代进化,建立起一个计算机模型,通过搜索寻优得到最优结果的算法。1.4机器学习小结(1)机器学习,通俗地讲就是让机器来实现学习的过程,让机器拥有学习的能力,从而改善自身的性能。(2)监督学习表示机器学习的数据是带标记的,这些标记包括数据类别、数据属性及特征点位置等。(3)无监督学习的训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律。(4)半监督学习突破了传统方法只考虑一种样本类型的局限性,综合利用了有标签与无标签样本,是在监督学习和无监督学习的基础上进行的研究。(5)迁移学习是运用已存有的知识,对不同但相关领域的问题进行求解的一种新的机器学习方法。迁移学习放宽了传统机器学习中的两个基本假设,目的是迁移已有的知识来解决目标领域中仅有少量(甚至没有)有标签样本数据的学习问题。(6)强化学习又称为再励学习、评价学习,是一种重要的机器学习方法,在智能控制机器人及分析预测等领域有许多应用。强化学习主要包含智能体、环境状态、奖励和动作 4 个元素。(7)回归算法是一种应用极为广泛的数量分析方法,该算法用于分析事物之间的统计关系,侧重考察变量之间的数量变化规律,并通过回归方程的形式描述和反映这种关系,以帮助人们准确把握变量受其他一个或多个变量影响的程度,进而为预测提供科学依据。(8)聚类就是将相似的事物聚集在一起,将不相似的事物划分到不同类别的过程。(9)降维算法可将数据的维度降低,它通过主成分分析等其他方法,考虑主要因素,舍弃次要因素,从而平衡数据分析准确度与数据分析效率。(10)决策树通过把实例从根节点排列到某个叶子节点来分类实例,叶子节点即为实例所属的分类。(11)贝叶斯算法是一种使用先验概率进行处理的算法,其最后的预测结果就是具有最大概率的那个类。(12)支持向量机算法是一种支持线性分类和非线性分类的二元分类算法,也支持多元分类。(13)关联规则算法常用来描述数据之间的相关关系,关联规则模式属于描述型模式。(14)遗传算法是一种启发式的寻优算法,该算法是以达尔文进化论为基础发展出来的。它是通过观察和模拟自然生命的迭代进化,建立起一个计算机模型,通过搜索寻优得到最优结果的算法。2.1神经网络神经网络简介神经网络(Neural Network,NN)亦称为人工神经网络(Artificial Neural Network,ANN),是由大量神经元(Neurons)广泛互连而成的网络,是对人脑的抽象、简化和模拟,应用了一些人脑的基本特性。神经网络与人脑的相似之处可概括为两方面,一是通过学习过程利用神经网络从外部环境中获取知识,二是内部神经元用来存储获取的知识信息。神经网络的信息处理是由神经元之间的相互作用实现的,知识与信息的存储主要表现为网络元件互相连接的分布式物理联系。人工神经网络具有很强的自学习能力,它可以不依赖于“专家”的头脑,自动从已有的实验数据中总结规律。人工神经网络擅长处理复杂的多维的非线性问题,不仅可以解决定性问题,还可以解决定量问题,同时具有大规模并行处理和分布信息存储能力,具有良好的自适应性、自组织性、容错性和可靠性。神经网络的结构神经网络会将多个单一神经元连接在一起,将一个神经元的输出作为下一个神经元的输入神经网络的结构大致可以分为以下 5 类(1)前馈式网络:该网络结构是分层排列的,每一层的神经元输出只与下一层的神经元连接。(2)输出反馈的前馈式网络:该网络结构与前馈式网络的不同之处在于,其中存在着一个从输出层到输入层的反馈回路。(3)前馈式内层互连网络:在该网络结构中,同一层的神经元之间相互关联,它们有相互制约的关系。但从层与层之间的关系来看,它仍然是前馈式的网络结构,许多自组织神经网络大多具有这种结构。(4)反馈型全互连网络:在该网络结构中,每个神经元的输出都和其他神经元相连,从而形成了动态的反馈关系,该网络结构具有关于能量函数的自寻优能力。(5)反馈型局部互连网络:在该网络结构中,每个神经元只和其周围若干层的神经元发生互连关系,形成局部反馈,从整体上看是一种网状结构。神经网络的学习神经网络的学习也称为训练,指的是通过神经网络所在环境的刺激作用调整神经网络的自由参数,使神经网络以一种新的方式对外部环境做出反应的一个过程。神经网络最大的特点是能够从环境中学习,以及在学习中提高自身性能。经过反复学习,神经网络对其环境会越来越了解。激活函数激活函数(Activation Functions)对于人工神经网络模型以及卷积神经网络模型学习理解非常复杂和非线性的函数来说具有十分重要的作用。损失函数损失函数是模型对数据拟合程度的反映,拟合得越差,损失函数的值就越大。与此同时,当损失函数比较大时,其对应的梯度也会随之增大,这样就可以加快变量的更新速度。2.2 感知机感知机简介感知机被称为深度学习领域最为基础的模型。虽然感知机是最为基础的模型,但是它在深度学习的领域中有着举足轻重的地位,它是神经网络和支持向量机学习的基础。感知机学习的目标就是求得一个能够将训练数据集中正、负实例完全分开的分类超平面,为了找到分类超平面,即确定感知机模型中的参数 w 和 b,需要定义一个基于误分类的损失函数,并通过将损失函数最小化来求解 w 和 b。多层感知机多层感知机(MLP)也叫作前馈神经网络,是深度学习中最基本的网络结构。2.3 卷积神经网络卷积神经网络简介卷积神经网络(Convolutional Neural Network,CNN),顾名思义,指在神经网络的基础上加入了卷积运算,通过卷积核局部感知图像信息提取其特征,多层卷积之后能够提取出图像的深层抽象特征,凭借这些特征来达到更准确的分类或预测的目标。卷积神经网络与一些传统的机器学习方法相比,能够更加真实地体现数据内在的相关特征,因此,目前卷积神经网络是图像、行为识别等领域的研究热点。卷积神经网络的结构卷积神经网络是多层感知机的变体,根据生物视觉神经系统中神经元的局部响应特性设计,采用局部连接和权值共享的方式降低模型的复杂度,极大地减少了训练参数,提高了训练速度,也在一定程度上提高了模型的泛化能力。常用的卷积神经网络1.AlexNet2.VGG3.GoogLeNet4.ResNet2.4 循环神经网络循环神经网络简介循环神经网络(Recurrent Neural Network,RNN)是深度学习领域中一类特殊的内部存在自连接的神经网络,可以学习复杂的矢量到矢量的映射。循环神经网络是一种以序列(Sequence)数据为输入,在序列的演进方向进行递归(Recursion),且所有节点(循环单元)按链式连接形成闭合回路的递归神经网络(Recursive Neural Network)。循环神经网络是为了刻画一个序列当前的输出与之前信息的关系。从网络结构上看,循环神经网络会记忆之前的信息,并利用之前的信息影响后面节点的输出。循环神经网络的隐藏层之间的节点是有连接的,隐藏层的输入不仅包括输入层的输出,还包括上一时刻隐藏层的输出。对于每一个时刻的输入,循环神经网络会结合当前模型的状态给出一个输出,其可以看作同一神经网络被无限复制的结果。闭合回路连接是循环神经网络的核心部分。循环神经网络对于序列中每个元素都执行相同的任务,输出依赖于之前的计算(即循环神经网络具有记忆功能),记忆可以捕获迄今为止已经计算过的信息。循环神经网络在语音识别、语言建模、自然语言处理(Natural Language Processing,NLP)等领域有着重要的应用。循环神经网络的结构常用的循环神经网络1.长短期记忆网络(Long Short-Term Memory,LSTM))2.门控循环单元神经网络(Gated Recurrent Unit,GRU)2.5 生成对抗网络生成对抗网络简介生成对抗网络(Generative Adversarial Networks,GAN)的基本思想是学习训练样本的概率分布。生成对抗网络独特的对抗性思想使得它在众多生成网络模型中脱颖而出,被广泛应用于计算机视觉、机器学习和语音处理等领域。GAN 过程描述GAN 让两个网络(生成网络 G 和判别网络 D)相互竞争,G 不断捕捉训练集中真实样本 xreal 的概率分布,并通过加入随机噪声将其转变成赝品 xfake。D 观察真实样本 xreal和赝品 xfake,判断这个 xfake 到底是不是 xreal。整个对抗过程是先让 D 观察(机器学习)一些真实样本 xreal,当 D 对 xreal 有了一定的认知之后,G 尝试用 xfake 来欺骗D,让 D 相信 xfake 是 xreal。有时候 G 能够成功骗过 D,但是随着 D 对 xreal 了解的加深(即学习的样本数据越来越多),G 发现越来越难以欺骗 D,因此 G 在不断提升自己仿制赝品 xfake 的能力。如此往复多次,不仅 D 能精通 xreal 的鉴别,G 对 xreal的伪造技术也会大为提升。这便是 GAN 的生成对抗过程。GAN 优点的简单总结(1)能学习真实样本的分布,探索样本的真实结构。(2)具有更强大的预测能力。(3)样本的脆弱性在很多机器学习模型中普遍存在,而 GAN 对生成样本的鲁棒性强。(4)通过 GAN 生成以假乱真的样本,缓解了小样本机器学习的困难。(5)为指导人工智能系统完成复杂任务提供了一种全新的思路。(6)与强化学习相比,对抗式学习更接近人类的学习机理。(7)GAN 与传统神经网络的一个重要区别是,传统神经网络需要人工精心设计和建构一个损失函数,而 GAN 可以学习损失函数。(8)GAN 解决了先验概率难以确定的难题。生成对抗网络的结构1.生成网络生成网络本质上是一个可微分函数,生成网络接收随机变量 z 的输入,经生成器 G 生成假样本 G(z)。生成网络理论上可以逐渐学习任何概率分布,经训练后的生成网络可以生成逼真图像,但又不会和真实图像完全一样,即生成网络实际上是学习了训练数据的一个近似分布,这在数据增强应用方面尤为重要。2.判别网络在 GAN 中,判别网络的主要目的是判断输入是否为真实样本,并提供反馈以指导生成网络训练。判别网络和生成网络组成零和博弈的两个玩家,为取得游戏的胜利,判别网络和生成网络通过训练不断提高自己的判别能力和生成能力,游戏最终会达到一个纳什均衡状态。常用的生成对抗网络1.条件生成对抗网络条件生成对抗网络(Conditional GAN,CGAN)在原始 GAN 的基础上增加了约束条件,控制了 GAN 过于自由的问题,使网络朝着既定的方向生成样本。2.深度卷积生成对抗网络深度卷积生成对抗网络(Deep Convolutional GAN,DCGAN)的提出对 GAN 的发展有着极大的推动作用,它将 CNN 和 GAN 结合起来,使得生成的图片质量和多样性得到了保证。3.循环一致性生成对抗网络循环一致性生成对抗网络(Cycle-consistent Generative Adversarial Networks,CycleGAN),CycleGAN 可以让两个域的图像互相转换且不需要成对的图像作为训练数据2.6 深度学习的应用深度学习技术目前在人工智能领域占有绝对的统治地位,因为相比于传统的机器学习算法而言,深度学习在某些领域展现出了最接近人类所期望的智能效果,同时在悄悄地走进人们的生活,如刷脸支付、语音识别、智能翻译、自动驾驶、棋类人机大战等。AlphaGo Zero自动驾驶2.7 深度学习小结(1)神经网络亦称为人工神经网络,是由大量神经元广泛互连而成的网络,是对人脑的抽象、简化和模拟,神经网络应用了一些人脑的基本特性。(2)感知机被认为是具有实用价值的重要分类算法之一。(3)卷积神经网络在神经网络的基础上加入了卷积运算,通过卷积核局部感知图像信息提取其特征,多层卷积之后能够提取出图像的深层抽象特征,凭借这些特征来达到更准确的分类或预测的目标。(4)循环神经网络是一种以序列数据为输入,在序列的演进方向进行递归,且所有节点(循环单元)按链式连接形成闭合回路的递归神经网络。(5)生成对抗网络的网络结构由生成网络和判别网络共同构成。生成网络和判别网络可以看作博弈中的两个玩家,在模型训练的过程中,生成网络和判别网络会各自更新自身的参数以使损失最小,通过不断迭代优化,最终达到纳什均衡状态。3.1 计算机视觉概述计算机视觉简介计算机视觉(Computer Vision,CV)是机器认知世界的基础,最终的目的是使得计算机能够像人类一样“看懂世界”。计算机视觉是从图像或视频中提出符号或数值信息,分析计算该信息以进行目标的识别、检测和跟踪等。更形象地说,计算机视觉就是让计算机像人类一样能看到并理解图像。计算机视觉是一门涉及图像处理、图像分析、模式识别和人工智能等多种技术的新兴交叉学科,具有快速、实时、经济、一致、客观、无损等特点。1.计算机视觉的概念计算机视觉技术的基本原理是==利用图像传感器获得目标对象的图像信号==,并传输给专用的图像处理系统,将像素分布、颜色、亮度等图像信息转换成数字信号,并对这些信号进行多种运算与处理,提取出目标的特征信息进行分析和理解,最终实现对目标的识别、检测和控制等。2.计算机视觉的特点首先,计算机视觉是一个全新的应用方向,而非像预测分析那样只是对原有解决方案的一种改进。其次,计算机视觉能够以无障碍的方式改善人类的感知能力。最后,计算机视觉能够以远超其他人工智能工具的速度收集训练数据。计算机视觉研究的意义在采集图像、分析图像、处理图像的过程中,计算机视觉的灵敏度、精确度、快速性都是人类视觉所无法比拟的,它克服了人类视觉的局限性。计算机视觉的应用及面临的挑战1.智慧医疗领域的应用2.公共安全领域的应用3.无人机与自动驾驶领域的应用4.工业领域的应用5.其他领域的应用计算机视觉面临的挑战(1)有标注的图像和视频数据较少,机器在模拟人类智能进行认知或感知的过程中,需要大量有标注的图像或视频数据指导机器学习其中的一般模式。当前,海量的图像视频数据主要依赖人工标注,不仅费时费力,还没有统一的标准,可用的有标注的数据有限,导致机器的学习能力受限。(2)计算机视觉技术的精度有待提高,如在物体检测任务中,当前最高的检测正确率为66%,只能在对正确率要求不是很高的场景下应用。(3)计算机视觉技术的处理速度有待提高,图像和视频信息需要借助高维度的数据进行表示,这是让机器看懂图像或视频的基础,对机器的计算能力和算法的效率要求很高。3.2 图像分类图像分类简介图像分类是根据不同类别的目标在图像信息中所反映的不同特征,将它们区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或其中的每个像素或区域划分为若干个类别中的某一种,以代替人的视觉判断。图像分类的任务就是输入一张图像,正确输出该图像所属的类别。图像分类就是寻找一个函数关系,这个函数关系能够将这些像素的数值映射为一个具体的类别(类别可以用某个数值表示)。图像分类的核心任务是分析一张输入的图像并得到一个给图像分类的标签,标签来自预定义的可能类别集。图像分类算法1.传统图像分类算法完整建立图像识别模型一般包括底层特征提取、特征编码、空间约束、分类器分类等几个阶段。2.基于深度学习的图像分类算法基于深度学习的图像分类算法的原理是输入一个元素为像素值的数组,并给它分配一个分类标签。输入是包含 N 张图像的集合,每张图像的标签是 K 种分类标签中的一种。这个集合称为训练集。学习即让分类器使用训练集来学习每个类的特征,也叫作训练分类器。评价即让分类器来预测它未曾见过的图像的分类标签,对分类器预测的标签和图像真正的分类标签进行对比,并以此来评价分类器的质量。分类器预测的分类标签和图像真正的分类标签一致的情况越多,分类器的质量越好。常用的 3 类深度学习模型(1)VGG 模型(2)GoogLeNet 模型(3)残差网络模型3.3 目标检测目标检测简介目标检测需要定位出图像目标的位置和相应的类别。由于各类物体有不同的外观、形状、姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。目标检测的任务是在图像中找出所有感兴趣的目标(物体),并确定它们的位置和大小,是计算机视觉领域的核心问题之一。图像分类任务关心整体,给出的是整张图像的内容描述;而目标检测关注特定的物体目标,要求同时获得该目标的类别信息和位置信息。相比于图像分类,目标检测给出的是对图像前景和背景的理解,算法需要从背景中分离出感兴趣的目标,并确定这一目标的描述(类别和位置)。目标检测需要解决目标可能出现在图像的任何位置、目标有不同的大小以及目标可能有不同的形状这 3 个核心问题。目标检测框架模型深度学习是具有更多隐藏层数的神经网络,它可以学习到机器学习等算法不能学习到的更加深层次的数据特征,能够更加抽象并且准确地表达数据。因此,基于深度学习的各类算法被广泛地应用于目标检测中。1.R-CNNR-CNN 采用的是选择性搜索(Selective Search)算法,使用聚类的方法对图像进行分组,得到多个候选框的层次组。2.SPP-NETSPP-NET 是在 R-CNN 的基础上提出的,由于 R-CNN 只能接收固定大小的输入图像,若对图像进行裁剪以符合要求,则会导致图像信息不完整;若对原始图像进行比例缩放,则会导致图像发生形变。3.Fast R-CNN4.Faster R-CNN5.Mask R-CNN6.YOLO7.YOLO v28.SSD等等,不一一列举。3.4 图像分割图像分割简介图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,也是图像处理中最困难的问题之一。图像分割指利用图像的灰度、颜色、纹理、形状等特征,把图像分成若干个互不重叠的区域,并使这些特征在同一区域内呈现相似性,在不同的区域之间存在明显的差异性。此后,可以将分割的图像中具有独特性质的区域提取出来用于不同的研究。简单地说,图像分割就是在一幅图像中,把目标从背景中分离出来。对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。图像分割算法1.基于阈值的图像分割算法这种算法具有易于操作、功能稳定、计算简单高效等优点。其基本原理是根据图像的整体或部分信息选择阈值,依据灰度级别划分图像。2.基于边缘检测的图像分割算法这种算法的基本原理是通过检测边界来把图像分割成不同的部分。在一张图像中,不同区域的边缘通常是灰度值剧烈变化的地方,这种算法就是根据灰度突变来进行图像分割的。其按照执行顺序的差异可分为两种,即串行边缘分割法和并行边缘分割法。其重点是如何权衡检测时的抗噪性能和精度。若提高检测精度,则噪声引起的伪边缘会导致过分割;然而,若提高抗噪性能,则会使得轮廓处的结果精度不高。3.基于区域的图像分割算法这种算法的基本原理是连通含有相似特点的像素点,最终组合成分割结果。其主要利用图像局部空间信息,能够很好地避免其他算法图像分割空间小的缺陷。4.基于神经网络的图像分割算法这种算法的基本原理是以样本图像数据来训练多层感知机,得到决策函数,进而用获得的决策函数对图像像素进行分类,得到分割的结果。3.5 计算机视觉小结(1)计算机视觉是从图像或视频中提出符号或数值信息,分析计算该信息以进行目标的识别、检测和跟踪等。(2)图像分类是根据不同类别的目标在图像信息中所反映的不同特征,将它们区分开来的图像处理方法。(3)目标检测的任务是在图像中找出所有感兴趣的目标(物体),并确定它们的位置和大小。(4)图像分割是利用图像的灰度、颜色、纹理、形状等特征,把图像分成若干个互不重叠的区域,并使这些特征在同一区域内呈现相似性,在不同的区域之间存在明显的差异性。4.1 自然语言处理简介自然语言处理的定义语言是人类智慧的结晶,自然语言处理是指利用计算机对自然语言的形、音、义等信息进行处理,它是计算机科学领域和人工智能领域的一个重要的研究方向。自然语言处理(Natural Language Processing,NLP)自然语言是指人们日常使用的语言,它是随着人类社会不断发展演变而来的,是人类沟通、交流的重要工具,也是人类区别于其他动物的根本标志,没有语言,人类的思维无从谈起。自然语言处理是指利用计算机对自然语言的形、音、义等信息进行处理,即对字、词、句、篇章的输入、输出、识别、分析、理解、生成等的操作和加工。它是计算机科学领域和人工智能领域的一个重要的研究方向,研究用计算机来处理、理解以及运用人类语言,可以实现人与计算机的有效交流。自然语言处理的具体表现形式包括机器翻译、文本摘要、文本分类、文本校对、信息抽取、语音合成、语音识别等。自然语言处理的研究方向(1)文字识别文字识别借助计算机系统自动识别印刷体或者手写体文字,将其转换为可供计算机处理的电子文本。对于普通的文字识别系统,主要研究字符的图像识别;而对于高性能的文字识别系统,往往需要同时研究语言理解技术。(2)语音识别语音识别又称自动语音识别,目标是将人类语音中的词汇内容转换为计算机可读的输入。语音识别技术的应用包括语音拨号、语音导航、室内设备控制、语音文档检索、简单的听写数据录入等。(3)机器翻译(4)自动文摘(5)句法分析(6)文本分类(7)信息检索(8)信息获取(9)信息过滤(10)自然语言生成(11)中文自动分词(12)语音合成(13)问答系统自然语言处理的一般工作原理计算机处理自然语言的整个过程一般可以概括为 4 部分:语料预处理、特征工程、模型训练和指标评价。1.语料预处理(1)语料清洗,即保留有用的数据,删除噪声数据,常见的清洗方式有人工去重、对齐、删除、标注等。(2)分词,即将文本分成词语,如通过基于规则的、基于统计的分词方法进行分词。(3)词性标注,即给词语标上词类标签,如名词、动词、形容词等。常用的词性标注方法有基于规则的、基于统计的算法,如最大熵词性标注、HMM 词性标注等。(4)去停用词,即去掉对文本特征没有任何贡献作用的字词,如标点符号、语气词、助词等。2.特征工程3.模型训练4.指标评价4.2 自然语言处理的组成1.自然语言理解2.自然语言生成4.3 自然语言理解自然语言理解的层次从微观上讲,自然语言理解是指从自然语言到机器内部的映射;从宏观上看,自然语言是指机器能够执行人类所期望的某些语言功能。自然语言理解中至少有 3 个主要问题第一,计算机需要具备大程序量的人类知识,语言动作描述的是复杂世界中的关系,这些关系的知识必须是理解系统的一部分;第二,语言是基于模式的,音素构成单词,单词组成短语和句子,音素、单词和句子的顺序不是随机的,没有对这些元素的规范使用,就不可能达成交流;第三,语言动作是主体的产物,主体或者是人,或者是计算机,主体处在个体层面和社会层面的复杂环境中,语言动作都是有其目的的。自然语言的理解和分析是一个层次化的过程1.语音分析2.词法分析3.句法分析4.语义分析5.语用分析词法分析词法分析是理解单词的基础,其主要目的是从句子中切分出单词,找出词汇的各个词素,从中获得单词的语言学信息并确定单词的词义.句法分析句法是语言在长期发展过程中形成的、全体成员必须共同遵守的规则。句法分析也称语法解析,是对句子和短语的结构进行分析,找出词、短语等的相互关系及各自在句子中的作用等,并以一种层次结构加以表达。层次结构可以反映从属关系、直接成分关系,也可以反映语法功能关系。语义分析句法分析完成后,不等于计算机已经理解了该语句,还需要对语义进行解释。语义分析的任务是把分析得到的句法成分与应用领域中的目标表示相关联,从而确定语言所表达的真正含义或概念。4.4 自然语言处理面临的问题和展望自然语言处理面临的问题1.缺乏有效的知识表示和利用手段2.缺乏未知语言现象的处理能力3.模型缺乏解释性和举一反三的能力4.缺乏交互学习和自主进化的能力5.单一模态信息处理的局限性自然语言处理的展望(1)与神经科学密切结合,探索人脑理解语言的神经基础,构建更加精准、可解释、可计算的语义表征和计算方法。(2)构建高质量的基础资源和技术平台。(3)打通不同模态信息处理的壁垒,构建多模态信息融合的处理方法和模型。4.5 自然语言处理小结(1)自然语言处理是指利用计算机对自然语言的形、音、义等信息进行处理,即对字、词、句、篇章的输入、输出、识别、分析、理解、生成等的操作和加工。(2)计算机处理自然语言的整个过程一般可以概括为语料预处理、特征工程、模型训练和指标评价 4 部分。(3)自然语言理解是指让计算机能够理解自然语言文本的意义,它可以分为语音分析、词法分析、句法分析、语义分析和语用分析 5 个层次。(4)自然语言生成是指让计算机按照一定的语法和语义规则生成自然语言文本,通俗来讲,它指对语义信息以人类可读的自然语言形式进行表达。(5)词法分析的主要目的是从句子中切分出单词,找出词汇的各个词素,从中获得单词的语言学信息并确定单词的词义。(6)句法分析的作用是确定构成句子的各个词、短语之间的关系以及各自在句子中的作用等,并将这些关系用层次结构加以表达,并规范句法结构。(7)语义分析的任务是把分析得到的句法成分与应用领域中的目标表示相关联,从而确定语言所表达的真正含义或概念。语义分析的方法主要有语义文法和格文法。(8)信息检索是信息按一定的方式进行加工、整理、组织并存储起来,并根据用户特定的需要将相关信息准确地查找出来的过程。(9)机器翻译是让计算机自动将源语言表示的语句转换为目标语言表示语句的过程,它有直译式翻译、中间语言式翻译和转换式翻译 3 种基本模式。统计机器翻译是目前主流的机器翻译方法,分为基于词的统计机器翻译和基于短语的统计机器翻译两种。(10)情感分析是从评论的文本中提取出评论的实体,以及评论者对该实体所表达的情感倾向和观点。根据处理文本颗粒度的不同,情感分析大致可以分为篇章级、句子级和属性级 3 个级别的任务。(11)语音识别是将人类语音中的词汇内容转换为计算机可读的输入,一般为可以理解的文本内容或者字符序列。语音识别的基本原理如下:先将经过预处理后的语音信号送入特征提取模块,再利用声学模型和语言模型对语音信号进行特征识别,最后输出识别结果。5.1 知识图谱简介知识图谱的定义知识图谱(Knowledge Graph)是一种揭示实体之间关系的语义网络。2012 年 5 月 17 日,谷歌正式提出了知识图谱的概念,其初衷是优化搜索引擎返回的结果,增强用户搜索质量及体验。知识图谱以结构化的形式描述客观世界中的概念、实体及其关系,将互联网的信息表达成更接近人类认知世界的形式,提供了一种更好地组织、管理和理解互联网海量信息的能力。知识图谱给互联网语义搜索带来了活力,同时在问答系统中显示出了强大作用,已经成为互联网知识驱动的智能应用的基础设施。知识图谱与大数据和深度学习一起,成为推动互联网和人工智能发展的核心驱动力之一。知识图谱不是一种新的知识表示方法,而是知识表示在工业界的大规模知识应用,它对互联网中可以识别的客观对象进行关联,以形成客观世界实体和实体关系的知识库,其本质上是一种语义网络,其中的节点代表实体或者概念,边代表实体/概念之间的各种语义关系。知识图谱的架构包括知识图谱自身的逻辑结构,以及构建知识图谱所采用的技术(体系)架构。. 知识图谱的类型1.事实知识在描述实体的特定属性或者关系2.概念知识概念知识分为两类:一类是实体与概念之间的类属关系,另一类是子概念与父概念之间的子类关系。一个概念可能有子概念也可能有父概念,这使得全体概念构成层级体系。概念之间的层级关系是本体定义中最重要的部分,是构建知识图谱的第一步模式设计的重要内容。3.词汇知识词汇知识主要包括实体与词汇之间的关系(实体的命名、称谓、英文名等)以及词汇之间的关系(同义关系、反义关系、缩略词关系、上下位词关系等)。4.常识知识常识是人类通过身体与世界交互而积累的经验与知识,是人们在交流时无须言明就能理解的知识。常识知识的获取是构建知识图谱时的一大难点。常识的表征与定义、常识的获取与理解等问题一直都是人工智能发展的瓶颈问题。知识图谱的重要性1.知识图谱是人工智能的重要基石2.知识图谱推动智能应用3.知识图谱是强人工智能发展的核心驱动力之一尽管人工智能依靠机器学习和深度学习取得了快速进展,但是由于严重依赖人类的监督以及大量的标注数据,仍属于弱人工智能范畴,离强人工智能具有较大差距。强人工智能的实现需要机器掌握大量的常识性知识,将信息中的知识或者数据加以关联,同时以人类的思维模式和知识结构来进行语言理解、视觉场景解析和决策分析。知识图谱技术是由弱人工智能发展到强人工智能的必要条件,对于实现强人工智能有着重要的意义。5.2 知识表示和知识建模知识表示知识表示学习主要是面向知识图谱中的实体和关系进行表示学习,使用建模方法将实体和向量表示在低维稠密向量空间中,并进行计算和推理。知识表示方法主要分为基于符号的知识表示方法与基于表示学习的知识表示方法。知识建模目前,知识建模的实际操作过程可分为手工建模方式和半自动建模方式。手工建模方式适用于容量小、质量要求高的知识图谱,但是无法满足大规模的知识构建,是一个耗时、昂贵、需要专业知识的任务;半自动建模方式将自然语言处理与手工方式结合,适用于规模大且语义复杂的知识图谱。5.3 知识抽取1.概述知识抽取指从不同来源、不同结构的数据中进行知识提取,形成知识的过程。为了提供令用户满意的知识服务,知识图谱不仅要包含其涉及领域已知的知识,还要能及时发现并添加新的知识。知识的完整性及准确性决定了知识图谱所能提供的知识服务的广度、深度和精度。因此,知识抽取在知识图谱的构建过程中显得尤为重要。知识抽取往往采用一些自动化的抽取方法从结构化、半结构化和非结构化的信息源中提取出实体、关系、属性等信息,形成三元组或多元组关系。知识抽取的关键技术包括实体抽取、关系抽取和属性抽取。实体抽取实体抽取也被称为命名实体识别(Named Entity Recognition,NER),指从原始数据中自动识别出命名实体。由于实体是知识图谱中最基础的知识要素,关系和属性都与实体息息相关,因此实体的抽取质量直接影响了图谱中知识的质量。实体抽取的方法主要有基于规则与词典的方法、基于机器学习的方法以及面向开放域的方法。基于规则与词典的方法主要利用用户手工制定的实体规则和词典,通过匹配的方式在信息源中标记出实体;基于机器学习的方法主要利用统计机器学习的方式对原始数据进行训练,利用训练完成的模型进行实体的识别;面向开放域的方法则主要对海量的 Web 数据中的实体进行分类与聚类。关系抽取关系抽取的目标是抽取语料中命名实体的语义关系。实体抽取技术会在原始的语料上标记一些命名实体。为了形成知识结构,还需要从中抽取命名实体间的关联信息,从而利用这些信息将离散的命名实体连接起来,这就是关系抽取技术。属性抽取实体的属性可以使实体对象更加丰满。属性抽取的目的是从多种来源的数据中抽取目标实体的属性内容。实体的属性可以看作连接实体与属性值的关系,因此,在实际应用中,一些学者将属性抽取问题转换为关系抽取问题。5.4 知识存储知识存储概述知识存储是针对知识图谱的知识表示形式设计底层存储方式,完成各类知识的存储,以支持对大规模数据的有效管理和计算。知识存储的对象包括基本属性知识、关联知识、事件知识、时序知识和资源类知识等。知识存储方式的质量直接影响了知识图谱中知识查询、知识计算及知识更新的效率。知识存储方式知识存储工具1.关系数据库2.图数据库5.5 知识融合知识融合概述知识融合即合并两个知识图谱(本体),基本的问题是研究将来自多个来源的关于同一个实体或概念的描述信息融合起来的方法。知识融合过程5.6 知识推理知识图谱的表示知识图谱中,知识的结构化表示主要有符号表示和向量表示两类方法。早期,常用一阶谓词逻辑(First Order Logic)、语义网络(semantic network)、描述逻辑(Description Logic)和框架系统(Frame System)等基于符号逻辑的知识表示方法。而当前,主要使用基于图数据结构的三元组形式(头实体,关系,尾实体)来符号化地表示知识。并行知识推理基于符号的知识图谱推理一般是应用推理规则到知识图谱上,通过触发规则的前件来推导出新的实体关系,这里的推理规则可能是知识表示语言所有的,也可能是人工设定或者通过机器学习技术获取的。基于符号的推理虽然有能够提高推理效率的各种优化方法,但是还是跟不上数据增长的速度,特别是在数据规模大到目前基于内存的服务器无法处理的情况下。为了应对这一挑战,研究人员开始对描述逻辑和 RDFS 的推理进行并行推进以提升推理的效率和可扩展性,并且取得了很多成果。并行推理工作所借助的并行技术分为单机环境下的多核、多处理器技术(多线程、GPU 技术等)和多机环境下基于网络通信的分布式技术(MapReduce 计算框架、Peer-To-Peer 网络框架等)两大类技术。实体关系知识推理实体关系知识推理的目的是通过统计方法或者神经网络方法,学习知识图谱中实体之间的关系。基于表示学习的方法将知识图谱中的实体与关系统一映射至低维连续向量空间,以此来刻画它们的潜在语义特征。通过比较、匹配实体与关系的分布式表示,可以得到知识图谱中潜在成立的实体间的关系。此类方法灵活自由,通常具有较高的计算效率,但可解释性较差,对于困难的推理问题往往精度不足。基于图特征的方法利用从知识图谱中观察到的图特征来预测一条可能存在的边,代表性工作包括归纳逻辑程序设计、关联规则挖掘、路径排序算法等。此类方法在推理的同时能从知识图谱中自动挖掘推理规则,具备明确的推理机理。然而,图特征的提取效率较低,对于超大规模的知识图谱更是如此。提高效率是基于图特征的方法亟待突破的壁垒。模式归纳知识推理模式归纳知识推理是从知识图谱中学习本体的模式层信息或丰富已有本体,包括对概念层次、属性层次、不相交公理、属性的值域与定义域和属性或概念的约束等公理的学习。5.7 知识图谱的应用语义搜索语义搜索是指搜索引擎的工作不再拘泥于用户所输入请求语句的字面本身,而是透过现象看本质,准确地捕捉到用户的真实意图,并依此来进行搜索,从而更准确地向用户返回最符合其需求的搜索结果。问答系统问答系统需要理解查询的语义信息,将输入的自然语言转换为知识库中的实体和关系的映射。5.8 知识图谱小结(1)知识图谱以结构化的形式描述客观世界中的概念、实体及其关系。(2)知识表示方法主要分为基于符号的知识表示方法、基于表示学习的知识表示方法。(3)知识抽取指从不同来源、不同结构的数据中进行知识提取,形成知识的过程。(4)知识存储是针对知识图谱的知识表示形式设计底层存储方式,完成各类知识的存储,以支持对大规模数据的有效管理和计算。(5)知识融合的目标是产生新的知识,对松耦合来源中的知识进行集成,构成一个合成的资源,以补充不完全的知识和获取新知识。(6)知识图谱的推理首先需要考虑的是知识如何表达的问题,即知识图谱的知识表示,它包括基于图结构的表示和相应的逻辑基础,以及基于张量的表示。(7)语义搜索是指搜索引擎的工作不再拘泥于用户所输入请求语句的字面本身,而是透过现象看本质,准确地捕捉到用户的真实意图,并依此来进行搜索,从而更准确地向用户返回最符合其需求的搜索结果。(8)知识库问答系统在回答用户问题时,需要正确理解用户所提出的自然语言问题,抽取其中的关键语义信息,在已有单个或多个知识库中通过检索、推理等手段获取答案并返回给用户。
来源:《电化教育研究》2020年第4期 作者:余胜泉 汪丹 王琦摘 要:新冠肺炎疫情期间的特殊教育需求加速了大规模社会化协同的教育服务新业态的形成,文章阐述了大规模社会化协同的教育服务形态带来的教师的社会性变革方向,并从联通主义视角,提出新的教育形态下亟待解决的两个关键问题,即关键知识节点和关键人际节点的适配机制,以及外部认知节点的信任保障机制,并提出利用社会知识网络技术解决这两个关键问题的思路。在此基础上,阐述新的教育服务形态下,学校组织形态面临的开放挑战,提出构建基于大规模社会化协同的开放教育服务生态体系的思路。关键词:社会化协同;在线学习;教育服务;社会知识网络一、抗疫期间的社会性阻断与延续在全面抗击新冠肺炎疫情的特殊形势下,学校延期开学,学生居家学习,造成了教与学过程中师生的时空分离,阻隔了师生、生生之间的社会性交互。日前,在教育部“停课不停学”[1]的倡议下,各地教育部门、广大中小学积极响应,尝试通过直播、录播、慕课等形式开展在线教学[2]。同时,教育部整合国家、有关省市、出版社、电教馆和学校的优质教学资源,通过网络云平台和空中课堂向全国的中小学生开放[3]。教育企业、辅导机构、高校教师、科研工作者、师范生、社会人士纷纷通过微信公众号、微视频等各种形式提供内容和服务,助力学生在家学习。多方参与、形式多样的在线教育服务成为当下教育的支柱,在不同程度上试图延续教师和学生之间的社会性交互,从而保障延期开学期间的教学活动。相对于传统的面对面教学,在线教学的服务空间发生了根本性的变革:教师和学生的交互行为,从实体空间转移到了虚拟空间;教育服务的来源不再局限于学校或区域内部,海量的学习资源和教育服务来源于校外,并向所有教师和学生开放;提供教育服务的主体不再仅仅是中小学一线教师,而是来源于大规模的社会群体;教育系统的关键业务呈现出一种大规模社会化协同的形态。互联网、5G技术的发展,使得信息和数据能够迅速流通,使陌生群体之间的大规模社会化协同成为可能,并且会进一步加速教育系统大规模社会化协同教育服务形态的形成。互联网技术和即时通讯技术的发展,将实体空间的教育服务转化成数字化形态后,可以实现智力资源跨组织、跨层级、跨领域流转,打破组织、层级和领域的边界,形成新的社会性空间;使得协作内容生产成为可能,协作服务供给成为可能,通过更精细化的社会分工,让专业的人做专业的事,能够大幅度提高教育服务产品的数量与质量,更能满足学习者的多样化、个性化的需求;更容易形成内容与人力资源的社会化连接,可以实现群体智慧的汇聚和应用价值的最大化,更能够体现教育的社会属性。大规模社会化协同的教育服务对当前教育起到非常重要的作用,而且也会推进未来教育的变革。未来教育服务主体(也就是教师)的社会属性将发生重要转变,学生如何跟社会化教师提供的教育服务产生有机连接将成为关键,学校也要很好地应对教师教育服务的开放与外部服务的采纳,本文将对此进行深入的讨论。二、教育服务主体(教师)的社会化变革教育服务的大规模社会化协同将使得教师主体的社会属性和组织体系发生深刻的变革。未来教师要以大规模社会化协同的方式开展教育服务,利用智能技术将教师的服务数字化,通过互联网穿越学校的围墙,教师不再仅仅服务于固定的一个学校或一个班级的学生。合作对于教师越来越重要,个体户性质的工作形式不再适应于当前的教育服务需求,多个教师形成团队共同提供教育服务将成为常态,教师承担的社会化分工将越来越精细化。教师的服务属性的变化直接导致了其身份属性的流转,教师不再只有一个固定的现实身份,而是现实身份和虚拟身份的叠加体。以大规模社会化协同的方式提供教育服务的主体,除了一线教师以外,还有师范生、辅导机构教师、学者及其他社会人士,他们在一定程度上也具有教师属性。人工智能教师将成为人类教师的得力助手,协助人类教师提供更精准、个性化的教育服务。(一)教师的服务属性社会化在面对面课堂中,教师以口耳相传的方式将自己的智力资源服务于学生的学习和成长,而在在线教学的服务空间中,教师以技术为媒介传播自己的智力资源,满足学生的学习需求。目前的学校教学服务空间,受到教师的工作时间、班级人数等影响,服务所能够惠及的范围和对象都相对有限。基于大规模的社会化协同的教育服务强调将每个个体教师的智力资源数字化、标准化,通过互联网开放共享,实现跨区域、跨组织的无缝流转,使学习者可以随时、随地自由选择教育服务。例如,北京市中学教师开放性辅导计划[4],实现了教师的智力资源社会化,参与该计划的教师将自己擅长的知识点或课程中学生的常见问题录制成微课,上传到智慧学伴平台,依据平台对学习者知识、能力、素养等维度的全方位诊断和分析预测结果,为学生提供个性化的学习资源服务,支持跨学校、跨区域的学生与教师实现多对多的互动交流。(二)教师的社会分工精细化互联网促进了跨越组织的大规模社会化协同,使得教育领域的精细化分工成为可能[5],未来个体户式的工作模式已经不适合当前在线教学的需求,一位教师很难出色地完成知识内容规划、教学设计、录课、技术制作、教学辅导、评价等整个课程的设计、实施和评价流程。合作对于未来的教师来说越来越重要,通过社会化协同的方式,不仅能够提高教师的工作效率,减轻工作负担,而且能够发挥教师的特长,让他们能够专注地把一件事情做好,提高在线课程的质量。例如,可以让富有经验的学科专家负责内容规划,让有教育技术学或远程教育背景的教师负责教学设计,让教学经验丰富的教师作为主讲教师等。学习者对于课程内容及服务的多样化、个性化需求,使得单个个体难以完成所有相关课程的设计和制作,一个团队来建设和运行一门课程将成为必然。基于大规模的社会化协同还强调课程团队的教师可以跨组织、跨团队协作,课程与课程之间、课程的单元与单元之间建立语义关联,让擅长不同课程和内容设计以及开发的团队分布式完成课程制作的任务。(三)教师的服务方式体现人机结合未来的教育是人与人工智能协作的时代,人工智能程序也将成为提供教育服务的主体,人工智能教师将成为教育社会化的主体之一。人工智能教师要发挥自身优势,协助人类教师提高工作效率,促进学生德智体美劳全面发展[6]。首先,人工智能教师能够采集学生的学习全过程的数据,根据学生的个性化特征,自动命题,自动批阅,诊断学习障碍并及时反馈,评估学生问题解决能力的发展,协助教师开展个性化教学和辅导,促进学生知识水平和关键能力的提升;其次,人工智能教师可以通过多感知终端,采集学生的多模态数据,对学生的心理素质、体质健康、综合素质、职业倾向等进行实时监测和评估,辅助教师引导学生积极健康地成长,并根据特长和兴趣进行学业规划和生涯规划。人与人工智能教师的协同,可以大幅度地提高教师的工作效率,增强教师处理更高层次问题的能力,从而显著提高教育体系的生产力。(四)教师的身份属性体现虚实融合智能技术将教师的智力资源数字化、标准化,通过互联网穿越学校的围墙,服务于大规模学生的学习和成长,实现了教育服务的可流转。由此,教师的身份属性发生变化,教师不再仅仅服务于一所学校,教师的身份属性成为现实身份和虚拟身份的叠加[7]。教师的现实身份由现实学校管理,遵循金字塔型的科层管理规则,而虚拟身份由跨越边界、扁平化、虚拟化组织管理,由兴趣、工作任务、项目等联系起来的虚拟动态组织的管理主要靠自组织。虚拟组织中,更加体现出每个个体都是知识专家的扁平型结构,更加强调智能技术支撑下的知识管理,更加需要明确、简单的共同目标,以指导个人的行动。自组织的扁平网络中,每个人都要承担信息责任与行动责任。新一代信息技术通过减少信息处理和交流的时间与成本影响着教育机构中人们完成工作的方式,促进了教师身份属性的迁移与流转,这种身份属性的变革将对教育管理机构的协调机制产生深远的影响。(五)教师的协同主体多元化在智能时代,知识不再是静态的存在,更具有流动性、情境性、社会性等特点,学生的知识面、知识深度、知识获取途径将更加多元,知识经济时代的学生要能够对知识进行社会性和情境性的应用。在知识经济时代,知识的更新速度呈指数级增长,知识的生产是网络中群智协同的过程[8],教师作为知识垄断者的权威地位被彻底打破,网络中的每个用户不仅是知识的消费者,同时也是知识的生产者。每个拥有情境性知识和社会性知识的人都可以通过网络提供教育服务,其中,社会人士是这种知识的一类生产者主体,并逐渐发挥越来越重要的作用。越来越多的教育服务以外包的形式,由社会机构和社会人士承担。以北京市的开放实践课为例,通过资质审核的教育机构、企业、大学都可以通过开放平台提供综合实践课程服务。大规模的在线学习同伴通过发帖、提问、分享学习经验、制作人工制品,为学习者提供主观的、经验性与策略性知识的教育服务。疫情期间,师范生、教育公益组织志愿者、奥运冠军、健身教练、心理咨询专业人士、医学专业学生纷纷通过社交网站开展开放辅导、在线答疑、体育知识分享、心理咨询、生命教育等教育服务。这些社会人士虽然不是一般意义上的教师,但在网络学习中确实提供了促进学生学习和全面发展的教育服务,一定程度上具有教师属性,属于教育服务的大规模社会化协同的主体。三、社会性教育服务的连接之路教育服务的大规模社会化协同给在线学习者提供了更加丰富、多元的选择空间,但也给学习者的服务选择带来了困难和挑战。一方面,教育服务的大规模社会化协同促进海量、多元化的服务和内容的产生,并开放给学习目标、知识水平、学习风格、学习兴趣、价值观、语言和身份背景各不相同的学习者,导致服务和内容选择的复杂性,增加了学习者的选择困难和认知负荷;另一方面,教育服务的大规模社会化协同纳入了更加多元化的服务主体,其专业背景、擅长领域、教育经验呈现多样化特征,其服务质量参差不齐,使得在线学习者面对陌生的教师和服务群体,无法了解哪些是能够满足自己需求的、优质的服务,容易产生信任危机。如何在大规模社会化协同服务的背景下,帮助学习者有效发现适合自己当前情境的服务(服务适配机制),并探究提高社会化服务可信度的策略(信任保障机制),是基于大规模社会化协同的教育服务实践亟待解决的两个关键问题。联通主义学习观认为,知识驻留于网络,网络中的节点包括人、组织、图书馆、网站、数据库、知识点学习资源等任何信息源[9],学习即学习者个体内部认知网络与外部知识网络中节点之间连接的过程。在社会化学习过程中,教师(这里泛指能为学习者提供教育服务的人类教师、社会人士、学习同伴和人工智能教师)在帮助学生构建良好的内部认知网络的同时,作为重要的外部认知节点,要引和帮助学习者发现关键的学习节点,不断连接重要的知识节点和人际节点。大规模社会化协同教育服务使得外部知识网络中的节点快速增加,为了帮助学习者及时发现和连接关键外部认知节点,需要对网络服务空间进行科学表征和计算。社会知识网络可以用于大规模社会化协同的教育服务的科学建模,可以为支撑形成外部认知节点的适配机制和信任机制提供条件。本部分将结合社会知识网络详细阐述其在支持大规模社会化协同的教育服务中的思路。(一)社会知识网络社会知识网络是整合了社会网络[10]和知识网络[11]的一种网络服务形态(图表略),以人和知识作为节点,以人——人、人——知识、知识——知识之间的关系为连边,为知识的调用、整合和创生提供了保证。“人”与“知识”既是社会知识网络的节点和内容,提供教育服务,又是联通其他网络节点的管道和媒介。学习者在学习过程中,通过特定主题或兴趣发现与之相关的人和知识节点,不断建立社会性连接,从而获取更多的社会资本和知识资源[12]。基于社会知识网络的学习不仅是学习者与物化或概念化知识之间的交互,更重要的是通过与他人和集体进行交互,汲取他人的智慧。基于社会知识网络的学习是一种社会化协同的连接学习和创造学习[13],学习者通过连接人和知识节点,实现与知识网络和社会网络的协同互动,促进了个体知识建构,拓展了个人社会知识网络的广度和深度,并通过知识的贡献和创造不断促进知识节点的进化,在与其他学习者的连接和互动过程中,将个体知识扩散到群体知识网络中,促进群体知识建构和群体智慧的汇聚(图表略)。随着语义技术的进一步发展,社会知识网络中的节点及关联关系可以通过本体的形式进行定义和描述,进而为社会知识网络的自动化聚合、服务的适应性匹配、可信任供给提供了条件。在社会化学习的过程中,社会知识网络可以自动聚合更多的知识节点和人际节点。利用语义计算和语义推理技术,根据知识与知识之间的语义关系可以聚合更多的人,根据人与人之间的社会关系可以聚合更多的知识,根据人与知识的互动生成的社会化标签可以聚合更多的人和知识,从而形成多维链式聚合的社会知识网络,当社会知识网络聚合到一定规模和深度,将具有社会智能[14]。具有社会智能的社会知识网络可以动态演化和自我发展,可以帮助学习者快速定位某个内容领域最权威的专家、适合的学习伙伴和重要的知识资源,实现优质教育服务的适应性匹配。由此,社会知识网络能够表征基于大规模社会化协同服务场景下学习者、服务者、知识节点及其之间的关系,不仅关注教育服务中人与人之间的社会关系,提供了学习者与服务者之间的交流通道,而且可以使学习者的个人社会知识网络和社会化协同生成的群体社会知识网络可视化,凸显了知识的社会性分享、社会性协作和社会性建构。社会知识网络既是基于大规模社会化协同的教育服务的支持方式,又是其服务目标。而面向大规模社会化协同教育服务过程中的两个关键问题—外部认知节点的适配问题和外部认知节点的信任保障问题,社会知识网络也可以通过对节点的多元语义描述、复杂关联的表征和计算提供解决方案。(二)外部认知节点的适配/联通机制教育服务的大规模社会化协同产生了海量的教育资源和服务,为师生之间从单点对多点的交互向多点之间的网状交互转变提供了可能,为满足学习者的个性化、多样性需求提供了可能,也为学习者发现最适合自己的、优质的教育服务带来了挑战。在当前的教育服务空间,大量的资源和服务之间缺乏关联性,资源与资源之间、资源与服务之间衔接性较弱,不能为学习者提供完整的知识结构,使得学习的组织性很弱。并且,学习者的自主学习能力参差不齐,多数学习者不能确切了解自身的学习需求,面对大量的教育服务、陌生的服务群体和碎片化的学习资源,学习者发生浅层学习、重复学习的现象比较明显。学习者能否合理地选择满足自身需求的资源,连接关键的外部认知节点,是决定其是否有效使用在线教育服务的基本条件[14]。为了帮助学习者在海量的教育服务中,选择适合自己需求的服务,降低认知负荷,社会知识网络在不断丰富和拓展的同时,还要提高其适应性,即根据学习者的个体特征,从大规模的社会知识网络中精准、高效地发现与其匹配的服务。一方面,基于社会知识网络的语义属性描述,支持以学习者个性特征为基础的推理,实现教育服务的个性化推荐,在此基础上,考虑其个人社会知识网络的结构特征,在保证推荐结果准确性的同时,也提高了推荐的可解释性,促进学习者的元认知能力提升;另一方面,为了避免教育服务选择和供给的马太效应,促进在线教育服务最大化地发挥其价值,基于社会知识网络的教育服务个性化推荐算法要兼顾推荐结果的多样性和创新性。基于社会知识网络的外部认知节点的适配/联通机制实现的核心思路如下:(1)社会知识网络领域知识库的动态构建。利用社会知识网络对大规模社会化协同的教育服务进行语义建模和领域知识库动态构建。第一,要明确社会知识网络中“人”和“知识”这两类节点的实体类和关系类的类型和属性,对基于语义关联关系的推理规则进行规范化设计。第二,要实时采集大规模社会化协同的教育服务过程中的交互数据,提取其中的人、知识节点的实例数据,计算人——人、人——知识、知识——知识关系信息,以三元组的形式对社会知识网络领域知识库进行明确而规范的表征。第三,基于知识与知识之间的语义关系、人与人之间的社会关系,以及人与知识之间的交互关系,根据事先设计好的推理规则进行语义推理,对推理出的新的节点之间的关系,以补充、修改和完善三元组的方式,完成社会知识网络领域知识库的自动化聚合[15],从而构建自我发展的、动态进化的社会知识网络数据库。(2)学习者个性特征发现。构建学习者模型,表征个人社会知识网络模型、学习者的兴趣模型、学习偏好模式、情境模型。实时采集学习者的人口统计学特征、情境信息、学习活动及行为、学习结果等多模态数据,利用智能技术挖掘其学习目标、学习风格、学习兴趣与偏好、文化和价值观、当前所持设备特征、环境特征、知识结构、能力水平、元认知水平、学业情绪、人际关系、个人社会知识网络等多维个性特征,将学习者模型实例化,从而了解学习者当前的个性化需求,作为外部认知节点的适配/联通机制的基础。(3)外部认知节点的适配/联通机制。采用关联规则、语义推理规则、协同过滤机制相结合的综合推荐算法[16]作为外部认知节点的适配/联通机制。第一,分别根据学习者的个人社会知识网络模型、兴趣模型、学习偏好模式和情境模型信息,过滤待推荐节点集合。根据学习者个人社会知识网络模型,利用语义推理规则,计算出当前网络中与节点相关联的人和知识节点集,再利用协同过滤算法筛选出与当前学习者拥有相似社会知识网络结构的用户成功建立连接的人和知识节点集,分别加入待推荐节点集;利用关联规则挖掘学习者建立社会性连接的偏好模式和学习兴趣,进而选择符合学习者偏好和兴趣的节点,加入待推荐节点集。第二,根据学习者当前的情境信息,考虑推荐结果的创新性和多样性,对待推荐节点集进行筛选,并提取节点之间的语义关系,聚类以形成待推荐的社会知识网络。第三,将推荐结果以节点和社会知识网络的形式呈现给学习者,并注明推荐原因,帮助学习者了解自己的需求,从而做出有价值的连接选择。(三)外部认知节点的信任机制教育服务的大规模社会化协同的开放性,导致了参与服务主体的多样性和服务质量的良莠不齐,使得学习者面对海量的教育资源和服务,对其来源和质量产生疑问,从而导致信任危机。低质量的教育资源和服务,不仅浪费学生的金钱,更是浪费学生的时间和生命,是影响在线教育服务的关键因素。如何保证外部节点是优质的、可信的,如何设计社会网络节点的质量控制机制是大规模社会化协同教育服务面临的一个关键问题。基于社会知识网络的大规模社会化协同的教育服务,其外部认知节点分为两类——人和知识,而在此服务背景下,节点数量和关系的增长符合互联网的无穷大原理,对于每个节点及与其他节点之间关系进行审核,同样需要大规模的社会化协同的方式完成,即针对这两类节点分别构建信任度评估模型,并基于社会知识网络构建信任网络,利用机器与人工审核相结合的方式对外部认知节点进行质量评估。为促进审核的开展还需以相应的激励机制作为辅助控制策略。其基本思路如下:(1)分别确定影响人和知识节点的信任度的因素及各因素作用于信任度的权重,结合信任度的时间衰减特性、差异影响作用、多数可靠假设和交互影响假设,建立人和知识节点的信任度评估模型。对于知识节点的信任度评估,首先,要基于领域本体库提取该节点的语义基因[17],计算其与领域知识的相似度,作为评估知识节点信任度的基础;其次,要融合该知识节点与其他节点的连通性及其强度,并结合节点之间信任度的传递性对评估模型进行调整。对于人的信任度评估,一方面要考虑其现实身份和用户创建资源以及提供服务的信任度,另一方面要将其与社会知识网络其他节点之间的连通性及其强度纳入评估模型。(2)基于社会知识网络构建信任网络[18],考虑时间敏感性、不对称性、可传递性等特性,将节点与节点之间的连接关系对信任度的影响叠加到评估模型中。在此基础上,要设置信任度阈值,对人和知识节点进行信任度计算,动态更新,保留信任度超过阈值的节点,定期清理信任度不达标的节点,实现机器自动审核的过程。(3)基于信任度评估模型,设计和完善人工审核机制,为管理员、知识专家和普通用户设置不同的审核权限,以众包的方式对社会知识网络节点及其节点之间的关系进行审核和标注[19],对不同的审核结果采用投票的方式决定最终是否通过;设置合理的激励机制,对贡献服务质量高的用户,以积分、提高社会信任度或虚拟勋章等形式加以激励。社会知识网络通过构建人——人、人——知识、知识——知识的关联网络,实现了对社会化学习过程中社会连接的表示,同时依赖其背后的语义表征、学习者模型、信任评估模型,实现了学习过程中节点服务的准确适配、可信推荐,为解决大规模社会化协同教育服务的核心问题提供了支撑,为教与学的变革提供了新的思路。四、学校教育服务开放的挑战与应对教育服务的大规模社会化协同将打破传统以班级、学校为主体的教学和服务体系,改变教师的社会属性,这将对现有的学校组织形态产生深远的影响,学校的围墙将逐渐被拆掉,开放是大势所趋。学校组织的时空结构将被打破,从静态封闭到动态开放,从条块分割到联合协同,从定时定点有限供给到时时处处人人可学,组织管理向扁平化、网络化、智能化的方向发展。学校将是一个虚实融合的个性化发展空间,在这个空间中,师生角色随时可以转换,学习可以随时随地发生;学校将是一个知识网络和人际网络融合的社会性知识开放学习环境,通过社会知识网络助力个体知识建构和群体智慧汇聚。要实现基于大规模社会化协同的教育服务新业态的良好运转,学校开放的过程中势必面临多方面的挑战,科学的应对之策是保障教育服务质量的必经之路。(一)构建开放的教师组织体系学校组织形态的开放首先要面临的挑战是如何管理教师组织属性的开放。教育服务实现大规模社会化协同,意味着教师的服务属性发生变革,教师不再只服务于一个学校或者固定班级的学生,而是通过网络平台向更多的学生提供多样化的开放教育服务。教师服务属性的变革倒逼教师组织属性的开放,如果教师仍然延续封闭而唯一的组织属性,就很难打破学校之间的壁垒,难以整合跨学校、跨区域的优质教学资源,实现优势互补,也很难激发和维持教师提供在线教育服务的积极性。要建立开放的教师组织体系,赋予教师开放的身份属性,可以保留教师的现实身份,叠加教师提供在线教育服务的虚拟身份,现实身份相对稳定,而虚拟身份可以由教师自由选择,对教师的评价和绩效考核不仅要考虑现实身份的教育服务的输出,还要考虑教师以虚拟身份提供的教育服务供给,协调好教师的双重身份的叠加是教育服务实现社会化协同的基础。(二)建设教育服务社会化协同空间与机制大规模社会化协同的教育服务要实现多元主体、组织、层级和领域之间动态关联、有效组合、相互协作的网络化教育服务供给[20]的社会化分工形态,就需要一个虚实融合的、开放的协作空间和组织机制作为强有力的保障。从宏观角度,要构建一个开放的协作空间和协作机制支持学校、教育机构、科技馆/博物馆、教育公益组织之间互换共享教育服务,实现信息的流通和社会知识网络的无缝连接。从微观角度,第一,要提供虚实融合的协作空间和灵活开放的协作机制,支持教师之间的合作,提供支持更精细化的社会分工的协作工具,如提供同步和异步的沟通交流工具和协作文档编辑工具,促进教师间的交流与协作的开展,提供可视化的社会知识网络工具,促进教师对协作过程和结果的监控和反思;第二,要为教师提供个人管理空间,提供个人知识管理和角色管理工具,动态整理教师和学习者个人的社会知识网络,支持教师在网络空间提供多样化的、情境化的教育服务;第三,构建开放的协作空间,要支持学习者、教师和其他社会人士和机构对教育服务进行开放的选择、评价和反馈,提供智能助手工具,为教师推荐合适的教学任务,反馈教育服务的效果和质量,使社会化协同的教育服务网络不断完善和进化。(三)建立开放的教育服务采纳机制要满足学习者随时随地开展多样化、个性化学习的需求,仅仅依靠学校提供的教育资源和服务是远远不够的,要打破学校的围墙,开放学校的服务来源,学校要积极纳入外部教育服务,通过社会化的服务来大幅度增加学校教育服务的种类和数量,形成大规模社会化协同的教育形态。在此基础上,如何保证大规模教育服务的质量,如何让学习者放心自由地选择教育服务,如何在开放的同时对学生的学习和成长负责,把好服务质量关,如何设计好服务购买与评估机制,是学校组织形态变革面临的一大挑战。第一,要设计相关的标准和规则,对提供教育服务的教师以及提供外包教育服务的社会机构进行资质审核,审核通过的服务主体才可获得提供教育服务的权限;第二,允许学习者对多样化的教育服务进行自由的选择、评价和反馈,采集学习者的选择偏好和反馈信息,对开放的教育服务进行评估,定期对评估得分低的教育服务进行改进或淘汰,优化整体服务质量;第三,要借助社会知识网络建立教育服务间的关联和映射,完善开放教育服务的共享和互认机制,并根据学习者的需求,推荐适合的教育服务。(四)保障教育服务社会化协同的组织性和有序性学校组织结构的动态开放、教师服务流转和组织属性的开放、大规模社会化协同的教育服务供给和灵活自主的学习方式,使得学校组织以及教与学的各要素处于一种扁平化、碎片化的状态,教育服务的情境变得更加复杂,如何保障组织性和有序性是学校开放后面临的又一挑战。随着智能技术的发展,越来越多超出人类计算能力的复杂问题可以借助机器来解决,基于大规模社会化协同的教育服务场景是一个复杂系统,可以借助复杂网络分析、数据挖掘等技术,通过对教育服务供给场景进行科学建模,在尊重学生自主、个性选择的基础上,同时做到有效的组织与调配。要采集大量的学习过程性数据进行挖掘和分析,建立全面的学情分析机制,通过对个体和整体学情的理解,促进学生、教师、管理者、家长多角色联动,重构教学管理的组织性。同时,这也对学校管理者、教师和学习者的信息素养提出了更高的要求,要求人们能够适应人机结合的思维来解决问题,基于机器做出的分析和诊断进行科学的选择和决策。五、呼唤:构建基于大规模社会化协同的开放教育服务生态体系基于大规模社会化协同的教育服务新形态,与传统的在线教学服务相比,带来了教师社会属性的变革,进而刺激学校组织形态的开放,实际上是在呼唤基于大规模社会化协同的开放教育服务生态体系。这种开放教育服务生态体系的构建,第一,需要构建一个云、端、网一体化的社会化协同服务空间,管理学习者和教师的虚拟身份,搭建人际节点和知识节点之间连接的桥梁,实现教育服务的无缝流转,满足学习者随时随地、多样化、个性化的学习需求;第二,需要基于大规模社会化协同的教育服务通过社会知识网络的形式供给,学生学习的过程即不断地建立内部认知网络与外部知识节点和人际节点的关联;第三,需要教师的身份属性开放,教师不再只服务于封闭固定的学校的学生,教育服务的提供者也不再是严格意义上的学校教师,而是纳入了社会机构的外包服务提供者、相关领域的研究和实践者;第四,教育服务的供给方式体现多人协同和人机协同,不再是单个教师来完成,通常需要多个教师组成的团队,分别承担更精细化的社会分工,且在人工智能教师的协助下,提供更优质的教育服务;第五,需要对学生和教师的评价方式进行变革,承认学生在虚拟空间通过自由选择的教育服务获得的学习成果,承认教师在开放空间提供的社会化协同教育服务;第六,需要整个学校的组织形态发生变革,学校不再是静态知识的仓库,而是群体智慧发生裂变的节点,是分布式、流动的、开放的、社会性的、连接智慧认知网络的个性化发展空间。参考文献:[1]教育部.教育部办公厅、工业和信息化部办公厅关于中小学延期开学期间“停课不停学”有关工作安排的通知[EB/OL].(2020-02-12)[2020-02-20].http://www.moe.gov.cn/srcsite/A06/x3321/202002/t20200212-42043s.html.[2]中国教育报.全国多地开启“线上课堂”[EB/OL].(2020-02-18)[2020-02-20].http://www.moe.gov.cn/jyb-xwfh/ss147/202002/t20200218 421973.html.[3]人民日报.国家中小学网络云平台运行[EB/OL].(2020-02-18)[2020-02-20].http://www.moe.gov.cn/jyb-xwfh/ss147/202002/t20200218 4219s2.html.[4]陈玲,余胜泉,杨丹.个性化教育公共服务模式的新探索——“双师服务”实施路径探究[J].中国电化教育,2017(7).[5]余胜泉,王阿习.“互联网+教育”的变革路径[J].中国电化教育,2016(10).[6]]余胜泉.人工智能教师的未来角色[J].开放教育研究,2018(1).[7]赵兴龙,李奕.教师走网:移动互联时代教师流动的新取向[J].教育研究,2016(4).[8]陈丽,途行,郑勤华.“互联网+教育”的知识观:知识回归与知识进化[J].中国远程教育,2019(7).[9]西蒙斯.网络时代的知识和学习:走向连通[M].青龙,译.上海:华东师范大学出版社,2009.[10]WASSERMAN S,FAUST K. Social Network Analysis: Methodsand Applications [M].Cambridge, U.K.: Cambridge University Press,1994.[11]李丹,俞竹超,樊治平.知识网络的构建过程分析[J].科学学研究,2002(6).[12]段金菊,余胜泉.基于社会性知识网络的学习模型构建[J].现代远程教育研究,2016(4).[13]余胜泉,段金菊,崔京着.基于学习元的双螺旋深度学习模型[J].现代远程教育研究,2017(6).[14]陈玲,刘静,余胜泉.个性化在线教育公共服务推进过程中的关键问题思考——对北京市中学教师开放型在线辅导计划的实践反思[J].中国电化教育,2019(11).[15]杨现民,余胜泉.学习元平台的语义技术架构及其应用[J].现代远程教育研究,2014(1).[16]陈敏,余胜泉.泛在学习环境下感知学习过程情境的推荐系统设计[J].电化教育研究,2015(4).[17]杨现民,余胜泉.学习资源语义特征自动提取研究[J].中国电化教育,2013(11).[18]甘早斌,曾灿,马尧,鲁宏伟.基于信任网络的C2C电子商务信任算法[J].软件学报,2015(8).[19]王琦,周紫云,丁国柱,余胜泉.本体可视化构建与进化系统的设计和架构[J].电化教育研究,2018(2).[20]李奕,徐刘杰.面向学牛未来发展的教育供给侧改革研究——基于北京市深综改革的实践经验[J].中国教育学刊,2017(11).Reform of Large-scale Socialized Collaborative Educational ServicesYU Shengquan, WANG Dan, WANG QiAbstract:During the Novel Coronavirus Pneumonia epidemic, the special educational needs has accelerated the formation of a new form of large-scale socialized collaborative educational service. This paper describes the direction of social changes for teachers brought by that new form. From the perspective of connectivity, this paper puts forward two key problems to be solved urgently, namely the adaptation mechanism of key knowledge nodes and key interpersonal nodes, and the trust guarantee mechanism of external cognitive nodes, and also suggests the use of social knowledge network technology to solve the two key problems. Then, this paper expounds the opening challenges faced by the school organizational form under the new educational service form, and proposes the idea of constructing an open educational service ecosystem on the basis of large-scale socialized collaboration.Key words:Socialized Collaboration; Online Learning; Educational Services; Social Knowledge Network责任编辑:廖敏

我要回帖

更多关于 什么叫图形的对称性 的文章

 

随机推荐