12680~7号键去年还有“和你做作业”的业务,今年键盘的顿号怎么打没有了。明年还会有吗?

建证咨讯盘前提示7.15
日08:50 &
  日   星期四
第1659期  栏目提示:  近期本刊新增"风险警示"栏目,旨在通过星级标志这一图示形象对多空持仓风险度进行描述,供投资者处理持仓头寸时加以参考,实际操作中投资者还需根据自己短中线交易策略和各品种波动特性的不同进行具体把握。具体星级划分标准如下:  ★
期价距离最新收盘的反向运行幅度可能小于2%  ★★
期价距离最新收盘的反向运行幅度可能大于2%  ★★★
期价距离最新收盘的反向运行幅度可能大于3%  ★★★★
期价距离最新收盘的反向运行幅度可能大于4%  ★★★★★
期价距离最新收盘的反向运行幅度可能大于5%  大 豆、豆 粕  风险警示:  多头风险:★★  空头风险:★★  盘前提示:  蒋
敢:周三CBOT大豆远期合约上涨,因预期7月末8月初将出现干旱天气,部分天气预报机构预计在未来10-15天之内,美国中西部天气将更加干燥,此时正是美国大豆进入结荚期,同时6月大豆压榨量的增加也对大豆价格提供了支撑,11月合约上涨27美分,报收于668.25美分。连豆周三探低反弹,目前受到5天均线的反压,昨天盘面显示在低位有较强的支撑,因此在上午盘中就建议大豆和豆粕空单离场观望,预期今日将继续反弹,建议短线多单可介入,破新低止损。  东
方:周三大商所大豆豆粕早盘冲高后回落,尾盘探低回升。CBOT大豆在基金买盘推动下上涨。基本面上,美国油籽协会公布压榨报告高于市场预测,显示美国压榨需求继续保持旺盛;未来良好的天气保持良好的大豆生长条件。油世界预计南美大豆出口低迷将导致南美大豆库存上升。13日下午出入境检疫局对73号和76号公告作详细讲解,对大豆进出口前景有谨慎乐观的预期。国内豆粕现货价格保持稳定,但成交低迷。技术面上,大豆豆粕中线下跌趋势未改,短线有止跌迹象,但5天均线依然有压力。综合上述因素,预计后市大豆会出现震荡,但反弹力度可能有限,操作上建议空单减持。今日操作建议:空单减持。   每日评述:  张
强:周三连豆各主力合约以小幅震荡反弹为主,成交量有所减少,总持仓量则略有增加。 周二晚CBOT大豆形成近跌远盘行情,8月合约报收767而11月合约持平报收641,大豆及其相关产品的日交割量较大对近期合约形成沉重压力,而牛市套利盘的大举平仓对远期合约有一定程度的支持作用,在技术上8月合约和11月合约均继续盘跌。连豆各主力合约平开或小幅高开后在远期合约的主动买盘推动下全线反弹,但遭遇空头的坚决封压后短线多头顺势平仓压迫期价震荡回落,多空双方暂时陷入短暂的相持局面,在缺乏实质性利好题材刺激的情况下后市继续盘跌的可能性较大。在日K线图上,A0411高开报收小阳线与周二的小阴线并列形成短期盘整,均线系统和主要技术指标继续全线走软。操作建议:仍以逢高短空为主但杀跌宜谨慎。
  海外快递:  芝加哥商品交易所大豆期货周三大幅走高,基金入场吸纳,对于美国玉米和大豆带可能出现渐暖和干旱天气的担心重燃。在价格达到630美分的水平时,人们认为其中没有考虑到足够的天气升水。11月大豆收盘上涨27美分达到668.25美分,8月大豆收盘上涨13.25美分达到780.75美分。7月合约以下跌48.5美分的862.5美分价格下市。世界天气公司的专家称大豆和玉米带将在未来两到三个星期内出现干热气候,可能会对作物构成一些威胁。温度可能不会太高,但表层土壤会受到影响。考虑到这一迹象,在大豆生长最为关键的8月中旬,中西部的心脏地带可能会出现较为温暖和干燥的天气。未来两到三个星期将十分重要,如果干燥气候开始的话,特别是对于晚熟大豆品种来说8月份将相当难熬。不过一些市场人士则认为以短期气候预测来看目前对于作物将遭到以上威胁的判断为时过早。  全球天气服务机构预计在未来两周内出现低温潮湿或者温暖干燥天气的机会均等。本周末零星雷阵雨将带来不足0.5英寸的降雨量,温度将在华氏70-80度之间。其间,7月合约由于现货基差走软和217张德交割量而最终大跌下市。同时国家油籽压榨商协会的报告对于近月合约则有所支持,6月其会员大豆总压榨量达到102.421百万蒲式耳,超出了业内人士99.375百万蒲式耳的平均预测水平。其他新闻方面,传言美国发现亚洲锈菌病的消息一度使市场紧张,不过美国大豆协会澄清没有任何病例被发现。美国农业部的动物和植物健康检疫署没有对此作出解释。对于周四的智洹6蛊善诨踝呤拼筇逋蠖瓜嗤?7月当日交割量达到100张,豆油交割量为48张。8月豆粕收盘上涨3美元达到269.00美元,8月豆油收盘上涨1点达到26.43美分。在国家油籽压榨商协会报告中,截至6月底豆油库存为11.45亿磅,去年同期则为15.75亿磅。8月大豆压榨利润收盘维持在101.75美分水平。  铜、铝  风险警示:  多头风险:★★  空头风险:★  盘前提示:  东
方:铜:LME3月铜收于2791美元/吨,上涨11.5美元,美国公布零售销售下跌1.1%后,美元走软,引发铜价低位回升,技术走势显示仍有继续反弹的可能。今晚公布的美国6月生产者物价指数以及首请失业救济金人数将对美元汇率产生较大的影响,目前市场估计生产者物价指数影响中性而首请失业救济金人数将反弹,对美元的影响很可能是中性偏弱。墨西哥集团美国分公司Asarco的劳资合同谈判仍在继续,Angloplat公司在南非Rustenburg铜和镍厂的工人料将因工资争议举行罢工。国内方面,目前宜重点关注的是在5月份中国大幅减少铜进口后,库存趋于减少,以及进入下半年后,国内宏观调控造成的固定资产投资压缩等方面造成的需求压缩的负面影响也可能在7~9月份逐步体现,但从目前看国内铜需求较为平稳。后期应关注美元汇率的走向、LME铜库存变化、中国的铜进口情况等。昨日铜现货价格约上涨约130元,至2元/吨。  铝:国内铝库存的相对充足以及进口氧化铝价格的下调使得沪铝仍维持弱势整理的格局。有消息称国家发改委可能将取消铝的出口退税,并有传言称将增加5个百分点的出口关税,目前有众多铝厂称如果取消铝的出口退税,经营将更陷于困境。政策举动仍值得我们关注。昨日现货价格下跌约100元,为1元/吨。  马宏庆:LME铜价在周三的交易中探底反抽,美元的走势仍旧在左右铜价,但LME铜持仓水平的不断膨胀显示市场的多空分歧在进一步加大,而测算LME市场近期近2万手持仓量增加的成本,我们可以清楚的看到2750已经成为多空盈亏的平衡点,而上升通道的下轨也移到了2700一线,意味着2700被击破将迫使本轮推动铜价上涨的基金止损出局。周三公布的零售数据显示美国经济已经存在事实上的大幅放缓的可能,美国汽车价格创下了25年来的新低,意味着美国汽车市场短期内已经不可能增长,当然汽油价格的高企迫使消费者买车欲望的下降,这或许从一个方面已经回答了原油价格不可能一路走高。基本面事实上出现的问题以及铜精炼费用大幅度走高意味着铜市场的远期供求已经发生根本性的变化,除非再次出现不可抗力。预计周四沪铜CU411将回试25800的压力水平,支撑位于25500。建议投资者持有手中的空头部位,跌破25500考虑加码。  每日评述:  何海海: 周二晚LME三月期铜再度冲高回落,汇率因素对铜价产生重要影响。伦铜早盘在罢工及库存下降消息的刺激下一度上扬,最高涨至2814美元,但随后美元在美国公布较为强劲的贸易数据后大幅反弹,直接拖累期铜走低,多头的获利回吐令期铜最低跌至2760美元,创下近日新低,收盘报于2774美元。沪铜今日低开高走后于午盘下跌,沪铝的走势相对更为激荡,受国家取消8%出口退税及开征5%出口税传闻的影响,铝价大幅下挫。  在美国发布最新的贸易数据之后,美元兑欧元强劲走高,使得稍早由基金和技术性买盘以及坚实的基本面引发的期铜的涨势消退. 贸易数据公布后美元走坚,影响了黄金走势,然後期铜也受冲击,跟着其他金属也是. 因为美国5月贸易数据强于预期,美圆对欧元走强,基本金属走低。美国贸易赤字收窄到460亿美圆,因为海外经济增长和美圆贬值有利于刺激出口。赤字是6个月以来首次减少,尽管进口油价创22年来的最高。数据支持美圆,压低基本金属价格。进口对美圆的影响会直接反映到基本金属市场。伦铜收于一带小阴十字星,但上影线较长仍使得图形偏空意味较浓。尽管从LME铜总的图形形态来看,价格仍保持涨势,但美元短期阻力已相当明显,操作建议: 暂时观望
  海外快递:  COMEX铜市报道:  纽约7月14日消息:周三纽约商品交易所(COMEX )高级铜收盘基本持平,处于整固阶段。尽管市场处于季节性交易平淡期,但基本面依然向好。COMEX9月期铜下跌0.10美分,报收每磅1.2770美元。交易区间为1.0 美元。IFR Pegasus 分析师埃文斯(Tim Evans )称,铜价高位震荡盘整。事实上,本周铜价均在3.60美分的窄幅区间内上下波动,本交易日市场相当平静。从技术角度看,铜价正处于整固阶段。强阻力位仍为1.30美元。他称,1.30美元是关键阻力位,为自4 月以来最高。铜价12日曾升越此位。倘若突破,下一阻力位分别为4 月2 日的1.3470美元和3 月1 日的1.3640美元。支撑位分别为1.2450美元和1.2230美元。若跌破支撑位,铜价可能跌向5 月18日低点1.1210 美元。   伦敦金属交易所(LME )铜库存14日下降925 公吨至95,850公吨。纽约商品交易所(COMEX)铜库存13日下降1,097 短吨至88,216短吨。此外,利率逐步上升并未威胁铜市需求。即便中国经济增速减缓,但预计其铜需求依然好于2003年。截至COMEX 收盘,LME 三个月期铜上涨5.50美元,至每公吨2,782.50美元。  LME市场报道:  伦敦7月14日消息:受美元再度走软和铜市供应紧张的提振,周三伦敦金属交易所(LME)期铜收盘小幅上扬。LME 三个月期铜盘中高点为2,797.50美元,盘中低点为2,750 美元。   墨西哥集团旗下的La Caridad铜矿12日发生罢工,这提振铜价上涨。受美国6 月零售销售大幅下降的拖累,北美汇市周三美元再度走软。尽管如此,铜价未能升破关键阻力位2,800 美元。LME 期铝14日持稳于每公吨1,730-1,735 美元。LME 期镍收盘持平,归结于伦敦镍库存14日增长372 公吨至8,574 公吨。分析师认为,镍库存增长在金属市场供应紧张的情况下是很少见的。美国6 月消费者物价指数和工业生产均成为本周铜市关注的焦点。  天
胶  风险警示:  多头风险:★  空头风险:★   盘前提示:  东
方:东京橡胶连续昨日下跌至7个月来最低点,现货市场供应增加以及中国市场买需不足给胶市带来主要压力。除了现货月7月合约外,其他合约均连续两个交易日创下了本合约开始交易后的最低点,亚洲橡胶供应出现季节性反弹令市场承压。从沪胶来看,7月合约今日为其最后交易日,从盘面情况来看,持仓已经减至3万余手的正常水平,多头接盘,期价在16000上方完成交割已经无可非议,投机空头的止损出局以成事实。值得关注的是,在昨日7月合约大幅上扬的情况下,远月合约大幅下挫,形态走坏,持仓减少,在7月合约交割后,远月合约能否再续其强势,十分值得怀疑,但在趋势未明朗之前,还是以静观其变为宜。  每日评述:  无
极:周三沪胶纷纷下挫,早盘低开后呈横盘整理,下午受铜下挫刺激,空头亦开始打压,除现货月外各合约纷纷下行近200点,持仓继续减少,成交较前几日有所增加。东京胶延续跌势,目前东南亚现货处于季节性供应高峰期,使得胶市空气浓重,指标12月合约收于137.6日圆/公斤,下跌2.1日圆,其他合约下跌1.5-4日圆不等,技术上明显的下跌通道,下一支撑位135日圆/公斤。明日将是7月合约退出市场的最后一个交易日,目前7月的价格对期市已经没有意义。本日的下跌是不是交割完毕后走势的一个预兆呢?从技术上看,主力合约仍没有摆脱震荡范围,不过8月图表上的大阴棒还是有些杀伤力的,而远月合约较为明显,重心下移,有突破横盘的迹象。现货市场及周边市场持续下跌,沪胶迟早会受其影响而有所反应,而目前现货商可接受的价格为12000左右,也就是远月合约虽然价格偏低但还有下跌空间。当然沪胶走势诡异,也有可能本日下跌没有实际意义,不过在外部环境偏空,而其内部压力日益加重的情况下,今日的下跌还是应该引起我们关注的,预计明日将惯性走弱,关注是否有效突破盘整格局,目前还是观望为好。  东南亚现货市场:泰国RSS3
1290美元/吨
↓10美元   印尼TSR20
1190美元/吨
↓5美元  国内现货市场: 海南
13517元/吨
成交611吨  云南
13342元/吨
成交660吨   海外快递:  东京7月14日消息:周三,东京工业品交易所3号烟胶片期货合约下跌至7个月来最低点。现货市场供应增加以及中国市场买需不足给胶市带来主要压力。12月份基准合约下跌2.1日元,报收至137.6日元/千克。这是东京工业品交易所橡胶基准合约自12月5日以来创下的最低纪录。现货月7月合约下跌3.8日元至149.5日元,其他各月合约下跌15日元至4.0日元不等。除了现货月7月合约外,其他所有合约均连续两个交易日创下了本合约开始交易后的最低点。亚洲橡胶供应出现季节性反弹令市场承压。泰国是全球最大的天然橡胶产国和出口国。泰国橡胶产量通常会在6月到9月份期间进入高峰,从而给胶价格带来压力。一经纪人说:"我们将看到更多橡胶供应涌入市场,预期胶价也会继续下跌。"另外他指出,近期中国市场买需疲软也是促使胶市抛盘涌现的诱因。他又补充说,很多投机商预期未来中国将会大量买入,从而建立的多单。  小
  风险警示:  多头风险:★  空头风险:★  盘前提示:  东
方:昨日cbot小麦收于345.0美分/蒲式耳,较上一交易日上涨5.3美分/蒲式耳。国内郑州小麦昨日回落调整,WS411合约收于1847元/吨,较上一交易日下跌11元/吨。价格在接近前期高点时,受阻回落,由于现在期价已接近现货价格使得价格大幅下挫的可能性减小了,但是还未有真正启动的信号,上行受阻回落说明后市将继续振荡。  每日评述:  余心言:周三小麦期价下调,早盘平开后期价在1860以上稍做停留便在多头的主动平仓下跌,在跌破1855的短期支撑后在下午加速下跌,成交缩量,持仓减少2272张,硬麦则全天都在一个很小的幅度内盘整。  从周三的盘面看。虽然在周二的交易中多头表现出了很强的上涨欲望,但是周三的行情却差强人意,这充分说明小麦期货仍在弱市之中,不可能出现大涨的行情。从美国小麦期货价格看,仍处在一个下跌趋势中,这主要是因为北半球的小麦丰收已经逐渐成为现实,南半球澳大利亚的小麦在天气正常的前景下预计也将获得丰收,虽然美国今年小麦产量比去年减少,但是幅度不大,支撑美国小麦价格的主要是出口市场,而今年在主产国丰收的前景下,美国的出口市场面临激烈的竞争,长期来看,美国的小麦价格会下破300美分/蒲式耳的支撑。国际市场上小麦价格的疲软必将影响到国内,现在进口的美国小麦价格到港价只有1900元/吨。更应该看到,一个多头行情持续的前提是必须要有不断的利多消息刺激,但是展望将来减产和库存这些利多因素已经炒做完毕,今后的重点应该是对播种面积的炒做,而在价格的高企下,播种面积的扩大上是可以预期的。在操作上建议在期价没有突破箱体以前不要追涨杀跌,特别是不追涨。  棉
花  风险警示:  多头风险:★  空头风险:★  盘前提示:  东
方:昨日纽约棉花连续收于46.80美分/磅,较上一交易日上涨0.2美分/磅。国内情况来看,昨日郑州棉花小幅下跌,收于13125元/吨,较上一交易日下跌75元/吨,成交量为27288手,较上一交易日减少,持仓量增加2682手至11580手。   现货行情:  Cncotton A指数 13776
较上日下跌101
Cncotton B指数 12638
较上日下跌92  近日国际现货市场成交不温不火,进口大户购买较为稳定,加之美国国内低等级棉供应吃紧,对纽约期货形成一定支撑。7月14日,期权和投机买盘增多,但在商业卖盘的作用下仅有小幅上涨。在现货交易稳定的情况下,近两日期货市场小幅盘整。不过,新年度产量预测对期市的影响是长远的,市场远未走出这一巨大阴影。如果明日的美棉出口周报乐观,或许会加快近期构筑底线的速度。今日撮合交易除MA0407外,其它合同均是低开后震荡下行,尾市收于下跌自律价。今日MA合同总成交量7890吨,较昨日减少,其中MA0407成交1440吨,交易中仍然伴随着大量的平仓盘,订货量减少1130吨,占成交量的78%。其它合同订货量有增有减,远月合同订货量仍然继续增加,但幅度不大。  国内现货市场方面,虽然各地均有棉价企稳的声音,但市场成交仍然较少,纺织企业由前期的不敢购棉转为目前的观望心态,市场的信心还需继续培育。综合以上情况,上周末市场中的利好消息和传闻再次被消化,近两日撮合及国内外期货市场价格的下滑可看作是对前期上扬的调整。同时,基本面的糟糕情况较前期有所缓和,对撮合价格的压力也相应减小。预计近期撮合价格可能步入盘整走势。郑棉后市将进一步测试13000的支撑是否有效,预计近期仍将维持区间震荡的走势。  每日评述:  杨
婧:周三郑棉在振荡中积聚能量,虽然开盘价格滑落,但多头在其后的交易中逐渐收复失地,直至终盘,小幅收跌。主力11月低收85点,报每吨13120,持仓较昨日增加2682张,成交量27288手为本周来最低。从盘中表现看出,今日多空双方分歧拉大,当期价走至13000附近,会激发新的买盘;如果,价格上摸13120,则会涌现大量抛盘。  当日撮合走出单边下跌行情,收盘时全线跌停,7月合约报12905元/吨,11月的成交均价在12676元/吨。  纽约期货昨晚交易清淡,期价走势趋稳,跌幅渐缓,12月合约收于47.30美分/磅,其余合约的跌幅也仅在3-8点左右,市场需要新的指引信号。12月主力仍将继续试探47美分附近支撑,如果跌破此未,下一支撑将在45美分附近。  据悉,现货市场的报价也逐步企稳,在部分地区,3级棉的报价从前段时间每吨元调到13800元后,最近时间就在没有大副调整过。  对于期棉的后市走势,涨跌因素互现,市场将维持震荡走势。  第一,从现货商心理来看,许多涉棉企业仍对国家宏观调控给予了很高的期望。棉商打压价格抛售的风潮已经褪去。更多的企业现在已观望为主。这样一来,就限制了期棉的下跌空间。  第二,由于前期郑棉的跌幅过大,技术上存在反弹需求,但是,由于市场存在的多方因素,使得反弹空间有限。首先,从纽约期货来看,美棉的连连走低,制约了国内期棉的反弹空间;另外,由于之前郑棉和撮合的强联动性,使得两个市场同向运动的概率极高,但近期,撮合的打仗打跌,难免动摇了期货市场部分投资者的看涨信心;除此之外,刺激多头行情的最大利好无疑是天气因素,可是近日看来,天气的不定性太大,不利于投资者缺利做多依据。  第三,虽然纺织企业最近日子难过,但是这只是暂时现象,从官方统计数据来看,我国纺织行业的产能是呈持续增长之势的,而且,明年年初的全球纺织品配额取消,对期棉市场将构成一个远期利好,随着宏观调控的成效初现、纺织行业的库存日益减少,对棉花的有效需求也将在震荡行情中逐渐酝酿形成。   综上所述,建议投资者短线以波段操作为主,多头首要目标位在13230,止损在13000;当价格下破13000,空单第一目标位在12850。中线投资者仍可继续看空,毕竟在新棉上市前,期棉仍将继续探底。  附:7月14日撮合行情  商品码 开市价 最高价 最低价 收市价 平均价 涨跌 成交量 订货量   MA
1340   MA
6640   MA
2450  海外快递:  纽约7月14日(道琼斯)消息--周三,尽管NYBOT棉花全天大部分交易时间里走强,但尾市基金抛空200手12月打压期价大幅跳水,收盘仅小幅上扬。交易商们认为,尾市的一些买盘提振12月并未走跌,而是收盘上涨了4点,收在47.34美分;早盘,12月合约一度反弹到48.44美分的高点,上涨了11点;但尾市受卖盘打压,期价滑落到47美分以下。  内交易商认为,周三盘面仍是缺乏基金面消息的刺激。全天大盘仍是窄量交易。Swiss Financial Services的Mike Stevens表示,期价一度走高主要是因为期权买盘提振,而又缺乏阻力。Stevens继续说,在市场中有人买入200手12月58美分的涨权,100手3月60美分的涨权等后,期价也随后达到盘中新高,而此时12月和3月合约都遇到了强阻力位。成交量估计:周三估计期货成交了7,000手。  今日收盘播报:  合约
期价波动范围  10月
46.60-47.95  12月
47.00-48.44  3月
48.90-50.10
[] [] [] []
我来说两句
用户名: 密码:
script src="/track/track_xfh.js?ver=">拒绝访问 |
| 百度云加速
请打开cookies.
此网站 () 的管理员禁止了您的访问。原因是您的访问包含了非浏览器特征(3dad-ua98).
重新安装浏览器,或使用别的浏览器Functional Domains within Fusion Proteins: Prospectives for Development of Peptide Inhibitors of Viral Cell Fusion | SpringerLink
This service is more advanced with JavaScript available, learn more at http://activatejavascript.org
Where do you prefer to publish?
Charitable donation for first 1000 responses.
Functional Domains within Fusion Proteins: Prospectives for Development of Peptide Inhibitors of Viral Cell FusionYechiel ShaiArticle
The entry of enveloped viruses into host cells is accomplished by fusion ofthe viral envelope and target plasma membrane and is mediated by fusionproteins. Recently, several functional domains within fusion proteins fromdifferent viral families were identified. Some are directly involved inconformational changes after receptor binding, as suggested by the recentrelease of crystallographically determined structures of a highly stablecore structure of the fusion proteins in the absence of membranes. However,in the presence of membranes, this core binds strongly to the membrane'ssurface and dissociates therein. Other regions, besides the N-terminal fusionpeptide, which include the core region and an internal fusion peptide inparamyxoviruses, are directly involved in the actual membrane fusion event,suggesting an “umbrella” like model for the membrane inducedconformational change of fusion proteins. Peptides resembling these regionshave been shown to have specific antiviral activity, presumably because theyinterfere with the corresponding domains within the viruses. Overall, thesestudies shed light into the molecular mechanism of membrane fusion induced byenvelope glycoproteins and suggest that fusion proteins from different viralfamilies share common structural and functional motifs.membrane fusion peptide–lipid interaction fluorescence viral fusion inhibitors antiviral peptides Unable to display preview.&Baker, K. A., Dutch, R. E., Lamb, R. A., and Jardetzky, T. S. (1999) Structural basis for paramyxovirusmediated membrane fusion. Mol. Cell
3: 309–319.Ben-Efraim, I., Kliger, Y., Hermesh, C., and Shai, Y. (1999) Membrane-induced step in the activation of Sendai virus fusion protein. J. Mol. Biol. 285: 609–625.Bentz, J. (2000) Membrane fusion mediated by coiled coils: a hypothesis. Biophys. J. 78: 886–900.Bernstein, H. B., et al. (1995) Oligomerization of the hydrophobic heptad repeat of gp41. J. Virol. 69: .Bessalle, R., Kapitkovsky, A., Gorea, A., Shalit, I., and Fridkin, M. (1990). All-D-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett. 274: 151–155.Blacklow, S. C., Lu, M., and Kim, P. S. (1995) A trimeric subdomain of the Simian Immunodeficiency Virus enveloped glycoprotein. Biochemistry
34: 1.Bohm, C., Mohwald, H., Leiserowitz, L., Als-Nielsen, J., and Kjaer, K. (1993) Influence of chirality on the structure of phospholipid monolayers, Biophys. J. 64: 553–559.Bosch, M. L., et al. (1989) Identification of the fusion peptide of primate immunodeficiency viruses. Science
244: 694–697.Bradshaw, J. P., Darkes, M. J., Harroun, T. A., Katsaras, J., and Epand, R. M. (2000) Oblique membrane insertion of viral fusion peptide probed by neutron diffraction. Biochemistry
39:.Brasseur, R. (1991) Differentiation of lipid-associating helices by use of three-dimensional molecular hydrophobicity potential calculations. J. Biol. Chem. 266:1.Brasseur, R., Vandenbranden, M., Cornet, B., Burny, A., and Ruysschaert, J.-M. (1990) Orientation into the lipid bilayer of an asymmetric amphipathic helical peptide located at the N-terminus of viral fusion proteins. Biochim. Biophys. Acta. 1029:267–273.Buckland, R., Malvoisin, E., Beauverger, P., and Wild, F. (1992) A leucine zipper structure present in the measles virus fusion protein is not required for its tetramerization but is essential for fusion. J. Gen. Virol. 73:.Bullough, P. A., Hughson, F. M., Skehel, J. J., and Wiley, D. C. (1994) Structure of influenza hemagglutinin at the pH of membrane fusion. Nature
371: 37–43.Burger, K. N., Wharton, S. A., Demel, R. A., and Verkleij, A. J. (1991) Interaction of influenza virus hemagglutinin with a lipid monolayer. A comparison of the surface activities of intact virions, isolated hemagglutinins, and a synthetic fusion peptide. Biochemistry
30: 1.Carr, C. M. and Kim, P. S. (1993) A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell
73: 823–832.Chambers, P., Pringle, C. R., and Easton, A. J. (1992) Sequence analysis of gene encoding the fusion glycoprotein of pneumonia virus of mice suggests possible conserved secondary structure elements in paramyxovirus fusion glycoproteins. J. Gen. Virol. 73:.Chan, D. C., Fass, D., Berger, J. M., and Kim, P. S. (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell
89:263–273.Chan, D. C. and Kim, P. S. (1998) HIV entry and its inhibition. Cell
93:681–684.Chang, D. K., Cheng, S. F., and Chien, W. J. (1997) The amino-terminal fusion domain peptide of human immunodeficiency virus type 1 gp41 inserts into the sodium dodecyl sulfate micelle primarily as a helix with a conserved glycine in the micelle-water interface. J. Virol. 71:.Cheetham, J. J., Nir, S., Johnson, E., Flanagan, T. D., and Epand, R. M. (1994). J. Biol. Chem. 269:.Chen, S. S. L., Lee, C. N., Lee, W. R., McIntosh, K., and Lee, T. H. (1993) Mutational analysis of the leucine zipper-like motif of the human immunodeficiency virus type 1 envelope transmembrane glycoprotein. J. Virol. 67:.Chernomordik, L., Kozlov, M. M., and Zimmerberg, J. (1995) Lipids in biological membrane fusion. J. embr. Biol. 146:1–14.Chernomordik, L. V., Leikina, E., Frolov, V., Bronk, P., and Zimmerberg, J. (1997) An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids. J. Cell.Biol. 136:81–93.Clague, M. J., Knutson, J. R., Blumenthal, R., and Herrmann, A. (1991) Interaction of influenza hemagglutinin amino-terminal peptide with phospholipid vesicles: a fluorescence study. Biochemistry
30:.Colotto, A., Martin, I., Ruysschaert, J.-M., Sen, A., Hui, S. W., and Epand, R. M. (1996) Structural study of the interaction between the SIV fusion peptide and model membranes. Biochemistry
35:980–989.Corigliano, M. M., Xun, L. A., Ponnamperuma, C., Dalzoppo, D., Fontana, A., Kanmera, T., and Chaiken, I. M. (1985) Synthesis and properties of an all-D model ribonuclease S-peptide. Int.J.Pept.Protein Res. 25:225–231.Delahunty, M. D., Rhee, I., Freed, E. O., and Bonifacino, J. S. (1996) Mutational analysis of the fusion peptide of the human immunodeficiency virus type 1: identification of critical glycine residues. Virology
218:94–102.Dentino, A. R., Westerman, P. W., and Yeagle, P. L. (1995) A study of carbobenzoxy-D-phenylalaninephenylalanine-glycine, an inhibitor of membrane fusion, in phospholipid bilayers with multinuclear magnetic resonance. Biochim Biophys.Acta. 1235:213–220.Dimitrov, D. S. (2000) Cell biology of virus entry. Cell
101:697–702.Doms, R. W., Lamb, R. A., Rose, J. K., and Helenius, A. (1993) Folding and assembly of viral membrane proteins. Virology
193:545–562.Dubay, J. W., Roberts, S. J., Brody, B., and Hunter, E. (1992) Mutations in the leucine zipper of the human immunodeficiency virus type 1 transmembrane glycoprotein affect fusion and infectivity. J. Virol. 66:.Durell, S. R., Martin, I., Ruysschaert, J.-M., Shai, Y., and Blumenthal, R. (1997) What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion. Mol.Membr.Biol. 14:97–112.Dutch, R. E., Leser, G. P., and Lamb, R. A. (1999) Paramyxovirus fusion protein: characterization of the core trimer, a rod-shaped complex with helices in anti-parallel orientation. Virology
254:147–159.Earl, P. L., Doms, R. W., and Moss, B. (1990) Oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein. Proc. Natl. Acad. Sci. USA
87:648–652.Eckert, D. M., Malashkevich, V. N., Hong, L. H., Carr, P. A., and Kim, P. S. (1999) Inhibiting HIV-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. Cell
99:103–115.Elson, H. F., Dimitrov, D. S., and Blumenthal, R. (1994) A trans-dominant mutation in human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp41 inhibits membrane fusion when expressed in target cells. Mol.Membr.Biol. 11:165–169.Epand, R. F., Martin, I., Ruysschaert, J.-M., and Epand, R. M. (1994) Membrane orientation of the SIV fusion peptide determines its effect on bilayer stability and ability to promote membrane fusion. Biochem.Biophys.Res.Commun. 205:.Epand, R. M. (1998) Lipid polymorphism and protein-lipid interactions. Biochim.Biophys.Acta
1376:353–368.Epand, R. M., Epand, R. F., Richardson, C. D., and Yeagle, P. L. (1993) Structural requirements for the inhibition of membrane fusion by carbobenzoxy-D-Phe-Phe-Gly. Biochim.Biophys.Acta. 1152:128–134.Fass, D., Harrison, S. C., and Kim, P. S. (1996) Retrovirus envelope domain at 1.7 angstrom resolution. Nat.Struct.Biol. 3:465–469.Freed, E. O., Delwart, E. L., Buchschacher, G. L., Jr., and Panganiban, A. T. (1992) A mutation in the human immunodeficiency virus type 1 transmembrane glycoprotein gp41 dominantly interferes with fusion and infectivity. Proc.Natl.Acad.Sci.USA
89:70–74.Furuta, R. A., Wild, C. T., Weng, Y., and Weiss, C. D. (1998) Capture of an early fusion-active confirmation of HIV-1 gp41. Nature Struct.Biol. 5:276–279.Gallaher, W. R. (1987) Detection of a fusion peptide sequence in the transmembrane protein of human imunodeficiency virus. Cell
50:327–328.Gallaher, W. R., Ball, J. M., Garry, R. F., Griffin, M. C., and Montelaro, R. C. (1989) A general model for the transmembrane proteins of HIV and other retroviruses. AIDS Res.Hum.Retroviruses
5:431–440.Ghosh, J. K., Ovadia, M., and Shai, Y. (1997) A leucine zipper motif in the ectodomain of Sendai virus fusion protein assembles in solutions and in membranes and specifically binds biologically-active peptides and the virus. Biochemistry
36:1.Ghosh, J. K., Peisajovich, S. G., Ovadia, M., and Shai, Y. (1998) Structure-function study of a heptad repeat positioned near the transmembrane domain of Sendai virus fusion protein which blocks viruscell fusion. J.Biol.Chem. 273:2.Ghosh, J. K. and Shai, Y. (1998) A peptide derived from a conserved domain of Sendai virus fusion protein inhibits virus-cell fusion. A plausible mode of action. J.Biol.Chem. 273:.Ghosh, J. K., and Shai, Y. (1999) Direct evidence that the N-terminal heptad repeat of Sendai virus fusion protein participates in membrane fusion. J.Mol.Biol. 292:531–546.Ghosh, K. J., Peisajovich, S. G., and Shai, Y. (2000) Sendai virus internal fusion peptide: structure and functional characterization and a plausible mode of viral entry inhibition. Biochemistry (in press).Gray, C., Tatulian, S. A., Wharton, S. A., and Tamm, L. K. (1996) Effect of the N-terminal glycine on the secondary structure, orientation and interaction of the influenza hemagglutinin fusion peptide with lipid bilayers. Biophys.J. 70:.Guy, H. R., Durell, S. R., Schoch, C., and Blumenthal, R. (1992) Analyzing the fusion process of influenza hemagglutinin by mutagenesis and molecular modeling. Biophys.J. 62:95–97.Han, X., Steinhauer, D. A., Wharton, S A., and Tamm, L. K. (1999) Interaction of mutant influenza virus hemagglutinin fusion peptides with lipid bilayers: Probing the role of hydrophobic residue size in the central region of the fusion peptide. Biochemistry
38:1.Hanein, D., Geiger, B., and Addahi, L. (1994) Differential adhesion of cells to enantiomorphous crystal surfaces. Science
263:.Harter, C., James, P., Bachi, T., Semenza, G., and Brunner, J. (1989) Hydrophobic binding of the ectodomain of influenza hemagglutinin to membranes occurs through the ''fusion peptide''. J.Biol.Chem. 264:.Hetru, C., Letellier, L., Oren, Z., Hoffmann, J. A., and Shai, Y. (2000) Androctonin, a hydrophilic disulphide-bridged non-haemolytic anti-microbial peptide: a plausible mode of action. Biochem.J. 345:653–664.Hoekstra, D. and Kok, J. W. (1989) Entry mechanism of enveloped viruses. Implications for fusion of intracellular membranes. Biosci.Rep. 9:273–305.Homma, M. and Ohuchi, M. (1973) Trypsin action on the growth of sendai virus in tissue culture cells. J.Virol. 12:.Horvath, C. M. and Lamb, R. A. (1992) Studies on the fusion peptide of a paramyxovirus fusion glycoprotein: roles of conserved residues in cell fusion. J.Virol. 66:.Hsu, M., Scheid, A., and Choppin, P. W. (1981) Activation of the Sendai virus fusion protein (f ) involves a conformational change with exposure of a new hydrophobic region. J.Biol.Chem. 256:.Hughson, F. M. (1995) Structural characterization of viral fusion proteins. Curr.Biol. 5:265–274.Ito, M., Nishio, M., Komada, H., Ito, Y., and Tsurudome, M. (2000) An amino acid in the heptad repeat 1 domain is important for the haemagglutin-neurominidase-independent fusing activity of simian virus 5 fusion protein. J.Gen.Virol. 81:719–727.Jiang, S., Lin, K., Strick, N., and Neurath, A. R. (1993) HIV-1 inhibition by a peptide. Nature
365:113.Jones, P. L., Korte, T., and Blumenthal, R. (1998) Conformational changes in cell surface HIV-1 envelope glycoproteins are triggered by cooperation between cell surface CD4 and co-receptors. J.Biol.Chem. 273:404–409.Joshi, S. B., Dutch, R. E., and Lamb, R. A. (1988) A core trimer of the paramyxovirus fusion protein: parallels to influenza virus hemagglutinin and HIV-1 gp41. Virology
248:20–34.Kelsey, D. R., Flanaghan, T. D., Young, J., and Yeagle, P. L. (1990) Peptide inhibitors of enveloped virus infection inhibit phospholipid vesicle fusion and Sendai virus fusion with phospholipid vesicles. J.Biol.Chem. 265:1.Kilby, J. M. et al. (1998) Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat.Med. 4:.Kliger, Y., Aharoni, A., Rapaport, D., Jones, P., Blumenthal, R., and Shai, Y. (1997) Fusion peptides derived from the HIV type 1 glycoprotein 41 associate within phospholipid membranes and inhibit cell-cell fusion. Structure-function study. J.Biol.Chem. 272:1.Kliger, Y. et al. (2000a). 2nd Frederick workshop on the Cell biology of viral entry. NCI-Frederick Cancer Research and Development Centre. Frederick, USA.Kliger, Y., Pesiajovich, S. G., Blumenthal, R., and Shai, Y. (2000b). Membrane-induced conformational change during the activation of HIV-1 gp41. J.Mol.Biol. (in press).Kliger, Y. and Shai, Y. (2000) Inhibition of HIV-1 entry before gp41 folds into its fusion-active conformation. J.Mol.Biol. 295:163–168.Kliger, Y. et al. (2000c) Mode of action of an antiviral peptide from HIV-1: inhibition at a post lipidmixing stage. J.Biol.Chem. (in press).Kobe, B., Center, R. J., Kemp, B. E., and Poumbourios, P. (1999) Crystal structure of human T cell leukemia virus type 1 gp21 ectodomain crystallized as a maltose-binding protein chimera reveals structural evolution of retroviral transmembrane proteins. Proc.Natl.Acad.Sci.USA
96:.Kozlov, M. M. and Chernomordik, L. V. (1998) A mechanism of protein-mediated fusion: coupling between refolding of the influenza hemagglutinin and lipid rearrangements. Biophys.J. 75:.Lambert, D. M. et al. (1996) Peptides from conserved regions of paramyxovirus fusion (F)proteins are potent inhibitors of viral fusion. Proc.Natl.Acad.Sci.USA
93:.Lear, J. D. and DeGrado, W. F. (1987) Membrane binding and conformational properties of peptides representing the NH2 terminus of influenza HA-2. J.Biol.Chem. 262:.Lemmon, M. A. and Engelman, D. M. (1994). Specificity and promiscuity in membrane helix interactions. Q.Rev.Biophys. 27:157–218.Lemmon, M. et al. (1992) Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. J.Biol.Chem. 267:.Lu, M., Blacklow, S. C., and Kim, P. S. (1995) A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat.Struct.Biol. 2:.Malashkevich, V. N., Chan, D. C., Chutkowski, C. T., and Kim, P. S. (1998) Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: conserved helical interactions underlie the broad inhibitory activity of gp41 peptides. Proc.Natl.Acad.Sci USA
95:.Malashkevich, V. N., Schneider, B. J., McNally, M. L., Milhollen, M. A., Pang, J. X., and Kim, P. S. (1999) Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9 A° resolution. Proc. Natl. Acad. Sci. USA
96:.Martin, I. et al. (1991) Fusogenic activity of SIV (simian immunodeficiency virus) peptides located in the GP32 NH2 terminal domain. Biochem.Biophys.Res.Commun. 175:872–879.Martin, I. et al. (1994) Correlation between fusogenicity of synthetic modified peptides corresponding to the NH2-terminal extremity of simian immunodeficiency virus gp32 and their mode of insertion into the lipid bilayer: an infrared spectroscopy study. J.Virol. 68:.Martin, I., Schaal, H., Scheid, A., and Ruysschaert, J.-M. (1996) Lipid membrane fusion induced by the human immunodeficiency virus type 1 gp41 N-terminal extremity is determined by its orientation in the lipid bilayer. J.Virol. 70:298–304.Merrifield, E. L., Mitchell, S. A., Ubach, J., Boman, H. G., Andreu, D., and Merrifield, R. B. (1995) Denantiomers of 15-residue cecropin A-melittin hybrids. Int. J. Pept. Protein Res. 46:214–220.Milton, R. C., Milton, S. C., and Kent, S. B. (1992) Total chemical synthesis of a D-enzyme: the enantiomers of HIV-1 protease show reciprocal chiral substrate specificity [corrected] [published erratum appears in Science
257:147]. Science
256:.Mu?oz-Barroso, I., Durell, S., Sakaguchi, K., Appella, E., and Blumenthal, R. (1998) Dilation of the human immunodeficiency virus-1 envelope glycoprotein fusion pore revealed by the inhibitory action of a synthetic peptide from gp41. J.Cell Biol. 140:315–323.Nieva, J. L., Nir, S., Muga, A., Goni, F. M., and Wilschut, J. (1994) Interaction of the HIV-1 fusion peptide with phospholipid vesicles: different structural requirements for fusion and leakage. Biochemistry
33:.Owens, B. J., Anantharamaiah, G. M., Kahlon, J. B., Srinivas, R. V., Compans, R. W., and Segrest, J. P. (1990) Apolipoprotein A-I and its amphipathic helix peptide analogues inhibit human imunodeficiency virus-induced syncytium formation. J. Clin. Invest. 86:.Pak, C. C,, Krumbiegel, M., Blumenthal, R., and Raviv, Y. (1994) Detection of influenza hemagglutinin interaction with biological membranes by photosensitized activation of [125I]iodonaphthylazide. J. Biol. Chem. 269:1.Pécheur, E. I., Sainte-Marie, J., Bienvenüe, A., and Hoekstra, D. (1999) Peptides and membrane fusion: towards an understanding of the moelcular mechanism of protein-induced fusion. J.Membr.Biol. 167:1–17.Peisajovich, S. G., Epand, R. F., Pritsker, M., Shai, Y., and Epand, R. M. (2000a) The polar region consecutive to the HIV fusion peptide participates in membrane fusion. Biochemistry
39:.Peisajovich, S. G., Samuel, O., and Shai, Y. (2000b). Paramyxovirus F1 protein has two fusion peptides: Implications for the mechanism of membrane fusion. J.Mol.Biol. 296:.Pereira, F. B., Goni, F. M., and Nieva, J. L. (1995) Liposome destabilization induced by the HIV-1 fusion peptide effect of a single amino acid substitution. FEBS Lett
362:243–246.Pereira, F. B., Goni, F. M., and Nieva, J. L. (1997) Membrane fusion induced by the HIV type 1 fusion peptide: modulation by factors affecting glycoprotein 41 activity and potential anti-HIV compounds. AIDS Res.Hum.Retroviruses
13:.Pinter, A. et al. (1989) Oligomeric structure of gp41, the transmembrane protein of human immunodeficiency virus type 1. J.Virol. 63:.Pritsker, M., Jones, P., Blumenthal, R., and Shai, Y. (1998) A synthetic all D-amino acid peptide corresponding to the N-terminal sequence of HIV-1 gp41 recognizes the wild-type fusion peptide in the membrane and inhibits HIV-1 envelope glycoprotein-mediated cell fusion. Proc.Natl.Acad.Sci.USA
95:.Pritsker, M., Rucker, J., Hoffman, T. L., Doms, R. W., and Shai, Y. (1999) Effect of nonpolar substitutions of the conserved Phe11 in the fusion peptide of HIV-1 gp41 on its function, structure, and organization in membranes. Biochemistry
38:1.Rabenstein, M., and Shin, Y. K. (1995) A peptide from the heptad repeat of human immunodeficiency virus gp41 shows both membrane binding and coiled-coil formation. Biochemistry
34:1.Rapaport, D., Ovadia, M., and Shai, Y. (1995) A synthetic peptide corresponding to a conserved heptad repeat domain is a potent inhibitor of Sendia virus-cell fusion: An emerging similarity with functional domains of other viruses. EMBO J. 14:.Rapaport, D. and Shai, Y. (1994) Interaction of fluorescently labeled analogues of the amino-terminal fusion peptide of Sendai virus with phospholipid membranes. J.Biol.Chem. 269:1.Reitter, J. N., Sergel, T., and Morrison, T. G. (1995) Mutational analysis of the leucine zipper motif in the Newcastle disease virus fusion protein. J.Virol. 69:.Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C., and Harrison, S. C. (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution [see comments]. Nature
375:291–298.Richardson, C. D., Scheid, A., and Choppin, P. W. (1980) Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1 or HA2 viral polypeptides Virology
105:205–222.Ruigrok, R. W. et al. (1988) Studies on the structure of the influenza virus hemagglutinin at the pH of membrane fusion. J.Gen.Virol. 69:.Ruiz-Arguello, M. B., Goni, F. M., Pereira, F. B., and Nieva, J. L. (1998) Phosphatidylinositol-dependent membrane fusion induced by a putative fusogenic sequence of Ebola virus. J.Virol. 72:.Salzwedel, K., West, J. T., and Hunter, E. (1990) A conserved tryptophan-rich motif in the membraneproximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Envmediated fusion and virus infectivity. J.Virol. 73:.Schawaller, M., Smith, G. E., Skehel, J. J., and Wiley, D. C. (1989) Studies with crosslinking reagents on the oligomeric structure of the Env glycoprotein of HIV. Virology
172:367–369.Scheid, A. and Choppin, P. W. (1977) Two disulfide-linked polypeptide chains constitute the active F protein of paramyxoviruses. Virology
80:54–60.Sergel, T. A., McGinnes, L. W., and Morrison, T. G. (2000) A single amino acid change in the Newcastle disease virus fusion protein alters the requirements for HN protein in fusion. J.Virol. 74:.Shai, Y. (1995) Molecular recognition between membrane-spanning polypeptides. Trends. Biochem. Sci. 20:460–464.Simmerman, H. K. B., Kobayashi, Y. M., Autry, J. M., and Jones, L. R. (1996) A leucine zipper stabilizes the pentameric membrane domain of phospholamban and forms coiled-core pore structure. J. Biol. Chem. 271:.Skehel, J. J. et al. (1982) Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc.Natl.Acad.Sci.USA
79:968–972.Skehel, J. J. and Wiley, D. C. (1998) Coiled coils in both intracellular vesicle and viral membrane fusion. Cell
95:871–874.Slepushkin, V. A. et al. (1993) Inhibition of human immunodeficiency virus type 1 (HIV-1) penetration into target cells by synthetic peptides mimicking the N-terminus of the HIV-1 transmembrane glycoprotein. Virology
194:294–301.Slepushkin, V. et al. (1990) Interaction of human immunodeficiency virus (HIV-1) fusion peptides with artificial lipid membranes. Biochem.Biophys.Res.Commun.:952–957.Stegmann, T. (1993) Membrane fusion-inhibiting peptides do not inhibit influenza virus fusion or the Ca(2C)-induced fusion of negatively charged vesicles. J.Biol.Chem. 268:2.Stegmann, T., Bartoldus, I., and Zumbrunn, J. (1995) Influenza hemagglutinin-mediated membrane fusion: influence of receptor binding on the lag phase preceding fusion. Biochemistry
34:.Stegmann, T., Doms, R. W., and Helenius, A. (1989) Protein-mediated membrane fusion. Annu. Rev. Biophys. Chem.
18:187–211.Tatulian, S. A., Hinterdorfer, P., Baber, G., and Tamm, L. K. (1995) Influenza hemagglutinin assumes a tilted conformation during membrane fusion as determined by attenuated total reflection FTIR spectroscopy. EMBO J. 14:.Tsurodome, M., Glück, R., Graf, R., Falchetto, R., Schaller, U., and Brunner, J. (1992) Lipid interactions of the hemagglutinin HA2 NH2-terminal segment during influenza virus-induced membrane fusion. J.Biol.Chem. 267:2.Vanini, S., Longhi, R., Lazzarin, A., Vigo, E., Siccardi, A. G., and Viale, G. (1993) Discrete regions of HIV-1 gp41 defined by syncytia-inhibiting affinity purified human antibodies. AIDS
7:167–174.Von Heijne, G. (1994) Membrane proteins: From sequence to structure., Annu. Rev. Biophys. Biomol. Struct.
23:167–192.Voneche, V. et al. (1992) Fusogenic segments of bovine leukemia virus and simian immunodeficiency virus are interchangeable and mediate fusion by means of oblique insertion in the lipid bilayer of their target cells. Proc.Natl.Acad.Sci.USA
89:.Wade, D. et al. (1990) All D-amino acid-containing channel-forming antibiotic peptides. Proc. Natl. Acad. Sci. USA
87:.Weiss, C. D., Levy, J. A., and White, J. M. (1990) Oligomeric organization of gp120 on infections human immunodeficiency virus type 1 particles. J.Virol. 64:.Weissenhorn, W., Carfi, A., Lee, K. H., Skehel, J. J., and Wiley, D. C. (1998) Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Mol. Cell
2:605–616.Weissenhorn, W., Dessen, A., Calder, L. J., Harison, S. C., Skehel, J. J., and Wiley, D. C. (1999) Structural basis for membrane fusion by enveloped viruses. Mol. Membr. Biol. 16:3–9.Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J., and Wiley, D. C. (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature
387:426–430.Weissenhorn, W. et al. (1996) The ectodomain of HIV-1 Env subunit gp41 forms a soluble, alpha-helical, rod-like oligomer in the absence of gp120 and the N-terminus fusion peptide. EMBO J. 15:.Wharton, S. A., Martin, S. R., Ruigrok, R. W., Skehel, J. J., and Wiley, D. C. (1988) Membrane fusion by peptide analogues of influenza virus hemagglutinin. J.Gen.Virol. 69:.Wharton, S. A., Skehel, J. J., and Wiley, D. C. (2000) Temperature dependence of fusion by Sendai virus. Virology
271:71–78.White, J. M. (1990) Viral and cellular membrane fusion proteins. Ann. Rev. Physiol. 52:75–97.White, J. M. (1992) Membrane fusion. Science
258:917–924.Wild, C. et al. (1994a) Propensity for a leucine zipper-like domain of human immunodeficiency virus type 1 gp41 to form oligomers correlates with a role in virus-induced fusion rather than assembly of the glycoprotein complex. Proc.Natl.Acad.Sci.USA
91:1.Wild, C., Greenwell, T., and Matthews, T. (1993) A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell-cell fusion. AIDS Res.Hum.Retroviruses
9:.Wild, C., Greenwell, T., Shugars, D., Rimsky-Clarke, L., and Matthews, T. (1995) The inhibitory activity of an HIV type 1 peptide correlates with its ability to interact with a leucine zipper structure. AIDS Res.Hum.Retroviruses
11:323–325.Wild, C., Oas, T., McDanal, C., Bolognesi, D., and Matthews, T. (1992) A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc.Natl.Acad.Sci.USA
89:1.Wild, C. T., Shugars, D. C., Greenwell, T. K., McDanal, C. B., and Matthews, T. J. (1994b) Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc.Natl.Acad.Sci.USA
91:.Yang, Z. N., Mueser, T. C., Kaufman, J., Stahl, S. J., Wingfield, P. T., and Hyde, C. C. (1999) The crystal structure of the SIV gp41 ectodomain at 1.47 A resolution. J. Struct. Biol. 126:131–144.Yeagle, P. L., Epand, R. M., Richardson, C. D., and Flanagan, T. D. (1991) Effects of the 'fusion peptide' from measles virus on the structure of N-methyl dioleoylphosphatidylethanolamine membranes and their fusion with Sendai virus. Biochim.Biophys.Acta. 1065:49–53.Yeagle, P. L., Young, J., Hui, S. W. & Epand, R. M. (1992) On the mechanism of inhibition of viral and vesicle membrane fusion by carbobenzoxy-D-phenylalanyl-L-phenylalanylglycine. Biochemistry
31:.Young, J. K., Hicks, R. P., Wright, G. E., and Morrison, T. G. (1997) Analysis of a peptide inhibitor of paramyxovirus (NDV) fusion using biological assays, NMR, and molecular modeling. Virology
238:291–304.Young, J. K., Li, D., Abramowitz, M. C., and Morrison, T. G. (1999) Interaction of peptides with sequences from the Newcastle disease virus fusion protein heptad repeat regions. J.Virol. 73:.Yu, Y. G., King, D. S., and Shin, Y. K. (1994) Insertion of a coiled-coil peptide from influenza virus hemagglutinin into membranes. Science
266:274–276.Zimmerberg, J., Curran, M., and Cohen, F. S. (1991) A lipid_protein complex hypothesis for exocytotic fusion pore formation. Ann. NY Acad. Sci. 635:307–317.Yechiel Shai11.Department of Biological ChemistryThe Weizmann Institute of ScienceRehovotIsrael. E-mail
We use cookies to improve your experience with our site.

我要回帖

更多关于 一键获取宽带账号密码 的文章

 

随机推荐