为什么机械lc低通滤波器计算公式抗干扰性能比lclc低通滤波器计算公式好

欢迎访问成都武华科技有限公司!我们给您提供优质服务!
机械滤波器
来源:武华科技&&&发布时间:&&浏览数:2484 &&
机械滤波器自1947年问世以来,由于他具有高选择性、高可靠性、高稳定性和体积小、重量轻、成本低以及适合自动化生产等优点,所以在电子设备中得到了广泛应用。
机械滤波器双称机电滤波器或电气机械滤波器。机械滤波器通常只能设计成带通滤波器,只有在特定的条件下才可能设计成带阻滤波器,所以机械滤波器又称为带通机械滤波器。
机械滤波器的工作频率范围为100HZ~600HZ,其中50KHZ以下为低频机械滤波器,50~200KHZ为中频机械滤波器,200~800KHZ为高频机械滤波器。其相对带宽0.5%~15%,有的可达0.1%~30%。
1、机械滤波器结构形式的工作原理
(1)基本结构形式 目前,机械滤波器实用品种很多,基本结构有以下四种,示于图5.1-18。
1)第一种结构形式(见图5.1-18A)由机械谐振子、机械耦合子和机电换能器三部分组成。机械振动单元包括振子和耦合子,如图中虚线部分所示。大多数机械滤波器,尤其是中、高频机械滤波器均属于此种结构。
2)第二种结构形式(见图5.1-18B),没有耦合子,只有振子和换能器组合为一体,称为一个&组合&,一般一个组合就构成一个滤波器,有的低通滤波器采用这种结构。
3)第三种结构形式(见图5.1-18C),振子和换能器合为一体构成一个组合,然后将两个或两个以上组合用导线连接起来组成滤波器。一部分中、低频机械滤波器采用此种结构。
4)第四种结构形式(见图5.1-19D),与第三种不同的是将两个或两个以上组合用耦合子连接起来,一部分低、中频机械滤波器采用这种结构。
上述结构是机械滤波器的核心,大多数机械滤波器在输入和输出端没有由电感和电容组成的&匹配网络&,它们也是主要组成部分。
(2)机械滤波器的工作原理 机械滤波器工作过程包括机电换能和机械振动两部分。通过匹配网络输入和电信号,加到换能器上,它将电信号转换成同频率、具有一定振动模式的机械振动,此机械振动对频率具有选择特性,将通过选择后的机械振动信号传输到输出换能器上,通过能量转换再把机械振动转换成同频率电信号,再经匹配网络输出,从而达到滤波器传递频带、抑止阻频带的作用。
由振子和耦合子构成的机械振动系统是机械滤波器的主体,它们都是由恒弹性合金--含镍、铬、钛的铁合金材料制成,最常用的是N142CRT1合金。恒弹性合金的杨氏弹性模量在一定的温度范围内变化很小。在机械滤波器中,也是用温度频率系数B1来衡量它的温度稳定性,镍铬钛在-20~+60`度范围内的B1为&5*10的负6次方度左右,因此,机械滤波器的温度稳定性要比陶瓷滤波器的好。
(3)实用机械滤波器分类(见表5.1-14)
机械滤波器的一般特性
为了确保在规定的环境下传输特性变化最小在设计和制造中还要尽可能具有高稳定和高可靠性,并尽可能消除寄生响应和澈音效应。
机械滤波器可实现的特性范围(见表5.1-15)
随着时间的推移,温度和电平的变化都会引起机械滤波器传输特性的变坏,因此稳定性应包括温度稳定性、时间稳定性和电平稳定性三个方面。
机械滤波器的稳定性远比LC滤波器、陶瓷滤波器的优良,且可与晶体滤波器相比拟,而且在实现同数量级的稳定性时,机械滤波器的工艺比晶体滤波器要简单得多。
1)温度稳定性 温度稳定性是指滤波器的传输特性随温度变化的程度。一般来说,中心频率偏移主要是由振子频率偏移所致,当然,静电容容量的变化匹配电路中元件值的变化,都会使通带波动增加。
机械滤波器在0~40度的温度范围内,传输特性几乎不变。而在-45~85度温度范围内,只要进行特殊设计和工艺处理(无需增加附加装置)机械滤波器仍可正常工作。
2)时间稳定性 时间稳定性主要指滤波器的传输特性随时间变化和程度。它主要由特作振子和换能器的恒弹性合金的经时变化率决定。它主要由特作振子和换能器的恒弹性合金的经时变化率真决定,通常,这种变化较小,可达到0.2~3.0*10负4次方/10A。
3)电平稳定性 电平稳定性是指滤波器的传输特性随输入信号电平大小变化的程度。当滤波器输入信号的功率超过它所能储存的能量时,输出将出现非线性失真,使滤波器中心频率下降,带宽增加和通带插入损耗增大,机械滤波器的电平特性远优于LC滤波器。
(3)寄生响应和微音效应 凡是使用谐振子的滤波器,在它们所采用的振动模式之外,还有其他振动模式产生,并影响滤波器传输特性的寄生响应和微音效应。
1)寄生响应 机械滤波器的寄生响应主要由主振模式以外的其他模式的高次振动和其他部分所产生振动引起的,这些振动统称为杂散振动。寄生响应对滤波器的传输特性影响到极大,所以在设计、工艺处理和制造中都作为一个重要问题来对待。
2)微音效应 在低频机械中滤波器中,机械振子的振动频率较低,容易受到外界振动的干扰而产生噪声输出,这种特性称为机械滤波器的&微音效应&。外界振动来自多方面的,如电器设备中的发动机,车辆行驶时的振动和各种音响等。微音效应的大小与干扰来源的强弱、频率的高低和机械滤波器抗干扰能力等因素有关。
(4)振动和冲击 机械滤波器有较好的而振动、耐碰撞、而冲击和而离心力的能力。当振动加速度不超过5G(G为重力加速度)、碰撞冲击和离心力加速度不大于50G时,机械滤波器无需采取防振或减振措施。在经过特殊设计之后,抗振加速度可达15G,抗击、抗碰撞和抗离心力加速度则可达1500G。热门搜索:
射频干扰滤波器
工作温度范围
板式阵列电容滤波器
射频干扰滤波器
板式阵列电容滤波器
射频干扰滤波器
板式阵列电容滤波器
射频干扰滤波器
板式阵列电容滤波器
射频干扰滤波器
板式阵列电容滤波器
射频干扰滤波器
板式阵列电容滤波器
射频干扰滤波器
板式阵列电容滤波器
射频干扰滤波器
玻璃陶瓷静电抑制器
射频干扰滤波器
1.6×0.8×0.8
玻璃陶瓷静电抑制器
射频干扰滤波器
<p title="
0.6×0.3×0.3
射频干扰滤波器
25×25×20
共116件商品
共12页,到第
中国赛宝实验室 版权所有 2017 CEPREI. All Rights Reserved. 京ICP备号
加入成功!机械滤波器的一般特性
机械滤波器的一般特性
为了确保在规定的环境下传输特性变化最小在设计和制造中还要尽可能具有高稳定和高可靠性,并尽可能消除寄生响应和澈音效应。
随着时间的推移,温度和电平的变化都会引起机械滤波器传输特性的变坏,因此稳定性应包括温度稳定性、时间稳定性和电平稳定性三个方面。
机械滤波器的稳定性远比LC滤波器、陶瓷滤波器的优良,且可与晶体滤波器相比拟,而且在实现同数量级的稳定性时,机械滤波器的工艺比晶体滤波器要简单得多。
1)温度稳定性
&温度稳定性是指滤波器的传输特性随温度变化的程度。一般来说,中心频率偏移主要是由振子频率偏移所致,当然,静电容容量的变化匹配电路中元件值的变化,都会使通带波动增加。
机械滤波器在0~40度的温度范围内,传输特性几乎不变。而在-45~85度温度范围内,只要进行特殊设计和工艺处理(无需增加附加装置)机械滤波器仍可正常工作。
2)时间稳定性
&时间稳定性主要指滤波器的传输特性随时间变化和程度。它主要由特作振子和换能器的恒弹性合金的经时变化率决定。它主要由特作振子和换能器的恒弹性合金的经时变化率真决定,通常,这种变化较小,可达到0.2~3.0*10负4次方/10A。
3)电平稳定性
&电平稳定性是指滤波器的传输特性随输入信号电平大小变化的程度。当滤波器输入信号的功率超过它所能储存的能量时,输出将出现非线性失真,使滤波器中心频率下降,带宽增加和通带插入损耗增大,机械滤波器的电平特性远优于LC滤波器。
(3)寄生响应和微音效应
&凡是使用谐振子的滤波器,在它们所采用的振动模式之外,还有其他振动模式产生,并影响滤波器传输特性的寄生响应和微音效应。
1)寄生响应
&机械滤波器的寄生响应主要由主振模式以外的其他模式的高次振动和其他部分所产生振动引起的,这些振动统称为杂散振动。寄生响应对滤波器的传输特性影响到极大,所以在设计、工艺处理和制造中都作为一个重要问题来对待。
2)微音效应
&在低频机械中滤波器中,机械振子的振动频率较低,容易受到外界振动的干扰而产生噪声输出,这种特性称为机械滤波器的“微音效应”。外界振动来自多方面的,如电器设备中的发动机,车辆行驶时的振动和各种音响等。微音效应的大小与干扰来源的强弱、频率的高低和机械滤波器抗干扰能力等因素有关。
(4)振动和冲击
&机械滤波器有较好的而振动、耐碰撞、而冲击和而离心力的能力。当振动加速度不超过5G(G为重力加速度)、碰撞冲击和离心力加速度不大于50G时,机械滤波器无需采取防振或减振措施。在经过特殊设计之后,抗振加速度可达15G,抗击、抗碰撞和抗离心力加速度则可达1500G。
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。当前位置: —
滤波器的作用是什么?有哪些分类?
滤波器是什么?滤波器,滤波器是对波进行过滤的器件,一般有两个端口,一个输入信号、一个输出信号。可以说它是重要的电子元器件,滤波器把电源功率传输到设备上,大大衰减经电源传入的EMI电磁干扰信号,保护设备免受其害;同时,又能有效地控制设备本身产生的EMI信号,防止它进入电网,污染电磁环境,危害其他设备。在近代电信设备和各类控制系统中,滤波器应用极为广泛;在所有的电子部件中,使用最多,技术最为复杂的要算滤波器了。滤波器的优劣直接决定产品的优劣,所以,对滤波器的研究和生产历来为各国所重视。下面贤集网小编来为大家介绍滤波器的作用、分类&、应用领域。
滤波器的作用
1、降低产品对电网的骚扰电压发射。
2、能提高产品的抗扰度,阻挡电网不干净电源对设备的影响。
滤波器分类&
1、根据滤波器的选频作用分类&
⑴低通滤波器&
从0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。&
⑵高通滤波器&
与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。&
⑶带通滤波器&
它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。
⑷带阻滤波器&
与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。
2、&根据“最佳逼近特性”标准分类&&
⑴&&巴特沃斯滤波器&
从幅频特性提出要求,而不考虑相频特性。巴特沃斯滤波器具有最大平坦幅度特性,其幅频响应表达式为:
n为滤波器的阶数;wc为滤波器的截止角频率,当w=wc时,|H(wc)|2=1/2,所以,wc对应的是滤波器的-3db点。巴特沃思低通滤波器是以巴特沃思函数作为滤波器的传递函数H(s),以最高阶泰勒级数的形式逼近滤波器的理想矩形特性。
⑵&切比雪夫滤波器&
切贝雪夫滤波器也是从幅频特性方面提出逼近要求的,其幅频响应表达式为:&&
ε是决定通带波纹大小的波动系数,0&ε&1,波纹的产生是由于实际滤波网络中含有电抗元件;wc&是通带截止频率,Tn是n阶切贝雪夫多项式。
与巴特沃斯逼近特性相比较,这种特性虽然在通带内有起伏,但对同样的n值在进入阻带以后衰减更陡峭,更接近理想情况。ε值越小,通带起伏越小,截止频率点衰减的分贝值也越小,但进入阻带后衰减特性变化缓慢。切贝雪夫滤波器与巴特沃斯滤波器进行比较,切贝雪夫滤波器的通带有波纹,过渡带轻陡直,因此,在不允许通带内有纹波的情况下,巴特沃斯型更可取;从相频响应来看,巴特沃斯型要优于切贝雪夫型,通过上面二图比较可以看出,前者的相频响应更接近于直线。&
⑶&贝塞尔滤波器&
只满足相频特性而不关心幅频特性。贝塞尔滤波器又称最平时延或恒时延滤波器。其相移和频率成正比,即为一线性关系。但是由于它的幅频特性欠佳,而往往限制了它的应用。
滤波器的应用领域
一、通信行业
为了满足大规模数据中心机房的运行需要,通信配电系统中的UPS使用容量在大幅上升。据调查,通信低压配电系统主要的谐波源设备为UPS、开关电源、变频空调等。其产生的谐波含量都较高,且这些谐波源设备的位移功率因数极高。通过使用有源滤波器可以提高通信系统及配电系统的稳定性,延长通信设备及电力设备的使用寿命,并且使配电系统更符合谐波环境的设计规范。
二、半导体行业
大多数半导体行业的3次谐波非常严重,主要是由于企业中使用了大量的单相整流设备。3次谐波属于零序谐波,具备在中性线汇集的特点,导致中性线压力过大,甚至出现打火现象,存在着极大的生产安全隐患。谐波还会造成断路器跳闸,耽误生产时间。3次谐波在变压器内形成环流,加速了变压器的老化。严重的谐波污染必然对配电系统中的设备使用效率和寿命造成影响。
三、石化行业
由于生产的需要,石化行业中存在着大量泵类负载,并且不少泵类负载都配有变频器。变频器的大量应用使石化行业配电系统中的谐波含量大大增加。目前绝大部分变频器整流环节都是应用6脉冲将交流转化为直流,因此产生的谐波以5次、7次、11次为主。其主要危害表现为对电力设备的危害及在计量方面的偏差。使用有源滤波器可以很好地解决这方面的问题。
四、化纤行业
为大幅提高熔化率、提高玻璃的熔化质量,以及延长炉龄、节省能源,在化纤行业常用到电助熔加热设备,借助电极把电直接送入燃料加热的玻璃池窑中。这些设备会产生大量的谐波,且三相谐波的频谱和幅值差别比较大。
五、钢铁/中频加热行业
钢铁业中常用到的中频炉、轧机、电弧炉等设备都会对电网的电能质量产生重大的影响,使电容补偿柜过载保护动作频繁、变压器和供电线路发热严重、熔断器频繁熔断等,甚至引起电压跌落、闪变。
六、汽车制造业
焊机是汽车制造业中不可少的设备,由于焊机具有随机性、快速性及冲击性的特点,使大量使用焊机造成严重的电能质量问题,造成焊接质量不稳、自动化程度高的机器人由于电压不稳而不能工作,无功补偿系统无法正常使用等情况。
七、直流电机谐波治理
大型直流电机场所都需要先通过整流设备将交流电转换为直流电,由于此类工程的负载容量都较大,因此在交流侧存在严重的谐波污染,造成电压畸变,严重时会引起事故。
八、自动化生产线和精密设备的使用
在自动化生产线和精密设备场合,谐波会影响到其正常使用,使智能控制系统、PLC系统等出现故障。
九、医院系统
医院对供电的连续性和可靠性有非常严格的要求,0类场所自动恢复供电时间T≤15S,1类场所自动恢复供电时间0.5S≤T≤15S, 2类场所自动恢复供电时间T≤0.5S,电压总谐波畸变率THDu≤3%,X光机、CT机、核磁共振都是谐波含量极高的负载。
十、剧场/体育馆
可控硅调光系统、大型LED设备等都是谐波源,在运行过程中会产生大量的三次谐波,不但造成配电系统的电力设备效率低下,而且还会造成灯光频闪,对通信、有线电视等微弱电回路产生杂音,甚至产生故障。在近代电信设备和各类控制系统中,数字滤波器应用也极为广泛,这里列举部分应用最成功的领域。
十一、语音处理
语音处理是最早应用数字滤波器的领域之一,也是最早推动数字信号处理理论发展的领域之一。该领域主要包括以下几个方面的内容:
1、语音信号分析。即对语音信号的波形特征、统计特性、模型参数等进行分析计算;
2、语音合成。即利用专用数字硬件或在通用计算机上运行软件来产生语音;
3、语音增强。即从噪音或干扰中提取被掩盖的语音信号。
4、语音编码。主要用于语音数据压缩,目前已经建立了一系列语音编码的国际标准,大量用于通信和音频处理。
十二、图像处理
数字滤波技术以成功地应用于静止图像和活动图像的恢复和增强、数据压缩、去噪音和干扰、图像识别以及层析X射线摄影,还成功地应用于雷达、声纳、超声波和红外信号的可见图像成像。在现代通信技术领域内,几乎没有一个分支不受到数字滤波技术的影响。信源编码、信道编码、调制、多路复用、数据压缩以及自适应信道均衡等,都广泛地采用数字滤波器,特别是在数字通信、网络通信、图像通信、多媒体通信等应用中,离开了数字滤波器,几乎是寸步难行。其中,被认为是通信技术未来发展方向的软件无线电技术,更是以数字滤波技术为基础。
十三、电视、雷达
数字电视取代模拟电视已是必然趋势。高清晰度电视的普及指日可待,与之配套的视频光盘技术已形成具有巨大市场的产业;可视电话和会议电视产品不断更新换代。视频压缩和音频压缩技术所取得的成就和标准化工作,促成了电视领域产业的蓬勃发展,而数字滤波器及其相关技术是视频压缩和音频压缩技术的重要基础。雷达信号占有的频带非常宽,数据传输速率也非常高,因而压缩数据量和降低数据传输速率是雷达信号数字处理面临的首要问题。告诉数字器件的出现促进了雷达信号处理技术的进步。在现代雷达系统中,数字信号处理部分是不可缺少的,因为从信号的产生、滤波、加工到目标参数的估计和目标成像显示都离不开数字滤波技术。雷达信号的数字滤波器是当今十分活跃的研究领域之一。声纳信号处理分为两大类,即有源声纳信号处理和无源声纳信号处理,有源声纳系统涉及的许多理论和技术与雷达系统相同。
十四、音乐
数字滤波器为音乐领域开辟了一个新局面,在对音乐信号进行编辑、合成、以及在音乐中加入交混回响、合声等特殊效果特殊方面,数字滤波技术都显示出了强大的威力。数字滤波器还可用于作曲、录音和播放,或对旧录音带的音质进行恢复等。
十五、有源电力滤波器在机场的应用
飞机作为一种便捷的交通方式给人们日常交通生活带来了多样化的选择,随之机场也在逐年扩建。但在机场的低压配电系统中,存在着大量的谐波源,如机场助航灯、直流电机、电炉、轧机、电焊机等,这些谐波源具有电流畸变大、谐波频谱范围广、无功需求变化快等特点。这类负载产生的谐波,危及配电系统的正常运行,甚至引发严重的电气事故。其中以机场助航灯光系统为例,助航灯光负载设备不断增加,机场灯光站大量使用可控硅调光设备,导致产生大量的谐波电流,对电能质量造成污染,同时附加电流和额外的热效应对各类电气设备和电缆线路安全也造成一定危害。因此,对机场助航灯光站电力谐波问题进行分析与治理极为重要。
上文相关知识大家都了解了吗?这些是贤集网小编为大家整理的滤波器的作用、分类&、应用领域。我国现有滤波器的种类和所覆盖的频率已基本上满足现有各种电信设备。从整体而言,我国有源滤波器发展比无源滤波器缓慢,尚未大量生产和应用。从生产应用比例可以看出我国各类滤波器的应用情况:LC滤波器占50%;晶体滤波器占20%;机械滤波器占15%;陶瓷和声表面滤波器各占1%;其余各类滤波器共占13%。从这些应用比例来看,我国电子产品要想实现大规模集成,滤波器集成化仍然是个重要课题。随着电子工业的发展,对滤波器的性能要求越来越高,功能也越来越多,并且要求它们向集成方向发展。
我来说几句
还没有人评论哦,抢沙发吧~
大家都爱看
专题资讯导航
意见被贤集网采纳后,贤集网赠送一张限量版的U盘会员卡!
联系方式(必填)
您的意见(必填)
Copyright (C)2014机械滤波器
我的图书馆
机械滤波器
机械滤波器
机械滤波器自1947年问世以来,由于他具有高选择性、高可靠性、高稳定性和体积小、重量轻、成本低以及适合自动化生产等优点,所以在电子设备中得到了广泛应用。
机械滤波器双称机电滤波器或电气机械滤波器。机械滤波器通常只能设计成,只有在特定的条件下才可能设计成带阻滤波器,所以机械滤波器又称为带通机械滤波器。
机械滤波器的工作频率范围为100HZ~600HZ,其中50KHZ以下为低频机械滤波器,50~200KHZ为中频机械滤波器,200~800KHZ为高频机械滤波器。其相对带宽0.5%~15%,有的可达0.1%~30%。
1、机械滤波器结构形式的工作原理
(1)基本结构形式& 目前,机械滤波器实用品种很多,基本结构有以下四种,示于图5.1-18。
1)第一种结构形式(见图5.1-18A)由机械谐振子、机械耦合子和机电换能器三部分组成。机械振动单元包括振子和耦合子,如图中虚线部分所示。大多数机械滤波器,尤其是中、高频机械滤波器均属于此种结构。
2)第二种结构形式(见图5.1-18B),没有耦合子,只有振子和换能器组合为一体,称为一个“组合”,一般一个组合就构成一个滤波器,有的低通滤波器采用这种结构。
3)第三种结构形式(见图5.1-18C),振子和换能器合为一体构成一个组合,然后将两个或两个以上组合用导线连接起来组成滤波器。一部分中、低频机械滤波器采用此种结构。
4)第四种结构形式(见图5.1-19D),与第三种不同的是将两个或两个以上组合用耦合子连接起来,一部分低、中频机械滤波器采用这种结构。
上述结构是机械滤波器的核心,大多数机械滤波器在输入和输出端没有由电感和电容组成的“匹配网络”,它们也是主要组成部分。
(2)机械滤波器的工作原理& 机械滤波器工作过程包括机电换能和机械振动两部分。通过匹配网络输入和电信号,加到换能器上,它将电信号转换成同频率、具有一定振动模式的机械振动,此机械振动对频率具有选择特性,将通过选择后的机械振动信号传输到输出换能器上,通过能量转换再把机械振动转换成同频率电信号,再经匹配网络输出,从而达到滤波器传递频带、抑止阻频带的作用。
由振子和耦合子构成的机械振动系统是机械滤波器的主体,它们都是由恒弹性合金--含镍、铬、钛的铁合金材料制成,最常用的是N142CRT1合金。恒弹性合金的杨氏弹性模量在一定的温度范围内变化很小。在机械滤波器中,也是用温度频率系数B1来衡量它的温度稳定性,镍铬钛在-20~+60`度范围内的B1为±5*10的负6次方度左右,因此,机械滤波器的温度稳定性要比陶瓷滤波器的好。
(3)实用机械滤波器分类(见表5.1-14)
机械滤波器的一般特性
为了确保在规定的环境下传输特性变化最小在设计和制造中还要尽可能具有高稳定和高可靠性,并尽可能消除寄生响应和澈音效应。
机械滤波器可实现的特性范围(见表5.1-15)
随着时间的推移,温度和电平的变化都会引起机械滤波器传输特性的变坏,因此稳定性应包括温度稳定性、时间稳定性和电平稳定性三个方面。
机械滤波器的稳定性远比LC滤波器、陶瓷滤波器的优良,且可与晶体滤波器相比拟,而且在实现同数量级的稳定性时,机械滤波器的工艺比晶体滤波器要简单得多。
1)温度稳定性& 温度稳定性是指滤波器的传输特性随温度变化的程度。一般来说,中心频率偏移主要是由振子频率偏移所致,当然,静电容容量的变化匹配电路中元件值的变化,都会使通带波动增加。
机械滤波器在0~40度的温度范围内,传输特性几乎不变。而在-45~85度温度范围内,只要进行特殊设计和工艺处理(无需增加附加装置)机械滤波器仍可正常工作。
2)时间稳定性& 时间稳定性主要指滤波器的传输特性随时间变化和程度。它主要由特作振子和换能器的恒弹性合金的经时变化率决定。它主要由特作振子和换能器的恒弹性合金的经时变化率真决定,通常,这种变化较小,可达到0.2~3.0*10负4次方/10A。
3)电平稳定性& 电平稳定性是指滤波器的传输特性随输入信号电平大小变化的程度。当滤波器输入信号的功率超过它所能储存的能量时,输出将出现非线性失真,使滤波器中心频率下降,带宽增加和通带插入损耗增大,机械滤波器的电平特性远优于LC滤波器。
(3)寄生响应和微音效应& 凡是使用谐振子的滤波器,在它们所采用的振动模式之外,还有其他振动模式产生,并影响滤波器传输特性的寄生响应和微音效应。
1)寄生响应& 机械滤波器的寄生响应主要由主振模式以外的其他模式的高次振动和其他部分所产生振动引起的,这些振动统称为杂散振动。寄生响应对滤波器的传输特性影响到极大,所以在设计、工艺处理和制造中都作为一个重要问题来对待。
2)微音效应& 在低频机械中滤波器中,机械振子的振动频率较低,容易受到外界振动的干扰而产生噪声输出,这种特性称为机械滤波器的“微音效应”。外界振动来自多方面的,如电器设备中的发动机,车辆行驶时的振动和各种音响等。微音效应的大小与干扰来源的强弱、频率的高低和机械滤波器抗干扰能力等因素有关。
(4)振动和冲击& 机械有较好的而振动、耐碰撞、而冲击和而离心力的能力。当振动加速度不超过5G(G为重力加速度)、碰撞冲击和离心力加速度不大于50G时,机械滤波器无需采取防振或减振措施。在经过特殊设计之后,抗振加速度可达15G,抗击、抗碰撞和抗离心力加速度则可达1500G。
喜欢该文的人也喜欢

我要回帖

更多关于 lc滤波器计算 的文章

 

随机推荐