问下,国内推动企业高质量发展节流阀生产企业是哪个呢?

手机客户端
微信公众号
三菱帕杰罗电控节流阀电动机继电器在哪?节流阀是不是节气门?
电控节流阀电动机继电器在哪?节流阀是不是节气门?
提问者:17网友|分类:
|浏览:670|发表于: 00:09:16
请您输入文字内容
下次自动登录
四位验证码 :
微信 扫二维码绑定账号
绑定微信更及时获取活动地址等详细信息
我已经看过并同意
客服电话:
微信公众号
优惠早知道[转载]电梯基础知识3(共利电梯网--电梯问问)
141、接触器的定义:
接触器(Contactor)是指工业电中利用线圈流过电流产生磁场,使触头闭合,以达到控制负载的电器。接触器由电磁系统(铁心,静铁心,电磁线圈)触头系统(常开触头和常闭触头)和灭弧装置组成。其原理是当接触器的电磁线圈通电后,会产生很强的磁场,使静铁心产生电磁吸力吸引衔铁,并带动触头动作:常闭触头断开;常开触头闭合,两者是联动的。当线圈断电时,电磁吸力消失,衔铁在释放弹簧的作用下释放,使触头复原:常闭触头闭合;常开触头断开。
  在电工学上,因为可快速切断交流与直流主回路和可频繁地接通与大电流控制(某些型别可达800安培)电路的装置,所以经常运用于电动机做为控制对象﹐也可用作控制工厂设备﹑电热器﹑工作母机和各样电力机组等电力负载,接触器不仅能接通和切断电路,而且还具有低电压释放保护作用。接触器控制容量大,适用于频繁操作和远距离控制。是自动控制系统中的重要元件之一。
  在工业电气中,接触器的型号很多,电流在5A-1000A的不等,其用处相当广泛。
  海关HS编码:(主电路电压&=60V的接触器),V&主电路电压&=1000V的接触器),(主电路电压&1000V的接触器)
  交流接触器利用主接点来开闭电路,用辅助接点来导通控制回路。
  主接点一般是常开接点,而辅助接点常有两对常开接点和常闭接点,小型的接触器也经常作为中间继电器配合主电路使用。
  交流接触器的接点,由银钨合金制成,具有良好的导电性和耐高温烧蚀性。
  交流接触器动作的动力源于交流通过带铁芯线圈产生的磁场,电磁铁芯由两个「山」字形的幼硅钢片叠成,其中一个固定铁芯,套有线圈,工作电压可多种选择。为了使磁力稳定,铁芯的吸合面加上短路环。交流接触器在失电后,依靠弹簧复位。
  另一半是活动铁芯,构造和固定铁芯一样,用以带动主接点和辅助接点的闭合断开。
  20安培以上的接触器加有灭弧罩,利用电路断开时产生的电磁力,快速拉断电弧,保护接点。
  接触器具可高频率操作,做为电源开启与切断控制时﹐最高操作频率可达每小时1200次。
  接触器的使用寿命很高﹐机械寿命通常为数百万次至一千万次,电寿命一般则为数十万次至数百万次。
  交流接触器制作为一个整体,外形和性能也在不断提高,但是功能始终不变。无论技术的发展到什麼程度,普通的交流接触器还是有其重要的地位。
  空气式电磁接触器
  电磁接触器(英文:Magnetic
Contactor)主要由接点系统、电磁操动系统、支架、辅助接点和外壳(或底架)组成。
  因为交流电磁接触器的线圈一般采用交流电源供电,在接触器激磁之后,通常会有一声高分贝的"咯"的噪音,这也是电磁式接触器的特色。
  80年代后,各国研究交流接触器电磁铁的无声和节电,基本的可行方案之一是将交流电源用变压器降压后﹐再经内部整流器转变成直流电源后供电,但此复杂控制方式并不多见。
  真空接触器 :真空接触器是接点系统采用真空消磁室的接触器。
  半导体接触器 :半导体接触器是一种通过改变电路回路的导通状态和断路状态而完成电流操作的接触器。
  永磁接触器:永磁交流接触器是利用磁极的同性相斥、异性相吸的原理,用永磁驱动机构取代传统的电磁铁驱动机构而形成的一种微功耗接触器。
  通用接触器可大致分以下两类。
  1交流接触器。主要有电磁机构。触头系统。灭弧装置等组成。。常用的是CJ10。CJ12。CJ12B等系列。。。
  2直流接触器,一般用于控制直流电器设备,线圈中通以直流电,直流接触器的动作原理和结构基本上与交流接触器是相同的。
按主触点连接回路的形式分
  直流接触器   交流接触器
按操作机构分
  电磁式接触器   永磁式接触器
  永磁交流接触器是利用磁极的同性相斥、异性相吸的原理,用永磁驱动机构取代传统的电磁铁驱动机构而形成的一种微功耗接触器。国内成熟的产品型号:CJ20J、NSFC1、NSFC2、NSFC3、NSFC4、NSFC5、NSFC12、NSFC19、CJ40J、NSFMR。
  安装在接触器联动机构上极性固定不变的永磁铁,与固化在接触器底座上的可变极性软磁铁相互作用,从而达到吸合、保持与释放的目的。软磁铁的可变极性是通过与其固化在一起的电子模块产生十几到二十几毫秒的正反向脉冲电流,而使其产生不同的极性。根据现场需要,用控制电子模块来控制设定的释放电压值,也可延迟一段时间再发出反向脉冲电流,以达到低电压延时释放或断电延时释放的目的,使其控制的电机免受电网晃电而跳停,从而保持生产系统的稳定。
按驱动方式分
  液压式接触器  气动式接触器  电磁式接触器
按动作方式分
  直动式接触器  转动式接触器
接触器与继电器的区别
  接触器原理与电压继电器相同,只是接触器控制的负载功率较大,故体积也较大。 交流接触器广泛用作电力的开断和控制电路。
  继电器是一种小信号控制电器,它用于电机保护或各种生产机械自动控制。
接触不牢靠的原因及处理方法
  接触器的触头接触不牢靠的原因及处理方法
  触头接触不牢靠会使动静触头间接触电阻增大,导致接触面温度过高,使面接触变成点接触,甚至出现不导通现象。造成此故障的原因有:
  (1)触头上有油污、花毛、异物。   (2)长期使用,触头表面氧化。
  (3)电弧烧蚀造成缺陷、毛刺或形成金属屑颗粒等。  (4)运动部分有卡阻现象。
  处理方法有:
  (1)对于触头上的油污、花毛或异物,可以用棉布蘸酒精或汽油擦洗即可。
  (2)如果是银或银基合金触头,其接触表面生成氧化层或在电弧作用下形成轻微烧伤及发黑时,一般不影响工作,.可用酒精和汽油或四氯化碳溶液擦洗。即使触头表面被烧得凸凹不平,也只能用细锉清除四周溅珠或毛刺,切勿锉修过多,以免影响触头寿命。
  对于铜质触头,若烧伤程度较轻,只需用细锉把凸凹不平处修理平整即可,但不允许用细砂布打磨,以免石英砂粒留在触头间,而不能保持良好的接触;若烧伤严重,接触面低落,则必须更换新触头。
  (3)运动部分有卡阻现象,可拆开检修。
  直流接触器型号的含义交流接触器的型号含义交流接触器使用中注意的事项
  1、励磁线圈电压应为85%~105%Un。  2、铁芯上短路环应完好。
 3、铁芯、触点支持件等活动部件动作应灵活。 4、铁芯、衔铁端面接触良好、无异物。
 5、触点表面接触良好,有一定的超程和耐压力。
 6、操作频率应在允许范围内。
142、电梯井的定义:就是安装电梯的井道。
  电梯井道的尺寸是按照电梯选型来确定的,井壁上安装电梯轨道和配重轨道,预留的门洞安装电梯门。井道顶部有电梯机房
143、电梯导靴的定义:1.名词解释
  是电梯导轨与轿厢之间的可以滑动的尼龙块,叫导靴,它可以将轿厢固定在导轨上,让轿厢只可以上下移动,导靴上部还有油杯,减少靴衬与导轨的摩擦力
  电梯导靴分滚动导靴和滑动导靴!
  1 滚动导靴 是用3个或6个轮子卡在道跪上 一般是用于速度在2米以上的电梯!
  2 滑动导靴 就是一个滑曹卡在 道跪上《就是凹字曹》 一般是用于速度在2米以下的电梯!
144、联轴器的定义:联轴器是用来联接不同机构中的两根轴(主动轴和从动轴)使之共同旋转以传递扭矩的机械零件。在高速重载的动力传动中,有些联轴器还有缓冲、减振和提高轴系动态性能的作用。联轴器由两半部分组成,分别与主动轴和从动轴联接。一般动力机大都借助于联轴器与工作机相联接。
联轴器种类繁多,按照被联接两轴的相对位置和位置的变动情况,可以分为:①固定式联轴器。主要用于两轴要求严格对中并在工作中不发生相对位移的地方,结构一般较简单,容易制造,且两轴瞬时转速相同,主要有凸缘联轴器、套筒联轴器、夹壳联轴器等。②可移式联轴器。主要用于两轴有偏斜或在工作中有相对位移的地方,根据补偿位移的方法又可分为刚性可移式联轴器和弹性可移式联轴器。刚性可移式联轴器利用联轴器工作零件间构成的动联接具有某一方向或几个方向的活动度来补偿,如牙嵌联轴器(允许轴向位移)、十字沟槽联轴器(用来联接平行位移或角位移很小的两根轴)、万向联轴器(用于两轴有较大偏斜角或在工作中有较大角位移的地方)、齿轮联轴器(允许综合位移)、链条联轴器(允许有径向位移)等,弹性可移式联轴器(简称弹性联轴器)利用弹性元件的弹性变形来补偿两轴的偏斜和位移,同时弹性元件也具有缓冲和减振性能,如蛇形弹簧联轴器、径向多层板簧联轴器、弹性圈栓销联轴器、尼龙栓销联轴器、橡胶套筒联轴器等。联轴器有些已经标准化。选择时先应根据工作要求选定合适的类型,然后按照轴的直径计算扭矩和转速,再从有关手册中查出适用的型号,最后对某些关键零件作必要的验算。
分类还包括球笼式万向联轴器 圆锥碗簧联轴器 SWP、SWC型十字轴式万向联轴器十字包94)
  矫正机用十字轴式万向联轴器(JB/T) 弹簧管联轴器
WS、WSD型十字轴式万向联轴器(JB/T5901-91)
  WSH型滑动轴承十字轴式万向联轴器 ML型薄膜联轴器(SJ2127-82) SWZ型整体轴承座十字轴式万向联轴器93
  联轴器属于机械通用零部件范畴,用来联接不同机构中的两根轴(主动轴和从动轴)使之共同旋转以传递扭矩的机械零件。在高速重载的动力传动中,有些联轴器还有缓冲、减振和提高轴系动态性能的作用。联轴器由两半部分组成,分别与主动轴和从动轴联接。一般动力机大都借助于联轴器与工作机相联接,是机械产品轴系传动最常用的联接部件。20世纪后期国内外联轴器产品发展很快,在产品设计时如何从品种甚多、性能各异的各种联轴器中选用能满足机器要求的联轴器,对多数设计人员来讲,始终是一个困扰的问题。常用联轴器有膜片联轴器,齿式联轴器,梅花联轴器,滑块联轴器,鼓形齿式联轴器,万向联轴器,安全联轴器,弹性联轴器及蛇形弹簧联轴器。
典型联轴器
凸缘式联轴器
  特点:构造简单,成本低,可传递较大转矩。不允许两轴有相对位移,无缓冲。
  用途:在转速低,无冲击,轴的刚性大,对中性较好的场合应用较广。
滑块联轴器
半联轴器1.3上的凹槽与中间滑块的凸榫→移动副→可补偿两轴偏移
  特点、应用:
  无缓冲,移动副应加润滑→用于低速传动
弹性联轴器
  特点:缓冲吸振,可补偿较大的轴向位移,微量的
  径向位移和角位移。
  应用:正反向变化多,启动频繁的高速轴。
安全联轴器
  在结构上的特点是,存在一个保险环节(如销钉可动联接等),其只能承受限定载荷。当实际载荷超过事前限定的载荷时,保险环节就发生变化,截断运动和动力的传递,从而保护机器的其余部分不致损坏,即起安全保护作用。起动安全联轴器:除了具有过载保护作用外,还有将机器电动机的带载起动转变为近似空载起动的作用。
刚性联轴器
  刚性联轴器不具有补偿被联两轴轴线相对偏移的能力,也不具有缓冲减震性能;但结构简单,价格便宜。只有在载荷平稳,转速稳定,能保证被联两轴轴线相对偏移极小的情况下,才可选用刚性联轴器。
挠性联轴器
  具有一定的补偿被联两轴轴线相对偏移的能力,最大量随型号不同而异。
  无弹性元件的挠性联轴器:承载能力大,但也不具有缓冲减震性能,在高速或转速不稳定或经常正、反转时,有冲击噪声。适用于低速、重载、转速平稳的场合。
  非金属弹性元件的挠性联轴器在转速不平稳时有很好的缓冲减震性能;但由于非金属(橡胶、尼龙等)弹性元件强度低、寿命短、承载能力小、不耐高温和低温,故适用于高速、轻载和常温的场合。
  金属弹性元件的挠性联轴器:除了具有较好的缓冲减震性能外,承载能力较大,适用于速度和载荷变化较大及高温或低温场合。
膜片型联轴器
  单膜片联轴器G8S,特性:大扭矩承载、高扭矩刚性和卓越灵敏度;免维护、超强抗油和耐腐蚀性;零回转间隙;体积小巧的联轴器,总长度短;不锈钢膜片补偿角向轴向偏差
;顺时针与逆时针回转特性完全相同双膜片联轴器G8L,特性:双膜片不锈纲膜片容许偏角,偏心及轴向偏差;免维护、超强抗油和耐腐蚀性;零回转间隙;体积小巧的联轴器,总长度长;不锈钢膜片补偿角向轴向偏差
;顺时针与逆时针回转特性完全相同
齿式联轴器
  GICL鼓型齿式联轴器
  GICLZ鼓形齿式联轴器
  GⅡCL鼓形齿式联轴器
  GⅡCLZ鼓形齿式联轴器
  GCLD鼓型齿式联轴器
  TGL尼龙内齿圈联轴器
轮胎式联轴器
  UL 型轮胎式联轴器
  LA 型轮胎式联轴器
  LB 型轮胎式联轴器
  DL 多角形橡胶联轴器
星形弹性联轴器
  XL 系列星形弹性联轴器 
  LXD单法兰星形联轴器
  XLS双法兰型星形联轴器
  LXZ带制动轮星形联轴器
  LXP带制动盘型联轴器
  LXT接中间套型联轴器
  LXJ接中间轴星形联轴器 
  LXQ接中间轴球铰联轴器
梅花形弹性联轴器
  LM(原ML)梅花联轴器
  LMS(原MLS)梅花联轴器 
  LMD(原MLZ)梅花联轴器
  LMZI(MLLI)梅花联轴器 
  LMZⅡ(MLLⅡ)联轴器
万向联轴器
  万向联轴器有多种结构型式,例如:十字轴式、球笼式、球叉式、凸块式、球销式、球铰式、球铰柱塞式、三销式、三叉杆式、三球销式、铰杆式等,最常用的为十字轴式,其次为球笼龙,万向联轴器的共同特点是角向补偿量较大,不同结构型式万向联轴器两轴线夹角不相同,一般≤5°-45°之间。万向联轴器利用其机构的特点,使两轴不在同一轴线,存在轴线夹角的情况下能实现所联接的两轴连续回转,并可靠地传递转矩和运动。万向联轴器最大的特点是具有较大的角向补偿能力,结构紧凑,传动效率高。在实际应用中根据所传递转矩大小分为重型、中型、轻型和小型。
尺寸、安装与维护
  联轴器外形尺寸,即最大径向和轴向尺寸,必须在机器设备允许的安装空间以内。应选择装拆方便、不用维护、维护周期长或维护方便、更换易损件不用移动两轴、对中调整容易的联轴器。
  大型机器设备调整两轴对中较困难,应选择使用耐久和更换易损件方便的联轴器。金属弹性元性挠性联轴器一般比非金属弹性元件挠性联轴器的使用寿命长。需密封润滑和使用不耐久的联轴器,必然增加维护工作量。对于长期连续运转和经济效益较高的场合,例如我国冶金企业的轧机传动系统高速端,目前普遍采用的是齿式联轴器,齿式联轴器虽然理论上传递转矩大,但必须在润滑和密封良好的条件下才能耐久工作。且需经常检查密封状况,注润滑油或润滑脂,维护工作量大,增加了辅助工时,减少了有效工作时间,影响生产效益。国际上工业发达国家,已普通选用使用寿命长、不用润滑和维护的膜片联轴顺取代鼓形齿式联轴器,不仅提高了经济效益,还可净化工作环境。在轧机传动系统选用我国研制的弹性活销联轴器和扇形块弹性联轴器,不仅具有膜片联轴器的优点,而且缓冲减振效果好,价格更便宜。
  联轴器于各种不同主机产品配套使用,周围的工作环境比较复杂,如温度、湿度、水、蒸汽、粉尘、砂子、油、酸、碱、腐蚀介质、盐水、辐射等状况,是选择联轴器时必须考虑的重要因素之一。对于高温、低温、有油、酸、碱介质的工作质量,不宜选用以一般橡胶为弹性元件材料的挠性联轴器,应选择金属弹性元件挠性联轴器,例如膜片联轴器、蛇形弹簧联轴器等。
  小转矩和以传递运动为主的轴系传动,要求联轴器具有较高的传动精度,宜选用非金属弹性元件的挠性联轴器。大转矩和传递动力的轴系传动,对传动精度没有要求,高转速时,应避免选用金属弹性元件弹性联轴器和可动元件之间的间隙的挠性联轴器,宜选用传动精度高的膜片联轴器。
选用标准联轴器
  设计人员在选择联轴器时首先应在已经制定为国家标准、机械行业标准以及获国家专利的联轴器中选择,只有在现有标准联轴器和专利联轴器不能满足设计需要时才需自己设计联轴器。
选择品种、型式
  了解联轴器(尤其是挠性联轴器)在传动系统中的综合功能,从传动系统总体设计考虑,选择联轴器品种、型式。根据原动机类别和工作载荷类别、工作转速、传动精度、两轴偏移状况、温度、湿度、工作环境等综合因素选择联轴器的品种。根据配套主机的需要选择联轴器的结构型式,当联轴器与制动器配套使用时,宜选择带制动轮或制动盘型式的联轴器;需要过载保护时,宜选择安全联轴器;与法兰联接时,宜选择法兰式;长距离传动,联接的轴向尺寸较大时,宜选择接中间轴型或接中间套型。
  传动系统中动力机的功率应大于工件机所需功率。根据动力机的功率和转速可计算得到与动力机相联接的高速端的理论短矩T;根据工况系数K及其他有关系数,可计算联轴器的计算转矩Tc,。联轴器T与n成反比,因此低速端T大于高速端T。
  根据计算转矩Tc,从标准系列中可选定相近似的公称转矩Tn,选型时应满足Tn≥Tc。初步选定联轴器型号(规格),从标准中可查得联轴器的许用转速[n]和最大径向尺寸D、轴向尺寸L0,就满足联轴器转速n≤[n]。
  初步选定的联轴器联接尺寸,即轴孔直径d和轴孔长度L,应符合主、从动端轴径的要求,否则还要根据轴径d调整联轴器的规格。主、从动端轴径不相同是普通现象,当转矩、转速相同,主、从动端轴径不相同时,应按大轴径选择联轴器型号。新设计的传动系统中,应选择符合GB/T3852中规定的七种轴孔型式,推荐采用J1型轴孔型式,以提高通用性和互换性,轴孔长度按联轴器产品标准的规定。
选择联接型式
  联轴器联接型式的选择取决于主、从动端于轴的联接型式,一般采用键联接,为统一键联接型式及代号,在GB/T3852中规定了七种键槽型式,四种无键联接,用得较多的是A型键。
选定品种、式、规格(型号)
  根据动力机和联轴器载荷类别、转速、工作环境等综合因素,选定联轴器品种;根据联轴器的配套、联接情况等因素选定联轴器型式;根据公称转矩、轴孔直径与轴孔长度选定规格(型号)。为了保证轴和键的强度,在选定联轴器型号(规格)后,应对轴和键强度做校核验算,以最后确定联轴器的型号。
联轴器产品标准(通用)
刚性联轴器标准
  (1)BG/T
凸缘联轴器(2)JB/T
平行轴联轴器型式基本参数尺寸
无弹性元件挠性联轴器标准
  (1)JB/T
SWP型部分轴承座十字轴式万向联轴器(代替JB 3241-83)(2)JB/T
SWZ型整体轴承座十字轴式万向联轴器(代替JB 3242-83)(3)JB/T
SWC型整体叉头十字轴式万向联轴器(4)JB/T
SWP、SWC型十字轴式万向联轴器十字包型式与尺寸(5)JB/T
十字轴万向联轴器(6)GB/T
球笼式同步万万向联轴器型式、基本参数和主要尺寸(7)BG/T
球笼式同步万向联轴器 试验方式(8)JB/T
重型机械用球笼式同步万向联轴器(9)JB/T
球铰式万向联轴器(10)JB/T
TGL鼓形齿式联轴器(11)JB/T
WGP型带制动盘鼓形齿式联轴器型式、参数和尺寸(12)JB/T
WGC型带制动盘鼓形齿式联轴器型式、参数和尺寸(13)JB/T
WGZ型带制动盘鼓形齿式联轴器型式、参数和尺寸(14)JB/T
WGT型带制动盘鼓形齿式联轴器型式、参数和尺寸(15)JB/T 9 GCLD型鼓形齿式联轴器(代替ZBJ
19013-89)(16)JB/T 9 GICL、GIICL型鼓形齿式联轴器(代替ZBJ
19013-89)(17)JB/T 9 GICLZ、GIICLZ型鼓形齿式联轴器(代替ZBJ
19014-89)(18)JB/T
WGJ型接中间轴鼓形齿式联轴器(19)GB/T
滚子链联轴器
金属弹性元件弹性联轴器标准
  (1)GB/T
弹性阻尼簧片联轴器(2)GB/T
挠性杆联轴器(3)JB/T
膜片联轴器(代替ZB/T J19022-90)(4)JB/T
蛇形弹簧联轴器(代替ZB/T
J19023-90)
非金属弹性元件弹性联轴器标准
  (1)BG/T
弹性环联轴器(代替GB 2496-81)(2)BG/T
弹性套柱销联轴器(3)BG/T
弹性柱销联轴器(4)BG/T
弹性柱销齿式联轴器(5)BG/T
梅花形弹性联轴器(6)BG/T
轮胎式联轴器(7)BG/T
芯型弹性联轴器(8)JB/T
H型弹性块联轴器(9)JB/T
多角形橡胶联轴器(10)JB/T
径向弹性柱销联轴器(11)JB/T
LAK鞍形块弹性联轴器(12)JB/T
弹性块联轴器(代替ZBJ 19029-90)
安全联轴器标准
  (1)JB/T
钢砂式安全联轴器(2)JB/T
钢球式安全联轴器(3)JB/T
AMN内张摩擦式安全联轴器(4)JB/T
AYL型液压安全联轴器(5)JB/T
蛇形弹簧安全联轴器
  联轴器品种、型式、规格很多,在正确理解品种、型式、规格各自概念的基础上,根据传动系统的需要来选择联轴器,首先从已经制订为标准的联轴器中选择,目前我国制订为国标和行标的有十几种,这些标准联轴器绝大多数是通用联轴器,每一种联轴器都有各自的特点和适用范围,基本能够满足多种工况的需要,一般情况下设计人员无需自行设计联轴器,只有在现有标准联轴器不能满足需要时才需自行设计联轴器。标准联轴器选购方便,价格比自行设计的非标准联轴器要便宜很多。在众多的标准联轴器中,正确选择适合自己需要的最佳联轴器,关系到机械产品轴系传动的工作性能、可靠性、使用寿命、振动、噪声、节能、传动效率、传动精度、经济性等一系列问题,也关系到机械产品的质量。
  设计人员在选用联轴器时应立足于从轴系传动系统的角度需要来选择联轴器,应避免单纯的只考虑主、从动端联接选择联轴器。
动力机的机械特性
  动力机到工作时之间,通过一个或数个不同品种或不同型式、规格的联轴器将主、从动端联接起来,形成轴系传动系统。在机械传动中,动力机不外乎电动机、内燃机和汽轮机。由于动力机工作原理和结构不同,其机械特性差别很大,有的运转平稳,有的运转时有冲击,对传动系统形成不等的影响。
  动力机的机械特性对整个传动系统有一定的影响,不同类型的动力机,由于其机械特性不同,应选取相应的动力机系数KW,选择适合于该系统的最佳联轴器。动力机的类别是选择联轴器品种的基本因素;动力机的功率是确定联轴器的规格大小的主要依据之一,与联轴器转矩成正比。
  固定的机械产品传动系统中的动力机大都是电动机,运行的机械产品传动系统(例如般舶、各种车辆等)中的动力机多为内燃机,当动力机为缸数不同的内燃机时,必须考虑扭振对传动系统的影响,这种影响因素与内燃机的缸数、各缸是否正常工作有关。此时一般应选用弹性联轴器,以调整轴系固有频率,降低扭振振幅,从而减振、缓冲、保护传动装置部件,改善对中性能,提高输出功率的稳定性。
  由于结构和材料不同,用于各个机械产品传动系统的联轴器,其承载能力差异很大。载荷类别主要是针对工作机的工作载荷的冲击、振动、正反转、制动、频繁启动等原因而形成不同类别的载荷。为便于选用计算,将传动系统的载荷分为四类。
  传统系统的载荷类别是选择联轴器品种的基本依据。冲击、振动和转知变化较大的工作载荷,应选择具有弹性元件的挠性联轴器即弹性联轴器,以缓冲、减振、补偿轴线偏移,改善传动系统工作性能。起动频繁、正反转、制动时的转矩是正常平稳工作时转矩的数倍,是超载工作,必然缩短联轴器弹性元件使用寿命,联轴器只允许短时超载,一般短时超载不得超过公称转矩的2~3倍,即[Tmax]≥2~3Tn。
  低速重载工况应避免选用只适用于中小功率的联轴器,例如:弹性套柱销联轴器、芯型弹性联轴器、多角形橡胶联轴器、轮胎式联轴器等;需控制过载安全保护的轴系,宜选用安全联轴器;载荷变化较大的并有冲击、振动的轴系,宜选择具有弹性元件且缓冲和减振效果较好的弹性联轴器。金属弹性联轴器承载能力高于非金属弹性元件弹性联轴器;弹性元件受挤压的弹性联轴器可靠性高于弹性元件受剪切的弹性联轴器。
  联轴器的许用转速范围是根据联轴器不同材料允许的线速度的最大外缘尺寸,经过计算而确定。不同材料和品种、规格的联轴器许用转速范围不相同,改变联轴器的材料可提高联轴器许用转速范围,材料为钢的许用转速大于材料为铸铁的许用转速。
所联两轴相对位移
  联轴器所联两轴由于制造误差、装配误差、安装误差、轴受载而产生和变形、基座变形、轴承磨损、温度变化、部件之间的相对运动等多种因素而产生相对位移。一般情况下,两轴相对位移是难以避免的,但不同工况条件下的轴系传动所产生态平衡位移方向,即轴向、径向角向以及位移量的大小有所不同。只有挠性联轴器才具有补偿两轴相对位移的性能,因此在实际应用中大量选择挠性联轴器。刚性联轴器不具备补偿性应用范围受到限制,因此用量很少。角向位移较大的轴系传动宜选用万向联轴器;有轴向窜动,并需控制轴向位移的轴系传动,应选用膜片联轴器;只有对中精度很高的情况下才选用刚性联轴器。
  小转矩和以传递运动为主的轴系传动,要求联轴器具有较高的传动精度,宜选用金属弹性元件的挠性联轴器。大转矩和传递动力的轴系传动,对传动精度亦有要求,高转速时,应避免选用非金属弹性元件弹性联轴器和可动元件之间有间隙的挠性联轴器,宜选用传动精度高的膜片联轴器。
尺寸、安装与维护
  联轴器外形尺寸,即最大径向和轴向尺寸,必须在机器设备允许的安装空间以内。间选择装拆方便、不用维护、维护周期长或维护方便、更换易损件不用移动两轴、对中调整容易的联轴器。
  大型机器设备调整两轴对中较困难,应选择使用耐久和更换易损件方便的联轴器。金属弹性元件挠性联轴器一般比非金属弹性元件挠性联轴器使用寿命长。需密封润滑和使用不耐久的联轴器,必然增加维护工作量。对于长期连续运转和经济效益较高的场合,例如我国冶金企业的轧机传动系统的高增端,目前普遍采用的上齿式联轴器,齿式联轴器虽然理论上传递转矩大,但必须在润滑和密封良好的条件下才能耐久工作,且需经常检查密封状况,注润滑油,维护工作量大,增加了辅助工时,减少了有效工作时间,影响生产效益。
  联轴器与各种不同主机产品配套作用,周围的工作环境比较复杂。对于高温、低温、有油、酸、碱介质的工作环境,不宜选用以一般橡胶为弹性元件材料的挠性联轴器,应选择金属弹性元件挠性联轴器。弹性柱销齿式联轴器由于运转时柱销的窜动,自身噪声大,对于噪声有严格要求的场合不应选用。
制造、安装、维护和成本
  在满足便用性能的前提下,应选用装拆方便、维护简单、成本低的联轴器。例如刚性联轴器不但结构简单,而且装拆方便,可用于低速、刚性大的传动轴。一般的非金属弹性元件联轴器(例如弹性套柱销联轴器、弹性柱销联轴器、梅花形弹性联轴器等),由于具有良好的综合能力,广泛适用于一般的中、小功率传动。
动力学简介
  在选择联轴器时应根据选用者各自实际情况和要求,综合考虑上述各种因素,从现有标准联轴器中选取最适合自己需要的联轴器品种、型式和规格。一般情况下现有的标准联轴器基本可以满足不同工况的需要。
  由于动力机的驱动转矩及工作机的负载载矩不稳定,以及由传动零件制造误差引起的冲击和零件不平衡离心惯性力引起的动载荷,使得传动轴系在变载荷(周期性变载荷及非周期性冲击载荷)下动行产生机械振动,这将影响机械的使用寿命和性能,破坏仪器、仪表的正常工作条件,并对轴系零件造成附加动应力,当总应力或交变应力分别超过允许限制时,会使零件产生破坏或疲劳破坏。在设计或选用传递转矩和运动用的联轴器时,应进行扭振分析和计算,其目的在于求击轴系的固有频率,以确定动力机的各阶临界转速,从而算出扭振使轴系及传动装置产生的附加载荷和应力。必要时采用减振缓冲措施,其基本原理是合理的匹配系统的质量、刚度、阻尼及干扰力的大小和频率,使传动装置不在共振区的转速范围内运转,或在运转速度内范围不出现强烈的共振现象。另一个行之有效的方法是在轴系中采用高柔度的弹性联轴器,简称高弹(性)联轴器,以降低轴系的固有频率,并利用其阻尼特性减小扭振振幅。
  (1)任意一个联轴器组件的平衡等级是根据联轴器的惯性主轴线与旋转轴线之间重心位置偏心量的最大可能值的平方和方根值而决定的。其不平衡量以微米表示。(2)对联轴器组件的潜在不平衡因素前面作了介绍,确定各种类型联轴器组件的平衡等级和计算平衡的各个步骤见计算示例。(3)联轴器平衡等级的标准分级表下表,在平衡面位置上惯性主轴线对旋转轴线所产生的最大偏移以最大均方根微米表示,其数值是按AGMA方法计算的联轴器平衡标准等级联轴器平衡等级
惯性主轴线在平衡面上的最大位移(均方根) 联轴器平衡等级 惯性主轴线在平衡面上的最大位移(均方根)
联轴器平衡等级 惯性主轴线在平衡面上的最大位移(均方根) 联轴器平衡等级 惯性主轴线在平衡面上的最大位移(均方根)
4 &800 9 50
5 800 10 25
6 400 11 12
7 200 12 6
  联轴器由于种种原因使其质心或惯性主轴与其加转轴线不重合,在运转时将产生不平衡离心惯性力、离心惯性偶力和动挠度(振型)的现象,称为转子的不平衡现象,这种不平衡现象必然引起轴系的振动,从而影响机器的正常工作和使用寿命,因而对其必须加以重视。不平衡的程度(不平衡量U)通常用转子的质量m和质心到转子回转轴线距离r的乘积mr来表达,称为质径积。也有用单位质量的质径积来表达的,称为偏心距e(不是几何意义上的偏心。)质径积mr是一个与转子质量有关的相对量,而偏心距e是一个与转子质量无关的绝对量。前者比较直观,常用于具体给定转子的平衡操作,后者用于衡量转子平衡的优劣或检测平衡精度,联轴器的平衡等级标准即按e来评定。对于挠性转子则用振型偏心距(第n阶振型)en=Un/mn,Un、mn分别为第n阶振型和阶模态质量。
  为了纠正或最大限度地减少联轴器的不平衡量,应根据需要选择适当的平衡等级,并在产品制造完成及在机器上安装完成后,在联轴器指定的平衡(校正)平面上,通过增加或减少适当质量的方法,使之达到平衡等级要求。这个工艺过程称为平衡校正,简称平衡。
联轴器所联两轴相对位移
  联轴器所联两轴由于制造误差、安装误差、轴受载而产生的变形、基座变形、轴承磨损、温度变化(热胀、冷缩)、部件之间的相对运动等多种因素而产生相对位移。一般情况下,两轴相对位移是难以避免的,但不同工况条件下的轴系传动所产生的位移方向,即轴向(x)、径向(y)、角向(a)以及位移量的大小有所不同。只有挠性联轴器才具有补偿两轴相对位移的性能,因此在实际应用中大量选择挠性联轴器。刚性联轴器不具备补偿性能,应用范围受到限制,因此用量很少。
  联轴器的类型与特点
  联轴器类型
  常用的精密联轴器有:弹性联轴器,膜片联轴器,波纹管联轴器,滑块联轴器,梅花联轴器,刚性联轴器。
  联轴器特点
  1.弹性联轴器
  (1)一体成型的金属弹性体   (2)零回转间隙、可同步运转
  (3)弹性作用补偿径向、角向和轴向偏差   (4)高扭矩刚性和卓越的灵敏度
  (5)顺时针和逆时针回转特性完全相同  (6)免维护、抗油和耐腐蚀性
  (7)有铝合金和不锈钢材料供选择  (8)固定方式主要有顶丝和夹紧两种。
  2.膜片联轴器
  (1)高刚性、高转矩、低惯性   (2)采用环形或方形弹性不锈刚片变形
(3)大扭矩承载,高扭矩刚性和卓越的灵敏度   (4)零回转间隙、顺时针和逆时针回转特性相同
(5)免维护、超强抗油和耐腐蚀性  (6)双不锈钢膜片可补偿径向、角向、轴向偏差,单膜片则不能补偿径向偏差。
  3.波纹管联轴器
  (1)无齿隙、扭向刚性、连接可靠、耐腐蚀性、耐高温
  (2)免维护、超强抗油,波纹管形结构补偿径向、角向和轴向偏差,偏差存在的情况下也可保持等速作动
  (3)顺时针和逆进针回转特性完全相同   (4)波纹管材质有磷青铜和不锈钢供选择
  (5)可适合用于精度和稳定性要求较高的系统。
  4.滑块联轴器
  (1)无齿隙的连接,用于小扭矩的测量传动结构简单
  (2)使用方便、容易安装、节省时间、尺寸范围广、转动惯量小,便于目测检查
  (3)抗油腐蚀,可电气绝缘,可供不同材料的滑块弹性体选择
  (4)轴套和中间件之间的滑动能容许大径向和角向偏差,中间件的特殊凸点设计产生支撑的作用,容许较大的角度偏差,不产生弯曲力矩,侃轴心负荷降至最低。
  5.梅花联轴器
  (1)紧凑型、无齿隙,提供三种不同硬度弹性体   (2)可吸收振动,补偿径向和角向偏差
  (3)结构简单、方便维修、便于检查  (4)免维护、抗油及电气绝缘、工作温度203
  (5)梅花弹性体有四瓣、六瓣、八瓣和十瓣  (6)固定方式有顶丝,夹紧,键槽固定。
  6.刚性联轴器
  (1)重量轻,超低惯性和高灵敏度   (2)免维护,超强抗油和耐腐蚀性
 3)无法容许偏心,使用时应让轴尽量外露 (4)主体材质可选铝合金/不锈钢 (5)固定方式有夹紧、顶丝固定。
  联轴器主要用途(供参考)
  弹性联轴器:适用于旋转编码器、步进电机
  膜片联轴器:适用于伺服电机、步进电机
  波纹管联轴器:适用于伺服电机
  滑块联轴器:适用于普通微型电机
  梅花联轴器:适用于伺服电机、步进电机
  刚性联轴器:适用于伺服电机、步进电机。
  1.选用标准联轴器。设计人员在选择联轴器时首先应在已经制定为国家标准、机械行业标准以及获国家专利的联轴器中选择,只有在现有标准联轴器和专利联轴器不能满足设计需要时才需自己设计联轴器。
  2.选择联轴器品种、型式。了解联轴器在传动系统中的综合功能,从传动系统总体设计考虑,选择联轴器品种、型式。根据原动机类别和工作载荷类别、工作转速、传动精度、两轴偏移状况、温度、湿度、工作环境等综合因素选择联轴器的品种。根据配套主机的需要选择联轴器的结构型式,当联轴器与制动器配套使用时,宜选择带制动轮或制动盘型式的联轴器;需要过载保护时,宜选择安全联轴器;与法兰联接时,宜选择法兰式;长距离传动,联接的轴向尺寸较大时,宜选择接中间轴型或接中间套型。
  3.联轴器转矩计算。传动系统中动力机的功率应大于工件机所需功率。根据动力机的功率和转速可计算得到与动力机相联接的高速端的理论短矩T;根据工况系数K及其他有关系数,可计算联轴器的计算转矩Tc。联轴器T与n成反比,因此低速端T大于高速端T。
  4.初选联轴器型号。根据计算转矩Tc,从标准系列中可选定相近似的公称转矩Tn,选型时应满足Tn≥Tc。初步选定联轴器型号,从标准中可查得联轴器的许用转速[n]和最大径向尺寸D、轴向尺寸L0,就满足联轴器转速n≤[n]。
  5.根据轴径调整型号。初步选定的联轴器联接尺寸,即轴孔直径d和轴孔长度L,应符合主、从动端轴径的要求,否则还要根据轴径d调整联轴器的规格。主、从动端轴径不相同是普通现象,当转矩、转速相同,主、从动端轴径不相同时,应按大轴径选择联轴器型号。新设计的传动系统中,应选择符合GB/T3852中规定的七种轴孔型式,推荐采用J1型轴孔型式,以提高通用性和互换性,轴孔长度按联轴器产品标准的规定。
  6.选择联接型式。联轴器联接型式的选择取决于主、从动端于轴的联接型式,一般采用键联接,为统一键联接型式及代号,在GB/T3852中规定了七种键槽型式,四种无键联接,用得较多的是A型键。
  7.选定联轴器品种、式、规格。根据动力机和联轴器载荷类别、转速、工作环境等综合因素,选定联轴器品种;根据联轴器的配套、联接情况等因素选定联轴器型式;根据公称转矩、轴孔直径与轴孔长度选定规格。为了保证轴和键的强度,在选定联轴器型号后,应对轴和键强度做校核验算,以最后确定联轴器的型号。
十字滑块式联轴器
  最高圆周速度约30m/s,用2号润滑脂润滑,中间滑块的旷地空闲装满脂,换脂周期1000小时,适合采用球轴承脂。最高圆周速度约30m/s,用N220齿轮油润滑,中间滑块的旷地空闲装满油,换油周期1000小时,有时采用浸满油的毛毡垫。
牙嵌式联轴器
  最高圆周速度约150m/s,用N150、N220齿轮油润滑,要求有足够的流量,沿轴向连续地通过联轴器,无密封。
盘式弹簧联轴器
  最高圆周速度约60m/s,用2号或3号润滑脂润滑,用量为装满联轴器,换脂周期12个月,对密封要求不严;最高圆周速度约150m/s,用N150、N220齿轮油润滑,要求有足够的流量,沿轴向连续地通过联轴器。
弹簧片式联轴器
  最高圆周速度约30m/s,用1号润滑脂润滑,用量为装满联轴器,换脂周期1000小时,对密封要求不严。
145、反绳轮的定义:中文:反绳轮   
英文:diversion sheave   
应用在电梯上的一种动滑轮,通常设置在轿厢架和对重框架上部的动滑轮。根据需要曳引绳绕过反绳轮可以构成不同的曳引比。  
 它与曳引轮和导向轮不同,它不是所有的电梯中都一定有安装,它不会出现在曳引比1:1的电梯中.其作用是减小曳引机的输出功率和力距.
146、导向轮: 耙装机,
  一种导向轮,其特征在于:它由套筒、调节丝杠、脚轮、底座、转向座和销钉组成,套筒内套装有调节丝杠,调节丝杠的一端安装有摇把,另一端通过调整丝母与脚轮架连接,脚轮架与脚轮连接;转向座通过销钉与底座连接,底座与转向座上分别设有相同中心距的对应孔,U型销钉依次插入至转向座和底座对应孔内,U型螺栓将底座固定在拖车的矩形管上。本实用新型具有以下优点:1.可以作为一个支点,适应任何不平整的地面环境,保持整个房车的稳定;2.在拖车行驶过程中,将脚轮转成水平方向,减少脚轮与地面的冲击,延长了导向轮的使用寿命;3.设计巧妙,结构简单,操作方便,坚固耐用。
147、补偿链的定义:原理作用: 
  一般是电梯上用到的多,其结构为铁链外裹PVC橡胶复合材料,是用来补偿钢丝绳的重量,使电梯平稳运行。
  当电梯在顶层时,钢丝绳就在对重侧,对重侧就多了钢丝绳的重量;
  当电梯在底层时,钢丝绳就在轿厢侧,轿厢侧就多了钢丝绳的重量。
  装了补偿链就可以平衡这部份落差了,用来补尝动平衡用的,因为钢丝绳有重量,随着电梯的不断上下运动,回产生动态的不平衡,所以才用到补偿链。
  一般是超过30M才装补偿链的。
  详细分类:
  目前市面上的补偿链有以下几种:
  1、裹纤维补偿链,可用至4m/s的梯速,外表为缆状橡胶纤维结构,能在各种寒冷恶劣环境下使用,是目前性能最好的补偿链,但价格较高。
  2、全塑补偿链,可用至3m/s的梯速,外表为缆状PVC结构,使用时电梯运行能达到平稳静音的效果,为许多大型电梯公司所喜爱。
  3、包塑补偿链,可用至2m/s的梯速,外表为扁形PVC结构,性能略差于全塑补偿链但优于穿绳补偿链,价格也较便宜。
  4、穿绳补偿链,通常只能用于1m/s以下的梯速,结构为在铁链中穿入麻绳,使用时电梯运行噪音较大,人在轿厢内有明显的抖动感,但价格较便宜,是最原始的一种补偿链,目前大多数电梯公司已经弃用,改用上面三种补偿链替代。
  质量判断:
  质量好的补偿链可以使电梯运行安全平稳、达到静音舒适的效果。
  质量不好的补偿链主要有3个特性:
  1、电梯运行时抖动厉害,造成轿厢晃动、噪音大,使乘客乘坐体验大打折扣;
  2、使用寿命短,柔韧性差,不耐寒,外裹层易开裂,开裂后剧烈晃动等问题;
  3、强度差且不稳定,易造成断链事故。
148、轿门的定义:电梯结构之一,即在电梯里电梯关上里面看到的门。与厅门(或称层门),即在外面呼梯时所看到的门相对。
电梯即垂直升降机,装有箱状吊舱,称为轿厢,是电梯用以承载和运送人员和物资的箱形空间。轿厢一般由轿底、轿壁、轿顶、轿门等主要部件构成。
  电梯层门的开与关,是通过安装在轿门上的开门刀片来实现的。每个层门都装有一把门锁。层门关闭后,门锁的机械锁钩啮合,同时层门与轿门电气连锁触头闭合,电梯控制回路接通,此时电梯才能启动运行。电梯层门在建筑中有防火作用,用于分割防火分区。轿门安全开关,能保证门在没有安全关闭到位,或者没有锁好的状态下电梯不能正常运行。
149、变频器的定义:变频器的英文译名是VFD(Variable-frequency
Drive),这可能是现代科技由中文反向译为英文的为数不多实例之一。(但VFD也可解释为Vacuum fluorescent
display,真空荧光管,故这种译法并不常用)。变频器是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力传动元件。变频器在中、韩等亚洲地区受日本厂商影响而曾被称作VVVF(Variable
Voltage Variable Frequency Inverter)。
变频器基础原理知识
  1、什么是变频器?
  变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置,能实现对交流异步电机的软起动、变频调速、提高运转精度、改变功率因数、过流/过压/过载保护等功能。国内技术较领先的品牌有日业、英威腾、汇川、三晶、紫日电气科技有限公司、雷诺尔、欧瑞(原烟台惠丰)、蓝海华腾。 
  2、PWM和PAM的不同点是什么?
  PWM是英文Pulse Width
Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。PAM是英文Pulse
Amplitude Modulation (脉冲幅度调制)
缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。
  3、电压型与电流型有什么不同?
   变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。
  4、为什么变频器的电压与频率成比例的改变?
  任何电动机的电磁转矩都是电流和磁通相互作用的结果,电流是不允许超过额定值的,否则将引起电动机的发热。因此,如果磁通减小,电磁转矩也必减小,导致带载能力降低。
  由公式E=4.44*K*F*N*Φ
可以看出,在变频调速时,电动机的磁路随着运行频率fX是在相当大的范围内变化,它极容易使电动机的磁路严重饱和,导致励磁电流的波形严重畸变,产生峰值很高的尖峰电流。
  因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用于风机、泵类节能型变频器。
  5、电动机使用工频电源驱动时,电压下降则电流增加;对于变频器驱动,如果频率下降时电压也下降,那么电流是否增加?
  频率下降(低速)时,如果输出相同的功率,则电流增加,但在转矩一定的条件下,电流几乎不变。
  6、采用变频器运转时,电机的起动电流、起动转矩怎样?
   采用变频器运转,随着电机的加速相应提高频率和电压,起动电流被限制在150%额定电流以下(根据机种不同,为125%~200%)。用工频电源直接起动时,起动电流为额定电流6~7倍,因此,将产生机械电气上的冲击。采用变频器传动可以平滑地起动(起动时间变长)。起动电流为额定电流的1.2~1.5倍,起动转矩为70%~120%额定转矩;对于带有转矩自动增强功能的变频器,起动转矩为100%以上,可以带全负载起动。
  7、V/f模式是什么意思?
   频率下降时电压V也成比例下降,这个问题已在回答4说明。V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择。
  8、按比例地改V和f时,电机的转矩如何变化?
   频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向。因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定地起动转矩,这种补偿称增强起动。可以采用各种方法实现,有自动进行的方法、选择V/f模式或调整电位器等方法。
  9、在说明书上写着变速范围60~6Hz,即10:1,那么在6Hz以下就没有输出功率吗?
   在6Hz以下仍可输出功率,但根据电机温升和起动转矩的大小等条件,最低使用频率取6Hz左右,此时电动机可输出额定转矩而不会引起严重的发热问题。变频器实际输出频率(起动频率)根据机种为0.5~3Hz。。
  10、对于一般电机的组合是在60Hz以上也要求转矩一定,是否可以?
  通常情况下时不可以的。在60Hz以上(也有50Hz以上的模式)电压不变,大体为恒功率特性,在高速下要求相同转矩时,必须注意电机与变频器容量的选择。
  11、所谓开环是什么意思?
   给所使用的电机装置设速度检出器(PG),将实际转速反馈给控制装置进行控制的,称为“闭环
”,不用PG运转的就叫作“开环”。通用变频器多为开环方式,也有的机种利用选件可进行PG反馈.无速度传感器闭环控制方式是根据建立的数学模型根据磁通推算电机的实际速度,相当于用一个虚拟的速度传感器形成闭环控制。
  12、实际转速对于给定速度有偏差时如何办?
   开环时,变频器即使输出给定频率,电机在带负载运行时,电机的转速在额定转差率的范围内(1%~5%)变动。对于要求调速精度比较高,即使负载变动也要求在近于给定速度下运转的场合,可采用具有PG反馈功能的变频器(选用件)。
  13、如果用带有PG的电机,进行反馈后速度精度能提高吗?
   具有PG反馈功能的变频器,精度有提高。但速度精度的值取决于PG本身的精度和变频器输出频率的分辨率。
  14、失速防止功能是什么意思?
   如果给定的加速时间过短,变频器的输出频率变化远远超过转速(电角频率)的变化,变频器将因流过过电流而跳闸,运转停止,这就叫作失速。为了防止失速使电机继续运转,就要检出电流的大小进行频率控制。当加速电流过大时适当放慢加速速率。减速时也是如此。两者结合起来就是失速功能。
  15、有加速时间与减速时间可以分别给定的机种,和加减速时间共同给定的机种,这有什么意义?
  加减速可以分别给定的机种,对于短时间加速、缓慢减速场合,或者对于小型机床需要严格给定生产节拍时间的场合是适宜的,但对于风机传动等场合,加减速时间都较长,加速时间和减速时间可以共同给定。
  16、什么是再生制动?
   电动机在运转中如果降低指令频率,则电动机变为异步发电机状态运行,作为制动器而工作,这就叫作再生(电气)制动。
  17、是否能得到更大的制动力?
  从电机再生出来的能量贮积在变频器的滤波电容器中,由于电容器的容量和耐压的关系,通用变频器的再生制动力约为额定转矩的10%~20%。如采用选用件制动单元,可以达到50%~100%。
  18、请说明变频器的保护功能?
   保护功能可分为以下两类:
  (1) 检知异常状态后自动地进行修正动作,如过电流失速防止,再生过电压失速防止。
  (2)检知异常后封锁电力半导体器件PWM控制信号,使电机自动停车。如过电流切断、再生过电压切断、半导体冷却风扇过热和瞬时停电保护等。
  19、为什么用离合器连接负载时,变频器的保护功能就动作?
  用离合器连接负载时,在连接的瞬间,电机从空载状态向转差率大的区域急剧变化,流过的大电流导致变频器过电流跳闸,不能运转。
  20、在同一工厂内大型电机一起动,运转中变频器就停止,这是为什么?
   电机起动时将流过和容量相对应的起动电流,电机定子侧的变压器产生电压降,电机容量大时此压降影响也大,连接在同一变压器上的变频器将做出欠压或瞬停的判断,因而有时保护功能(IPE)动作,造成停止运转。
  21、什么是变频分辨率?有什么意义?
  对于数字控制的变频器,即使频率指令为模拟信号,输出频率也是有级给定。这个级差的最小单位就称为变频分辨率。
  变频分辨率通常取值为0.015~0.5Hz.例如,分辨率为0.5Hz,那么23Hz的上面可变为23.5、24.0
Hz,因此电机的动作也是有级的跟随。这样对于像连续卷取控制的用途就造成问题。在这种情况下,如果分辨率为0.015Hz左右,对于4级电机1个级差为1r/min
以下,也可充分适应。另外,有的机种给定分辨率与输出分辨率不相同。
  22、装设变频器时安装方向是否有限制。
  变频器内部和背面的结构考虑了冷却效果的,上下的关系对通风也是重要的,因此,对于单元型在盘内、挂在墙上的都取纵向位,尽可能垂直安装。
  23、不采用软起动,将电机直接投入到某固定频率的变频器时是否可以?
   在很低的频率下是可以的,但如果给定频率高则同工频电源直接起动的条件相近。将流过大的起动电流(6~7倍额定电流),由于变频器切断过电流,电机不能起动。
  24、电机超过60Hz运转时应注意什么问题?
  超过60Hz运转时应注意以下事项:
  (1)机械和装置在该速下运转要充分可能(机械强度、噪声、振动等)。
  (2)电机进入恒功率输出范围,其输出转矩要能够维持工作(风机、泵等轴输出功率于速度的立方成比例增加,所以转速少许升高时也要注意)。
  (3)产生轴承的寿命问题,要充分加以考虑。
  (4)对于中容量以上的电机特别是2极电机,在60Hz以上运转时要与厂家仔细商讨。
  25、变频器可以传动齿轮电机吗?
  根据减速机的结构和润滑方式不同,需要注意若干问题。在齿轮的结构上通常可考虑70~80Hz为最大极限,采用油润滑时,在低速下连续运转关系到齿轮的损坏等。
  26、变频器能用来驱动单相电机吗?可以使用单相电源吗?
   基本上不能用。对于调速器开关起动式的单相电机,在工作点以下的调速范围时将烧毁辅助绕组;对于电容起动或电容运转方式的,将诱发电容器爆炸。变频器的电源通常为3相,但对于小容量的,也有用单相电源运转的机种。
  27、变频器本身消耗的功率有多少?
   它与变频器的机种、运行状态、使用频率等有关,但要回答很困难。不过在60Hz以下的变频器效率大约为94%~96%,据此可推算损耗,但内藏再生制动式(FR-K)变频器,如果把制动时的损耗也考虑进去,功率消耗将变大,对于操作盘设计等必须注意。
  28、为什么不能在6~60Hz全区域连续运转使用?
  一般电机利用装在轴上的外扇或转子端环上的叶片进行冷却,若速度降低则冷却效果下降,因而不能承受与高速运转相同的发热,必须降低在低速下的负载转矩,或采用容量大的变频器与电机组合,或采用专用电机。
  29、使用带制动器的电机时应注意什么?
  制动器励磁回路电源应取自变频器的输入侧。如果变频器正在输出功率时制动器动作,将造成过电流切断。所以要在变频器停止输出后再使制动器动作。
  30、想用变频器传动带有改善功率因数用电容器的电机,电机却不动,请说明原因。
  变频器的电流流入改善功率因数用的电容器,由于其充电电流造成变频器过电流(OCT),所以不能起动,作为对策,请将电容器拆除后运转,甚至改善功率因数,在变频器的输入侧接入AC电抗器是有效的。
  31、变频器的寿命有多久?
   变频器虽为静止装置,但也有像滤波电容器、冷却风扇那样的消耗器件,如果对它们进行定期的维护,可望有10年以上的寿命。
  32、变频器内藏有冷却风扇,风的方向如何?风扇若是坏了会怎样?
   对于小容量也有无冷却风扇的机种。有风扇的机种,风的方向是从下向上,所以装设变频器的地方,上、下部不要放置妨碍吸、排气的机械器材。还有,变频器上方不要放置怕热的零件等。风扇发生故障时,由电扇停止检测或冷却风扇上的过热检测进行保护
  33、滤波电容器为消耗品,那么怎样判断它的寿命?
  作为滤波电容器使用的电容器,其静电容量随着时间的推移而缓缓减少,定期地测量静电容量,以达到产品额定容量的85%时为基准来判断寿命。
  34、装设变频器时安装方向是否有限制。
  应基本收藏在盘内,问题是采用全封闭结构的盘外形尺寸大,占用空间大,成本比较高。其措施有:
  (1)盘的设计要针对实际装置所需要的散热
  (2)利用铝散热片、翼片冷却剂等增加冷却面积
  (3)采用热导管。
  此外,已开发出变频器背面可以外露的型式。
  35、想提高原有输送带的速度,以80Hz运转,变频器的容量该怎样选择?
  输送带消耗的功率与转速成正比,因此若想以80HZ运行,变频器和电机的功率都要按照比例增加为80HZ/50HZ,即提高60%容量。
  维护和检查时的注意事项有:
  (1) 在关掉输入电源后,至少等5分钟才可以开始检查(还要正式充电发光二极管已经熄灭)否则会引起触电。
  (2) 维修、检查和部件更换必须由胜任人员进行。(开始工作前,取下所有金属物品(手表、手镯等),使用带绝缘保护的工具)
  (3) 不要擅自改装频频器,否则易引起触电和损坏产品。
变频器维修之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。
  变频器主要由半导体元件构成,因此,必须进行日常的检查,防止不利的工作环境,如温度、湿度、粉尘和振动的影响,并防止因部件使用寿命所引起的其它故障。
  检查项目:
  (1) 日常检查:检查变频器是否按要求工作。用电压表在变频器工作时,检查其输入和输出电压。
  (2) 定期检查:检查所有只能当变频器停机时才能检查的地方。
  (3) 部件更换:部件的寿命很大程度上与安装条件有关。
变频器工作原理
  主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。
  最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。
  在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。
  同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。以电压型pwm逆变器为例示出开关时间和电压波形。
  控制电路是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。
  (1)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。
  (2)电压、电流检测电路:与主回路电位隔离检测电压、电流等。
  (3)驱动电路:驱动主电路器件的电路。它与控制电路隔离使主电路器件导通、关断。
  (4)速度检测电路:以装在异步电动机轴机上的速度检测器(tg、plg等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。
  (5)保护电路:检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。
  变频器集成了高压大功率晶体管技术和电子控制技术,得到广泛应用。变频器的作用是改变交流电机供电的频率和幅值,因而改变其运动磁场的周期,达到平滑控制电动机转速的目的。变频器的出现,使得复杂的调速控制简单化,用变频器+交流鼠笼式感应电动机组合替代了大部分原先只能用直流电机完成的工作,缩小了体积,降低了维修率,使传动技术发展到新阶段。
  变频器可以优化电机运行,所以也能够起到增效节能的作用。根据全球著名变频器生产企业ABB的测算,单单该集团全球范围内已经生产并且安装的变频器每年就能够节省1150亿千瓦时电力,相应减少9,700万吨二氧化碳排放,这已经超过芬兰一年的二氧化碳排放量。
  变频调数节能:变频器节能主要表现在风机、水泵的应用上。为了保证生产的可靠性,各种生产机械在设计配用动力驱动时,都留有一定的富余量。当电机不能在满负荷下运行时,除达到动力驱动要求外,多余的力矩增加了有功功率的消耗,造成电能的浪费。风机、泵类等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输入功率大,且大量的能源消耗在挡板、阀门的截流过程中。当使用变频调速时,如果流量要求减小,通过降低泵或风机的转速即可满足要求。
  在恒压供水中的应用
  恒压供水是指在供水日中月水量发生变化时,出口压力保持不变的供水方式。供水网系出口压力值是根据用户需求确定的。传统的供水方式是采用水塔、高位水箱、气压罐等设施实现的。随着变频调速技术的日益成熟和广泛应用,利用变频器、PID调节器、单片机、P
LC等器件的有机结合构成控制系统,调节水泵的输出流量,实现恒压供水。该技术已在供水行业普及。
  紫日电气科技有限公司ZVF9-P变频器在恒压供水控制系统的基本控制策略
  采用自动机调速装置作为控制系统进行优化控制泵组的调速运,行并自动调整泵蛆的运行台数,完成供水压力的闭环控制,在管网流量变化时达到稳定供水压力和节约自能的目的。系统的控制目标是泵站总管的出水压力,系统设定的给水压力值与反馈的总管压力实际值进行比较,其差值经过运算处理后发出控制指令,控制泵电动机的投运台数和运行变量泵自动机的转速,从而达到给水总管压力稳定在设定的压力值上。
  紫日电气科技有限公司ZVF9-P变频器在恒压供水系统的工作原理
  ZVF9-P系列变频器内置的PID控制器通过控制对象的传感器等检测到的物理量(反馈量),将其与系统目标值进行比较。如有偏差,则通过PID调节的作用使偏差为零。
  改造后设备的优点
  1.恒压供水技术目采用变频器改变电动机电源频率,而达到调节水泵转速改变水泵出口压力,比靠调节阀门的控制水泵出口压力的方式,具有降低管道阻力大大减少截流损失的效能。
  2.由于变量泵工作在变频工况,在其出口流量小于额定流量时,泵转速降低,臧少了轴承的磨损和发热,延长泵和自动机的机械使用寿命。
  3.目实现恒压自动控制,不需要操作人员频繁操作,降低了人员的劳动强度,节省了人力。
  4.水泵自动机采用软起动方式,按设定的加速时间加速避免自动机启动时的自流冲击,对自月自压造成波动的影响,同时也避免了电机突然加速造成水泵系统的喘振。
  5.由于变量泵工作在变频工作状态,在其运行过程中其转速是由外供水量决定的,故系统在运行过程中可节约可观的自能,其经济效益是十分口显的。由于其节电效果明显,所以系统具有投资收回快特点,其产生的社会效益非常巨大。
  应用范围
  该系统既可用于生产、生活用水, 亦可用于热水供应, 恒压喷淋等系统:
  1.可广泛用于工业企业、生活 、生产供水系统及企业自备并改造工程,自来水厂、生活小区及消防供水系统。
  2.可用于各种场合的恒压、变压、冷却水和循环供水系统
  3.可用于污水泵站、污水处理及污水提升系统
  4.可用于农业排灌、 园林喷淋、水景和音乐喷泉系统
  5.可用于宾馆、大型公共建筑供水及消防系统。
  ZVF9在中央空调上的应用
  中央空调系统在现代工矿企业及生活环境改善方面极为普遍,而且在某些生活环境或生产工序中是属必须的,即所谓人造环境,不仅有温度的要求,还有湿度、洁净度等。之所以要中央空调系统,是为了要提高产品质量、提高人的舒适度、集中供冷供热,效率高,便于管理,节省投资。工矿企业、高层商厦、商务大楼、会场、剧场、办公室、图书馆、宾馆、商场、超市、酒店、娱乐场所、体育馆等中大型建筑都采用中央空调,是用电大户,几乎占了用电量的60~70%,日常开支费用很大,因此中央空调是用电大户,亦是节电大户,是节能降耗、降低成本的关键,不可等闲视之。不少单位使用变频器后获得了大于20%的节电效果,经济效益十分显著,因此纷纷迫切要求进行节能技术的改造。
  中央空调是按照最大需要冷(热)量再加1
0~20%来设计的,一般富余度较大,负荷率β正常时最大可能有70~80%,因此节电潜力较大,而运行时冷冻水、冷却水的回收温度大都过低运行,这就造成了能量的浪费。目前不少单位都已采用变频调速,但仍有不少单位未做到经济运行,我们建议应及早采用这一新技术,为用户增加收益。
  中央空调系统使用变频器对象
  A、制冷压缩机
  B、冷冻泵、冷却泵、冷却塔风扇、回风装置多数都尚未采用变频调速节能控制,调节压力、流量都是采用阀门、挡风板的方法是不经济的,浪费了不少电能,属节电的主要对象。
  中央空调系统使用变频器目的及功效
  从以上可知中央空调系统大量使用水泵及风机,它们都是平方减转矩负载,因此流量Q∝n(转速),压力H∝n2,功率P∝n3,故系统运行时要在工艺允许条件下,既不要过大流量、压力,又能保证系统正常,选取合理经济的运行参数就可较大幅度节电,按不少单位实践结果,大部分都可能有20~50%的节电功效(与工况条件有关,要现场调查后而定),经济效益十分明显的,应大力推广。
  实施方法
  A、按一天24小时,春、夏、秋、冬制定运行图,进行不同频率值控制方法。
  B、按回水的温度,自动调节频率的控制方法。
  C、按进水与出水温差自动调节频率的控制方法。
  D、按出水压力控制,回水温度控制自动调节频率的双闭环方法。
  紫日ZVF9V-G在音乐喷泉上的应用
  音乐喷泉是由电脑控制声、光及喷孔组合而产生不同形状、不同色彩、配合音乐节奏而构成的综合水景。音乐喷泉的声、光、色、形俱美,常常用作风景园林的主景。随着国民经济的发展和人民生活水平的提高,人们越来越注重环境的改善和美化、音乐喷泉在小区、公园、休闲广场得到了广泛的应用。音乐喷泉的控制系统是音乐喷泉设计的核心。下面以ZVF9V系列变频器在上海某广场的应用为例,阐述音乐喷泉的变频控制。
  喷泉控制系统的构成
  音乐喷泉控制系统主要由音频控制信号、变频器、水泵、多功能阀、万向喷头及水管组成。喷泉水泵采用变频调速技术、实现水泵的无级调速,能根据音频信号的强弱随时调节水泵的转速。多功能阀和万向喷头由喷泉专用控制器控制,可根据程序实现各种图案和形状。我们利用音乐的音频信号对变频器进行控制,音乐的音频信号本身是一个功率很小的交流电压信号,经过整流滤波稳压 可以输出一个相对应的直流电压信号,相对来讲该信号很微弱,再经过对该信号进行功率放大,可以输出0~5V的标准直流电压信号,即可以实现音频信号对变频器的控制,即对水泵浪花的控制,从而实现音乐对喷泉浪花的控制。
  ZVF9V-G变频器的介绍
  ZVF9V-G系列变频器是紫日电气科技有限公司推出的经济型矢量变频器。ZVF9V-G无PG矢量型变频器采用先进的磁通算法具有以下特点:
  1.起动转矩大0.5Hz/150%(SVC)
  2.过载能力强150%额定电流60S;180%额定电流10S
  3.调速范围宽1:100
  4.稳速精度高±0.5%最高速度
  5.动态响应快&20ms
  6.加减速特性优良 0.1s(最短)
  ZVF9V-G优良的加减速特性能配合负载水泵实现最短时间内平稳的加减速;ZVF9V-G快速的动态响应能及时检测再生功率,实现无跳闸的自动加减速过程,能伴随着音频信号的变化、瞬间改变变频器的输出频率、从而改变喷泉水柱的波形,使水柱波形和音频信号实现了同步、不失真。
  紫日变频器在EPS应急电源行业的应用
  EPS(Emergency Power
Supply)为应急电源,作为消防设备、市政设施、医疗、企业、工厂或其他设备在市电电网发生故障时,可提供应急电力的电源设备。与传统的备用发电机组应急电源相比,EPS在启动速度、噪音与振动、可维护性、供电质量、过载能力、自保护特性以及环境污染方面都有明显优势。
  EPS按照负载种类不同分为一般三种:照明型、动力型和照明动力混合型,对应的负载分别为照明负载、电机负载(消防水泵等)和照明与电机混合负载。
  变频器在EPS电源行业的应用要求
  在市电不正常时,EPS是通过内部的逆变器输出交流电拖动负载的,而变频器在EPS中正是起到了逆变器的作用。所以变频器必须满足EPS的各种要求,保证与市电相同的电源质量。
  EPS通过蓄电池组为变频器供电,所以变频器的辅助电源必须为直流供电,交流输入的辅助电源不能满足EPS的需要。同样的原理,变频器的散热风扇不能用交流风扇,变频器的软上电接触器不能用交流接触器。
  由于EPS是代替市电的应急电源设备,所以EPS的输出电压质量也是很重要的一个指标,包括EPS输出电压的谐波含量、EPS输出电压的负载调整率、EPS输出电压的稳定度等。这样,要求在负载变化或蓄电池组电压在一定范围变化时,变频器输出电压变化尽量小,而且输出电压的谐波含量足够小。
  在非常重要的场合,EPS需要具有强启功能,即在蓄电池组电量不足时,蓄电池组给变频器供电电压低于变频器的输入欠压点,但是变频器仍然需要正常工作,具有一定的电压电流输出能力,不允许报欠压故障。
  紫日EPS专用变频器的特点
  目前市场上EPS电源专用变频器近乎空白,紧有的几种品牌价格也非常昂贵。为此,紫日电气科技有限公司针对EPS电源行业的特点,凭借着10余年的变频器行业研发生产经验技术,开发出全新一代高性价比的EPS专用变频器(ZVF9V-E系列),该变频器可以很好的满足EPS电源的各种需求,有效的提高EPS电源系统的性能。
  三 晶变频器产品系列
  1、S350高端变频器系列
  ■采用最新高速电机控制专用芯片DSP,确保矢量控制快速响应
  ■硬件电路模块化设计,确保电路稳定高效运行
  ■外观设计结合欧洲汽车设计理念,线条流畅,外形美观
  ■结构采用独立风道设计,风扇可自由拆卸,散热性好
  ■无PG矢量控制、有PG矢量控制、转矩控制、V/F控制均可选择
  ■强大的输入输出多功能可编程端子,调速脉冲输入,两路模拟量输出
  ■独特的“挖土机”自适应控制特性,对运行期间电机转矩上限自动限制,有效抑制过流频繁跳闸
  ■宽电压输入,输出电压自动稳压(AVR),瞬间掉电不停机,适应能力更强
  ■内置先进的 PID 算法 ,响应快、适应性强、调试简单 ; 16 段速控制,简易PLC
实现定时、定速、定向等多功能逻辑控制,多种灵活的控制方式以满足各种不同复杂工况要求
  ■内置国际标准的 MODBUS RTU ascii&
通讯协议,用户可通过PC/PLC控制上位机等实现变频器485通讯组网集中控制
  2.个性化变频器产品解决方案
  ■软件框架式,快速响应客户软件修改需求
  ■硬件模块化设计,稳定性强
  ■结构为您量身定制
  ■CAN总线,Profbus-DP,RS485,RS232,通信集中控制
  ■界面一键式傻瓜设计,操作简易方便
  3.经济迷你型
  ■采用上下接线方式,结构紧凑,安装方便
■矢量控制模式,180% 启动转矩
  ■内置简易PLC功能,RS485通信接口
  ■最大频率加速、减速时间可达到0.1S
  ■动态性能稳定、反应速度快,适合于频繁起动、正反转场合
  ■变频器与电机匹配使用,无需放大变频器容量
  4.矢量通用型
  ■低频转矩输出180% ,低频运行特性良好
  ■输出频率最大600Hz,可控制高速电机
  ■全方位的侦测保护功能(过压、欠压、过载)瞬间停电再起动
  ■加速、减速、动转中失速防止等保护功能
  ■电机动态参数自动识别功能,保证系统的稳定性和精确性
  ■高速停机时响应快
  ■丰富灵活的输入、输出接口和控制方式,通用性强
  ■采用SMT全贴装生产及三防漆处理工艺,产品稳定度高
  ■全系列采用最新西门子IGBT功率器件,确保品质的高质量
  5.风机专用型
  ■针对风机节能控制设计
  ■内置PID和先进的节能软件
  ■高效节能,节电效果20%~60%(根据实际工况而定)
  ■简便管理、安全保护、实现自动化控制
  ■延长风机设备寿命、保护电网稳定、保减磨损,降低故障率
  ■实现软起,制动功能
  变频器通常分为4部分:整流单元、高容量电容、逆变器和控制器。
  □ 整流单元将工作频率固定的交流电转换为直流电。
  □ 高容量电容存储转换后的电能。
  □ 逆变器由大功率开关晶体管阵列组成电子开关,将直流电转化成不同频率、宽度、幅度的方波。
  □ 控制器按设定的程序工作,控制输出方波的幅度与脉宽,使叠加为近似正弦波的交流电,驱动交流电动机。
变频器控制方式
  低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。
  1U/f=C的正弦脉宽调制(SPWM)控制方式
  其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。
  2电压空间矢量(SVPWM)控制方式
  它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。
  矢量控制(VC)方式
  矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。
  直接转矩控制(DTC)方式
  1985年,德国鲁尔大学的DePenbrock教授首次提出了直接转矩控制变频技术。该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。目前,该技术已成功地应用在电力机车牵引的大功率交流传动上。直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。
  矩阵式交—交控制方式
  VVVF变频、矢量控制变频、直接转矩控制变频都是交—直—交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流电路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交—交变频应运而生。由于矩阵式交—交变频省去了中间直流环节,从而省去了体积大、价格贵的电解电容。它能实现功率因数为l,输入电流为正弦且能四象限运行,系统的功率密度大。该技术目前虽尚未成熟,但仍吸引着众多的学者深入研究。其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。具体方法是:
  ——控制定子磁链引入定子磁链观测器,实现无速度传感器方式;
  ——自动识别(ID)依靠精确的电机数学模型,对电机参数自动识别;
  ——算出实际值对应定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;
  ——实现Band—Band控制按磁链和转矩的Band—Band控制产生PWM信号,对逆变器开关状态进行控制。
  矩阵式交—交变频具有快速的转矩响应(&2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(&+3%);同时还具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150%~200%转矩。
  变频技术诞生背景是交流电机无级调速的广泛需求。传统的直流调速技术因体积大故障率高而应用受限。
  □ 20世纪60年代以后,电力电子器件普遍应用了晶闸管及其升级产品。但其调速性能远远无法满足需要。
  □
20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速的研究得到突破,20世纪80年代以后微处理器技术的完善使得各种优化算法得以容易的实现。
  □ 20世纪80年代中后期,美、日、德、英等发达国家的
VVVF变频器技术实用化,商品投入市场,得到了广泛应用。最早的变频器可能是日本人买了英国专利研制的。不过美国和德国凭借电子元件生产和电子技术的优势,高端产品迅速抢占市场。
  □步入21世纪后,国产变频器逐步崛起,现已逐渐抢占高端市场
  单元串联型变频器
  这是近几年才发展起来的一种电路拓扑结构,它主要由输入变压器、功率单元和控制单元三大部分组成。采用模块化设计,由于采用功率单元相互串联的办法解决了高压的难题而得名,可直接驱动交流电动机,无需输出变压器,更不需要任何形式的滤波器。
  整套变频器共有18个功率单元,每相由6台功率单元相串联,并组成Y形连接,直接驱动电机。每台功率单元电路、结构完全相同,可以互换,也可以互为备用。
  变频器的输入部分是一台移相变压器,原边Y形连接,副边采用沿边三角形连接,共18副三相绕组,分别为每台功率单元供电。它们被平均分成Ⅰ、Ⅱ、Ⅲ三大部分,每部分具有6副三相小绕组,之间均匀相位偏移10度。
  该变频器的特点如下:
  ① 采用多重化PWM方式控制,输出电压波形接近正弦波。
  ② 整流电路的多重化,脉冲数多达36,功率因数高,输入谐波小。
  ③ 模块化设计,结构紧凑,维护方便,增强了产品的互换性。
  ④ 直接高压输出,无需输出变压器。
  ⑤ 极低的dv/dt输出,无需任何形式的滤波器。
  ⑥ 采用光纤通讯技术,提高了产品的抗干扰能力和可靠性。
  ⑦ 功率单元自动旁通电路,能够实现故障不停机功能。
  随着现代电力电子技术及计算机控制技术的迅速发展,促进了电气传动的技术革命。交流调速取代直流调速,计算机数字控制取代模拟控制已成为发展趋势。交流电机变频调速是当今节约电能,改善生产工艺流程,提高产品质量,以及改善运行环境的一种主要手段。变频调速以其高效率,高功率因数,以及优异的调速和启制动性能等诸多优点而被国内外公认为最有发展前途的调速方式。
  以前的高压变频器,由可控硅整流,可控硅逆变等器件构成,缺点很多,谐波大,对电网和电机都有影响。近年来,发展起来的一些新型器件将改变这一现状,如IGBT、IGCT、SGCT等等。由它们构成的高压变频器,性能优异,可以实现PWM逆变,甚至是PWM整流。不仅具有谐波小,功率因数也有很大程度的提高。
  单元串联型变频器
  这是近几年才发展起来的一种电路拓扑结构,它主要由输入变压器、功率单元和控制单元三大部分组成。采用模块化设计,由于采用功率单元相互串联的办法解决了高压的难题而得名,可直接驱动交流电动机,无需输出变压器,更不需要任何形式的滤波器。
  整套变频器共有18个功率单元,每相由6台功率单元相串联,并组成Y形连接,直接驱动电机。每台功率单元电路、结构完全相同,可以互换,也可以互为备用。
  变频器的输入部分是一台移相变压器,原边Y形连接,副边采用沿边三角形连接,共18副三相绕组,分别为每台功率单元供电。它们被平均分成Ⅰ、Ⅱ、Ⅲ三大部分,每部分具有6副三相小绕组,之间均匀相位偏移10度。
  该变频器的特点如下:
  ① 采用多重化PWM方式控制,输出电压波形接近正弦波。
  ② 整流电路的多重化,脉冲数多达36,功率因数高,输入谐波小。
  ③ 模块化设计,结构紧凑,维护方便,增强了产品的互换性。
  ④ 直接高压输出,无需输出变压器。
  ⑤ 极低的dv/dt输出,无需任何形式的滤波器。
  ⑥ 采用光纤通讯技术,提高了产品的抗干扰能力和可靠性。
  ⑦ 功率单元自动旁通电路,能够实现故障不停机功能。
  随着现代电力电子技术及计算机控制技术的迅速发展,促进了电气传动的技术革命。交流调速取代直流调速,计算机数字控制取代模拟控制已成为发展趋势。交流电机变频调速是当今节约电能,改善生产工艺流程,提高产品质量,以及改善运行环境的一种主要手段。变频调速以其高效率,高功率因数,以及优异的调速和启制动性能等诸多优点而被国内外公认为最有发展前途的调速方式。
  以前的高压变频器,由可控硅整流,可控硅逆变等器件构成,缺点很多,谐波大,对电网和电机都有影响。近年来,发展起来的一些新型器件将改变这一现状,如IGBT、IGCT、SGCT等等。由它们构成的高压变频器,性能优异,可以实现PWM逆变,甚至是PWM整流。不仅具有谐波小,功率因数也有很大程度的提高。
按变换的环节分类
  (1)交-直-交变频器,则是先把工频交流通过整流器变成直流,然后再把直流变换成频率电压可调的交流,又称间接式变频器,是目前广泛应用的通用型变频器。
  (2)可分为交-交变频器,即将工频交流直接变换成频率电压可调的交流,又称直接式变频器
按直流电源性质分类
  (1)电压型变频器
  电压型变频器特点是中间直流环节的储能元件采用大电容,负载的无功功率将由它来缓冲,直流电压比较平稳,直流电源内阻较小,相当于电压源,故称电压型变频器,常选用于负载电压变化较大的场合。
  (2)电流型变频器
  电流型变频器特点是中间直流环节采用大电感作为储能环节,缓冲无功功率,即扼制电流的变化,使电压接近正弦波,由于该直流内阻较大,故称电流源型变频器(电流型)。电流型变频器的特点(优点)是能扼制负载电流频繁而急剧的变化。常选用于负载电流变化较大的场合。
  按主电路工作方法
  电压型变频器、电流型变频器
按照工作原理分类
  可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等
按照开关方式分类
  可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器
按照用途分类
  可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。此外,变频器还可以按输出电压调节方式分类,按控制方式分类,按主开关元器件分类,按输入电压高低分类。
按变频器调压方法
  PAM变频器是一种通过改变电压源Ud 或电流源Id的幅值进行输出控制的。
  PWM变频器方式是在变频器输出波形的一个周期产生个 脉冲波个脉冲,其等值电压为正弦波,波形较平滑。
按工作原理分
  U/f控制变频器(VVVF控制)、SF控制变频器(转差频率控制)、VC控制变频器(Vectory Control
按国际区域分类
  国产变频器森兰英威腾;欧美变频器ABB西门子、日本变频器富士三菱、韩国变频器、台湾变频器台达、香港变频器
按电压等级分类
  高压变频器、中压变频器、低压变频器[1]
按电压性质分类
  交流变频器、直流变频器、
变频器节能效果
  变频器节能主要表现在风机、水泵的应用上。为了保证生产的可靠性,各种生产机械在设计配用动力驱动时,都留有一定的富余量。当电机不能在满负荷下运行时,除达到动力驱动要求外,多余的力矩增加了有功功率的消耗,造成电能的浪费。风机、泵类等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输入功率大,且大量的能源消耗在挡板、阀门的截流过程中。当使用变频调速时,如果流量要求减小,通过降低泵或风机的转速即可满足要求。
  由流体力学可知,P(功率)=Q(流量)&H(压力),流量Q与转速N的一次方成正比,压力H与转速N的平方成正比,功率P与转速N的立方成正比,如果水泵的效率一定,当要求调节流量下降时,转速N可成比例的下降,而此时轴输出功率P成立方关系下降。即水泵电机的耗电功率与转速近似成立方比的关系。所队当所要求的流量Q减少时,可调节变频器输出频率使电动机转速n按比例降低。这时,电动机的功率P将按三次方关系大幅度地降低,比调节挡板、阀门节能40%一50%,从而达到节电的目的。
  以上海正艺信息科技有限公司生产的变频器应用到风机水泵型负载的节能的例子来说:一台离心泵电机功率为55千瓦,当转速下降到原转速的4/5时,其耗电量为28.16千瓦,省电48.8%,当转速下降到原转速的l/2时,其耗电量为6.875千瓦,省电87.5%。
  2.功率因数补偿节能
  无功功率不但增加线损和设备的发热,更主要的是功率因数的降低导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,浪费严重,使用变频调速装置后,由于变频器内部滤波电容的作用,从而减少了无功损耗,增加了电网的有功功率。
  3.软启动节能
  电机硬启动对电网造成严重的冲击,而且还会对电网容量要求过高,启动时产生的大电流和震动时对挡板和阀门的损害极大,对设备、管路的使用寿命极为不利。而使用变频节能装置后,利用变频器的软启动功能将使启动电流从零开始,最大值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,延长了设备和阀门的使用寿命。节省了设备的维护费用。
使用与保养变频器的注意事项
  1)工作温度。变频器内部是大功率的电子元件,极易受到工作温度的影响,产品一般要求为0~55℃,但为了保证工作安全、可靠,使用时应考虑留有余地,最好控制在40℃以下。在控制箱中,变频器一般应安装在箱体上部,并严格遵守产品说明书中的安装要求,绝对不允许把发热元件或易发热的元件紧靠变频器的底部安装。
  2)环境温度。温度太高且温度变化较大时,变频器内部易出现结露现象,其绝缘性能就会大大降低,甚至可能引发短路事故。必要时,必须在箱中增加干燥

我要回帖

更多关于 民营企业高质量发展 的文章

 

随机推荐