不给5v信号转24v是5v正,给了5v信号转24v是0v,给5v信号转24v是多少v

0-5v信号隔离器_4-20MA转0-5V、0-10V信号隔离器、信号转换器、变送器pdf下载_爱问共享资料
4-20MA转0-5V、0-10V信号隔离器、信号转换器、变送器.pdf
4-20MA转0-5V、0-10V信号隔离器、信号转换器、变送器.pdf
4-20MA转0-5V、0-10V信号隔离器、信号转换器、变送…
简介:本文档为《4-20MA转0-5V、0-10V信号隔离器、信号转换器、变送器pdf》,可适用于工程科技领域,主题内容包含ShenZhenBeifuTechnologyCo,LtdTEL:深圳市贝福电子有限公司http:wwwszbeifucomQQ:、简续工业现场传感符等。
侵权或盗版
*若权利人发现爱问平台上用户上传内容侵犯了其作品的信息网络传播权等合法权益时,请按照平台要求书面通知爱问!
赌博犯罪类
16人已下载
在此可输入您对该资料的评论~
添加成功至
资料评价:后使用快捷导航没有帐号?
来自ValentinRuhry的创意,这哥们用整整500
5V电平信号与3.3V电平信号转换问题及方法
现在低压、低耗器件越来越多,3.3v、2.1v电平信号越来越常见。这就存在了一个电平转换问题。
当然很多时候都不需要转化,一些器件具有较大的包容性。具体能不能包容多种电平需要查看IC手册。如果能容忍其相异的电压,就不需要交转换单元了。
加上转换电路肯定会对通信速度、稳定性有所限制。
转化前要注意两个地方。
1、ABSOLUTE MAXIMUM RATINGS
这个是保证IC安全、健康的限制参数,应用连接时千万别超过这个范围。比如:DVDD(模拟电源)对DGND(模拟地)电压范围是 -0.3V到+6.0V ;数字I/O口电压对地电压范围是 -0.3V到+vdd+0.3V 。
2、需不需要电平信号转换单元就看下面这个参数:
可见这个IC的数字逻辑输入低电平门限&0.7V(3.3V情况);高电平门限&2V(3.3V情况);当然这些参数都是限制在ABSOLUTE MAXIMUM RATINGS的。
下面转入正题,看看电平转换方法。
1、较低电平转较高电平(比如3.3V转5V):
“低”接较低电平信号;“高”接较高电平信号。
两个晶体管,保证两端信号极性一致。
2、较高电平转较低电平(比如5转3.3V):
分析:当“高”处(+5V电平信号)输出为逻辑1,二极管截至(相当于断开),低处被上拉到约+3.3V。
当“低”处(+5V电平信号)输出为逻辑0,二极管导通,理想情况“低”处导通到0电压,实际“低”处电压是二极管导通压降(0.7V左右,如果觉得高,可以使用肖特基二极管,肖特基二极管管压降小)。
有一些电平信号转换可以采用比较器,我以前在一个比较器手册上看过这种应用,也十分方便,就是成本有些高。
我听一些网友说,可以在不同电平信号之间串一个小电阻解决问题。我也这样试过(3.3V的cyclon2与5V的单片机通信),好像能正常使用,不过总感觉不太安稳,呵呵。
还有其他的一些方法总结如下:
2.1 电阻分压
利用电阻分压的方法,其原理如图1所示.其成本比较低并且结构简单,可以作为一种应急的方案.但是,该电路实际的输出电压显然要小于3.3V,并且随着负载的变化,输出电压也会产生波动.此外,这种电路的无功功耗也比较大.
2.2 直接采用电源模块
考虑到开关电源设计的复杂性,一些公司推出了基于开关电源技术的低电压输出电源模块.这些模块可靠性和效率都很高,电磁辐射小,而且许多模块还可以实现电源隔离.这些电源模块使用方便,只需增加很少的外围元件,但是价格比较昂贵.
2.3 利用线性稳压电源转换芯片
线性稳压芯片是一种最简单的电源转换芯片,基本上不需要外围元件.但是传统的线性稳压器,如LM317,要求输入电压比输出电压高2V或者更大,否则就不能够正常工作.因此对于5V的输入,输出并不能够达到3.3V.面对低压电源的需求,许多电源芯片公司推出了低压差线性稳压器(LDO).这种电源芯片的压差只有1.3V~0.2V,可以实现5V转3.3V的要求.LDO所需的外围器件数目少、使用方便、成本较低、纹波小、无电磁干扰.例如,TI公司的TPS73xx系列就是TI公司为配合DSP而设计的电源转换芯片,其输出电流可以达到500mA,且接口电路非常简单,只需接上必要的外围电阻,就可以实现电源转换.该系列分为固定电压输出的芯片和可调电压输出的芯片,但这种芯片通常效率不是很高.
综合几种电源的优缺点,DSP系统采用LDO芯片TPS7333.此芯片是TI公司专门为3.3V低压系统设计的,它是固定输出3.3V,且有上电产生DSP系统复位所需的信号.此外它输出电流可达几百毫安,输出功率完全能够满足系统所需.具体电路如图2所示.
3.3V转5V 电平转换方法参考
晶体管+上拉电阻法
就是一个双极型三极管或 MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。
(2) OC/OD 器件+上拉电阻法
跟 1) 类似。适用于器件输出刚好为 OC/OD 的场合。
(3) 74xHCT系列芯片升压 (3.3V→5V)
凡是输入与 5V TTL 电平兼容的 5V CMOS 器件都可以用作 3.3V→5V 电平转换。
——这是由于 3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而 CMOS 的输出电平总是接近电源电平的。
廉价的选择如 74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列 (那个字母 T 就表示 TTL 兼容)。
(4) 超限输入降压法 (5V→3.3V, 3.3V→1.8V, ...)
凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。
这里的&超限&是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制 (改变了输入级保护电路)。
例如,74AHC/VHC 系列芯片,其 datasheets 明确注明&输入电压范围为0~5.5V&,如果采用 3.3V 供电,就可以实现 5V→3.3V 电平转换。
(5) 专用电平转换芯片
最著名的就是 164245,不仅可以用作升压/降压,而且允许两边电源不同步。这是最通用的电平转换方案,但是也是很昂贵的 (俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。
(6) 电阻分压法
最简单的降低电平的方法。5V电平,经1.6k+3.3k电阻分压,就是3.3V。
(7) 限流电阻法
如果嫌上面的两个电阻太多,有时还可以只串联一个限流电阻。某些芯片虽然原则上不允许输入电平超过电源,但只要串联一个限流电阻,保证输入保护电流不超过极限(如 74HC 系列为 20mA),仍然是安全的。
(8) 无为而无不为法
只要掌握了电平兼容的规律。某些场合,根本就不需要特别的转换。例如,电路中用到了某种 5V 逻辑器件,其输入是 3.3V 电平,只要在选择器件时选择输入为 TTL 兼容的,就不需要任何转换,这相当于隐含适用了方法3)。
(9) 比较器法
运放法/比较器少用。
2. 电平转换的&五要素
(1) 电平兼容
解决电平转换问题,最根本的就是要解决逻辑器件接口的电平兼容问题。而电平兼容原则就两条:
再简单不过了!当然,考虑抗干扰能力,还必须有一定的噪声容限:
|VOH-VIH| & VN+
|VOL-VIL| & VN-
其中,VN+和VN-表示正负噪声容限。
只要掌握这个原则,熟悉各类器件的输入输出特性,可以很自然地找到合理方案,如前面的方案(3)(4)都是正确利用器件输入特性的例子。
(2) 电源次序
多电源系统必须注意的问题。某些器件不允许输入电平超过电源,如果没有电源时就加上输入,很可能损坏芯片。这种场合性能最好的办法可能就是方案(5)——164245。如果速度允许,方案(1)(7)也可以考虑。
(3) 速度/频率
某些转换方式影响工作速度,所以必须注意。像方案(1)(2)(6)(7),由于电阻的存在,通过电阻给负载电容充电,必然会影响信号跳沿速度。为了提高速度,就必须减小电阻,这又会造成功耗上升。这种场合方案(3)(4)是比较理想的。
(4) 输出驱动能力
如果需要一定的电流驱动能力,方案(1)(2)(6)(7)就都成问题了。这一条跟上一条其实是一致的,因为速度问题的关键就是对负载电容的充电能力。
某些方案元器件较多,或者布线不方便,路数多了就成问题了。例如总线地址和数据的转换,显然应该用方案(3)(4),采用总线缓冲器芯片(245,541,16245...),或者用方案(5)。
(6) 成本&供货
前面说的164245就存在这个问题。&五要素&冒出第6个,因为这是非技术因素,而且太根本了,以至于可以忽略。
RS232的电平是多少呢?
RS232电平发送器为+5V~+15V为逻辑负,-5V~-15V为逻辑正
接收器典型的工作电平在+3~+12V与-3~-12V。由于发送电平与接收电平的差仅为2V至3V左右,所以其共模抑制能力差,再加上双绞线上的分布电容,其传送距离最大为约15米,最高速率为20kb/s。RS-232是为点对点(即只用一对收、发设备)通讯而设计的,其驱动器负载为3~7kΩ。所以RS-232适合本地设备之间的通信。
RS485的电平是多少呢?
发送驱动器A、B之间的正电平在+2~+6V,是一个逻辑状态1,负电平在-2~-6V,是另一个逻辑状态0。(具体数值可能有误,回头测试一下!)
当在收端AB之间有大于+200mV的电平时,输出正逻辑电平,小于-200mV时,输出负逻辑电平。接收器接收平衡线上的电平范围通常在200mV至6V之间。
TTL电平是多少呢?
TTL电平为2.0V~5V为逻辑正,0~0.8V为逻辑负
CMOS电路的电平是多少?
CMOS电平:0.7Vcc以上为逻辑正,0.3Vcc以下为负
输出逻辑1电平电压接近于电源电压,逻辑电平0接近于0V。而且具有很宽的噪声容限。
输入逻辑1电平电压大于电源电压的1/2 VCC~VCC;
输入逻辑0电平电压小于电源电压的1/2 VCC~gnd;
高电平低电平是什么意思
逻辑电平的一些概念
要了解逻辑电平的内容,首先要知道以下几个概念的含义:
1:输入高电平(Vih): 保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。
2:输入低电平(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil时,则认为输入电平为低电平。
3:输出高电平(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的电平值都必须大于此Voh。
4:输出低电平(Vol):保证逻辑门的输出为低电平时的输出电平的最大值,逻辑门的输出为低电平时的电平值都必须小于此Vol。
5:阀值电平(Vt): 数字电路芯片都存在一个阈值电平,就是电路刚刚勉强能翻转动作时的电平。它是一个界于Vil、Vih之间的电压值,对于CMOS电路的阈值电平,基本上是二分之一的电源电压值,但要保证稳定的输出,则必须要求输入高电平& Vih,输入低电平&Vil,而如果输入电平在阈值上下,也就是Vil~Vih这个区域,电路的输出会处于不稳定状态。
对于一般的逻辑电平,以上参数的关系如下:
Voh & Vih & Vt & Vil & Vol。
6:Ioh:逻辑门输出为高电平时的负载电流(为拉电流)。
7:Iol:逻辑门输出为低电平时的负载电流(为灌电流)。
8:Iih:逻辑门输入为高电平时的电流(为灌电流)。
9:Iil:逻辑门输入为低电平时的电流(为拉电流)。
门电路输出极在集成单元内不接负载电阻而直接引出作为输出端,这种形式的门称为开路门。开路的TTL、CMOS、ECL门分别称为集电极开路(OC)、漏极开路(OD)、发射极开路(OE),使用时应审查是否接上拉电阻(OC、OD门)或下拉电阻(OE门),以及电阻阻值是否合适。对于集电极开路(OC)门,其上拉电阻阻值RL应满足下面条件:
(1): RL & (VCC-Voh)/(n*Ioh+m*Iih)
(2):RL & (VCC-Vol)/(Iol+m*Iil)
其中n:线与的开路门数;m:被驱动的输入端数。
:常用的逻辑电平
·逻辑电平:有TTL、CMOS、LVTTL、ECL、PECL、GTL;RS232、RS422、LVDS等。
·其中TTL和CMOS的逻辑电平按典型电压可分为四类:5V系列(5V TTL和5V CMOS)、3.3V系列,2.5V系列和1.8V系列。
·5V TTL和5V CMOS逻辑电平是通用的逻辑电平。
·3.3V及以下的逻辑电平被称为低电压逻辑电平,常用的为LVTTL电平。
·低电压的逻辑电平还有2.5V和1.8V两种。
·ECL/PECL和LVDS是差分输入输出。
·RS-422/485和RS-232是串口的接口标准,RS-422/485是差分输入输出,RS-232是单端输入输出。
好东西,通信线路电压匹配能用上
低电压的逻辑电平还有2.5V和1.8V两种
这个真的是太实用了顶起
这讲得也太全面了吧!仔细看看!
好资料用得着
好帖顶起& &
我感觉用专门的芯片做估计好些,笔记本电脑主板上就是,估计价格会高些。
Copyright &
Powered by> 问题详情
在图3.11所示的三极管开关电路中,若输入信号v1的高、低电平分别为VIH=5V,VIL=0V,试计算在图中标注的参数下能
悬赏:0&答案豆
提问人:匿名网友
发布时间:
在图3.11所示的三极管开关电路中,若输入信号v1的高、低电平分别为VIH=5V,VIL=0V,试计算在图中标注的参数下能否保证vI=VIH时,三极管饱和导通,vI=VIL时三极管可靠截止?三极管的饱和导通压降VCE(sat)=0.1V,饱和导通内阻RCE(sat)=20Ω。如果参数配合不当,则在电源电压和RC不变的情况下应如何修改电路参数?&&
为您推荐的考试题库
您可能感兴趣的试题
1在LC正弦波振荡电路中,不用通用型集成运算放大器作放大电路的原因是其上限截止频率太低,难以产生高频振荡信号。
)2当集成运放工作在非线性区时,输出电压不是高电平,就是低电平。
)3一般情况下,电压比较器的集成运算放大器工作在开环状态,或者引入了正反馈。
我有更好的答案
请先输入下方的验证码查看最佳答案
图形验证:
验证码提交中……
找答案会员
享三项特权
找答案会员
享三项特权
找答案会员
享三项特权
选择支付方式:
支付宝付款
郑重提醒:支付后,系统自动为您完成注册
请使用微信扫码支付(元)
支付后,系统自动为您完成注册
遇到问题请联系在线客服QQ:
恭喜你被选中为
扫一扫-免费查看答案!
请您不要关闭此页面,支付完成后点击支付完成按钮
遇到问题请联系在线客服QQ:
恭喜您!升级VIP会员成功
提示:请截图保存您的账号信息,以方便日后登录使用。
常用邮箱:
用于找回密码
确认密码:技术小站:
& 参加直播现场,与专家互动,学最新知识
& 学习业内最热门知识,还有好礼送
& 看视频,填问卷,拿好礼
& 海量精华技术资源 限时阅读下载
张飞电子工程师速成全集
10天掌握PCB AD画板
教你高速PCB项目整体设计
如何设计STM32单片机系统?
物联网操作系统从写到用
讲师:华清远见
讲师:林超文
讲师:郑振宇
讲师:李述铜
移入鼠标可放大二维码
将1V~5V信号转换为4mA~20mA输出
来源:互联网 作者:佚名日 14:54
该网络采用一种简便的电路,不需要微调,但实现了小于0.2%的整体误差。该电路采用两级放大器,利用了LT5400独特的匹配特性。第一级放大器将典型值为1V至5V的输出加到运算放大器IC1A的非反相输入。这个电压通过FET Q2将通过R1的电流准确地设定为VIN/R1。
  尽管长久以来人们一直预测,4mA至20mA电流环路将消失,但是这种模拟接口仍然是连接电流环路电源与检测电路的最常见方法。这种接口需要将电压信号(典型值为1V至5V)转换为4mA至20mA的输出。严格的准确度要求决定,必须使用昂贵的精密电阻器或微调电位器,来校准较不精密器件的初始误差,满足设计目标要求。在今天以自动测试设备为主导和表面贴装型生产环境中,这两种技术都不是最佳方法。获得采用表面贴装封装的精密电阻器很难,微调电位器又需要人工干预,而这种要求与生产环境是不相容的。
  凌力尔特的($4.0700)四匹配电阻器网络帮助解决了这些问题,该网络采用一种简便的电路,不需要微调,但实现了小于0.2%的整体误差(图1)。该电路采用两级放大器,利用了LT5400独特的匹配特性。第一级放大器将典型值为1V至 5V的输出(通常来自DAC)加到运算放大器IC1A的非反相输入。这个电压通过FET Q2将通过R1的电流准确地设定为VIN/R1。相同的电流通过R2拉低,因此R2底端的电压为24V环路电源电压减去输入电压。
  这部分电路有3个主要误差源:R1和R2的匹配,IC1A的失调电压,以及Q2的泄漏电流。R1和R2的准确值并不重要,但是它们必须相互准确匹配。 ($10.1700)级版本以&0.01%的误差实现了这一目标。($1.9000)在0℃至70℃之间的失调电压不到700&V。这个电压在输入电压为1V时产生的误差为0.07%。($0.0389)的泄漏电流为10nA,尽管其数值通常小得多。这个泄漏电流代表0.001%的误差。
  第二级靠拉动通过Q1的电流,保持R3上的电压等于R2上的电压。因为R2上的电压等于输入电压,所以通过Q1的电流准确地等于输入电压除以R3。通过给R3并联一个精确的250&O分流电阻,该电流将准确跟踪输入电压。
  第二级的误差源是R3的值、IC1R的失调电压和Q1的泄漏电流。电阻器R3直接设定输出电流,因此其值对于该电路的精确度至关重要。这个电路利用常用的250&O并联电阻完成电流环路。图1中的Riedon SF-2器件的初始准确度为0.1%,温度漂移很低。与第一级的情形类似,失调电压产生不超过0.07%的误差。Q1的泄漏电流低于($0.0581),所产生的最大误差为0.0025%。
  没有任何微调时,总输出误差好于0.2%。电流检测电阻器R3是主要的误差源。如果使用一个更高质量的器件 (例如Vishay PLT系列器件),那么可以实现0.1%的准确度。电流环路输出在使用中受到相当大的应力。从输出到24V环路电源和地之间的二极管D1和D2帮助保护 Q1;R6提供一定的隔离。通过提高R6的值,并在输出端以牺牲一些符合条件的电压作为代价,可以实现更高的隔离度。如果最高输出电压要求低于10V,那么可以将R6的值提高到100&O,针对输出应力提供更高的隔离度。如果设计方案需要增强保护,那么可以给输出加上一个瞬态电压抑制器,当然这么做会由于泄漏电流而导致输出准确度有一定的损失。
  这一设计方案仅使用了LT5400封装中4个匹配电阻器中的两个。还可以将另外两个电阻器用于其他电路功能(例如精确的反相器),或者另一个4mA至20mA转换器。另外,还可以引入其他电阻器与R1和R2并联。这种方法可降低电阻器产生的统计误差,降幅为2的平方根。
  图1:精确匹配的电阻器提供准确的电压至电流转换
如今,物联网浪潮已然席卷至汽车电子产业,发动机控制系统、底盘控制系统和车身电子控制系统已模型初显,安全...
ADAS市场或破千亿
国产汽车雷达将爆发
抢占智能汽车制高点
为自动驾驶保驾护航
电动汽车面临的挑战
德州仪器(TI)
供应链服务
商务及广告合作
Jeffery Guo
关注我们的微信
供应链服务 PCB/IC/PCBA
版权所有 (C) 深圳华强聚丰电子科技有限公司
电信与信息服务业务经营许可证:粤B2-

我要回帖

更多关于 0 5v信号传输距离 的文章

 

随机推荐