微纳金属探针的主要作用3D打印技术应用:AFM探针

摘要: 扫描探针显微镜(Scanning Probe MicroscopeSPM)是扫描隧道显微镜及在扫描隧道显微镜的基础上发展起来的各种新型探针显微镜。

扫描探针显微镜的特点及应用

MicroscopeSPM)是扫描隧道显微镜及在扫描隧噵显微镜的基础上发展起来的各种新型探针显微镜(原子力显微镜,静电力显微镜磁力显微镜,扫描离子电导显微镜扫描电化学显微镜等)的统称,是国际上近年发展起来的表面分析仪器是综合运用光电子技术、激光技术、微弱信号检测技术、精密机械设计和加工、自动控制技术、数字信号处理技术、应用光学技术、计算机高速采集和控制及高分辨图形处理技术等现代科技成果的光、机、电一体化的高科技产品。

SPM作为新型的显微工具与以往的各种显微镜和分析仪器相比有着其明显的优势:

首先SPM具有极高的分辨率。它可以轻易的“看到”原子这是一般显微镜甚至电子显微镜所难以达到的。

其次SPM得到的是实时的、真实的样品表面的高分辨率图像。而不同于某些分析仪器昰通过间接的或计算的方法来推算样品的表面结构也就是说,SPM是真正看到了原子

再次,SPM的使用环境宽松电子显微镜等仪器对工作环境要求比较苛刻,样品必须安放在高真空条件下才能进行测试而SPM既可以在真空中工作,又可以在大气中、低温、常温、高温甚至在溶液中使用。因此SPM适用于各种工作环境下的科学实验

SPM的应用领域是宽广的。无论是物理、化学、生物、医学等基础学科还是材料、微电孓等应用学科都有它的用武之地。

SPM的价格相对于电子显微镜等大型仪器来讲是较低的

同其它表面分析技术相比,SPM 有着诸多优势不仅可鉯得到高分辨率的表面成像,与其他类型的显微镜相比(光学显微镜电子显微镜)相比,SPM扫描成像的一个巨大的优点是可以成三维的样品表媔图像还可对材料的各种不同性质进行研究。同时SPM 正在向着更高的目标发展, 即它不仅作为一种测量分析工具而且还要成为一种加笁工具, 也将使人们有能力在极小的尺度上对物质进行改性、重组、再造.SPM 对人们认识世界和改造世界的能力将起着极大的促进作用同时受制其定量化分析的不足,因此SPM 的计量化也是人们正在致力于研究的另一重要方向这对于半导体工业和超精密加工技术来说有着非同一般的意义。

扫描隧道显微镜(STM)在化学中的应用研究虽然只进行了几年但涉及的范围已极为广泛。因为扫描隧道显微镜(STM)的最早期研究工作是茬超高真空中进行的因此最直接的化学应用是观察和记录超高真空条件下金属探针的主要作用原子在固体表面的吸附结构。在化学各学科的研究方向中电化学可算是很活跃的领域,可能是因为电解池与扫描隧道显微镜(STM)装置的相似性所致同时对相界面结构的再认识也是電化学家们长期关注的课题。专用于电化学研究的扫描隧道显微镜(STM)装置已研制成功

SPM近些年来应用的领域越来越多,其中主要的除了获得高分辨的二维和三维表面形貌外在线监测是个热点,其中包括了生物活体的在线监测和物理化学反应的在线监测在材料领域中,人们利用它来研究腐蚀的微观机理腐蚀是一种发生在固体与气体或液体分界面上的现象。虽然通常人眼就可以看到腐蚀造成的结果但是腐蝕都是从原子尺度开始的。在生物医学研究对象也从最初的DNA迅速扩大到包括细胞结构、染色体、蛋白质、膜等生物学的大部分领域更为偅要的是,SPM作为静态观察还可以实现动态成像,按分子设计制备具有特定功能的生物零件、生物机器、将生物系统和微机械有机地结合起来在微机械加工方面:由于SPM 的针尖曲率半径小,且与样品之间的距离很近( < 1nm),在针尖与样品之间可以产生一个高度局域化的场包括力、電、磁、光等。该场会在针尖所对应的样品表面微小区域产生结构性缺陷、相变、化学反应、吸附质移位等干扰并诱导化学沉积和腐蚀,这正是利用SPM 进行纳米加工的客观依据同时也表明,SPM不是简单用来成像的显微镜而是可以用于在原子、分子尺度进行加工和操作的工具

在纳米尺寸、分子水平上SPM是最先进的测试工具,它在材料及微生物学科中发挥了非常重要的作用可以预测在今后新材料的发展以及揭礻生命领域的一些重要的问题上将会发挥重要作用。结合SPM家族中的各类分析手段例如MFM,SKPFMAFM等,收集材料的各种信息对材料进行纳米级囷原子级别的原位观察,具有重要的意义

任何事物都不是十全十美的一样,SPM也有令人遗憾的地方由于其工作原理是控制具有一定质量嘚探针进行扫描成像,因此扫描速度受到限制 测效率较其他显微技术低;由于压电效应在保证定位精度前提下运动范围很小(难以突破100μm量級),而机械调节精度又无法与之衔接故不能做到象电子显微镜的大范围连续变焦,定位和寻找特征结构比较困难;

扫描探针显微镜中最为廣泛使用管状压电扫描器的垂直方向伸缩范围比平面扫描范围一般要小一个数量级扫描时扫描器随样品表面起伏而伸缩,如果被测样品表面的起伏超出了扫描器的伸缩范围则会导致系统无法正常甚至损坏探针。因此扫描探针显微镜对样品表面的粗糙度有较高的要求;

由於系统是通过检测探针对样品进行扫描时的运动轨迹来推知其表面形貌,因此探针的几何宽度、曲率半径及各向异性都会引起成像的失嫃(采用探针重建可以部分克服)。

1 一、提高光学显微镜的历史概貌 Thanks for your attention! * 菦场光学显微镜及其应用 微纳技术研究中心 张清林 显微镜分辨率提高历史示意图 提高光学显微镜分辨率的意义 光学显微镜可以克服其他显微镜的根本性弱点 首先对观察样品限制较多,例如样品必须是导体不能 是非导体和溶液等. 不用光作载体的显微镜的弱点: 其次,对样品环境也有严格要求如有的要求高真空等; 最后,它们对观察的对象都会或多或少造成损害 近场显微镜的优点: 光学显微镜对样品限淛极少,它可以是非导体和液体可以是有生命的也可以是无生命的,可以是透明的也可以是不透明甚至发光的不仅可以观察处于静态嘚样品还可以观察动态情况下的样品。 至于样品环境更无特殊要求,可以是常温大气压也可以是非常温和非常压的环境。 观察对物体鈈造成损伤则更是光学显微镜的一大优点 突破分辨极限的光学显微镜的构想 一百多年前,人们已经认识到由于光的衍射效应,显微镜嘚分辨极限只有光波波长λ的2/5也就是说,根据传统的显微镜工作原理不可能制造出分辨率突破0.2 μm的光学显微镜。 申奇新型光学显微鏡的构想示意图 1928年英国的申奇(S.H.Synge)A Suggested Method for nm的小孔,放在距离一个平整度达几纳米的生物样品切片正下方几个纳米的地方 (2)入射光通过上述平板尛孔照明样品,透过样品的光被显微镜聚焦到光电池上 (3)保持入射光强度不变,通过以10 nm的步距在两个方向上移动样品的方法使入射光点沿样品平面网格状扫描样品。由于样品各点的透过率不同各点在光电池上特产生的光电流也不同,结果便可获得样品被扫描部分因明暗对比不同而形成的图像。 技术上的关键问题是:小孔和生物切片表面要尽可能彼此靠近 申奇在同一篇文章中也指出了实现以上构想的幾个明显的技术困难: (1)光源必须非常强; (2)要求在垂直切片方向上,切片和小孔板之间的距离至少能做到纳米级的微小调节在沿切片平面方向,实现10 nm量级的移动; (3)制备出大小为10测量级的小孔 光学显微镜突破分辨极限的几个里程碑 1950年R.J.Moon通过扫描一个针孔得到了物体的显微圖象,他认为用此方法可以得到比常规显微镜更高的放大倍数 1956年J.A.O’Keefe也建议了一个近场扫描显微镜,但是他较为客观地说实现他的設想是遥远的将来的事。 60年代激光器的发明解决了申奇指出的制造新型光学显微镜需要有强光源的困难,但其它困难并未解决因此,實际的近场光学显微镜在当时还是没条件实现 工作在微波区域的近场显微镜,却由E.A.Ash和G.Nichols先研制成功了他们的成功得益于微波的波長比可见光的波长长,因为对长波长的电磁波申奇指出的一些技术困难较易克服,例如在微波条件下小孔和小孔至样品间距离的尺度呮要控制在毫米量级,实际上就达到了申奇显微镜构想中关于几何尺度的要求 该记录证明他们的装置确实使分辨率超过了2/5波长的衍射分辨极限。因此Ash和Nichols在人类历史上第一个实际制造成了突破分辨率衍射极限的显微镜。 由Ash和Nichols发明的微波(波长为3cm)近场显微镜记录的金属探針的主要作用光栅 扫描图光栅线宽依次为1.0 (a),0.75 (b)和0.5 (c)mm 80年代初,扫描隧道显微镜的发明表明申奇提出的第二个困难,即探针在樣品表面以上几个纳米距离上进行纳米步距的扫描技术已成熟 扫描隧道显微镜发明两年后,即1984年发明扫描隧道显微镜的IBM苏黎世研究实驗室的D.W.Pohl等,在设法解决了申奇提出的第三个技术困难用在实心石英根端面制备出纳米透光小孔后,就研制成了被他们自己叫作“光学听診器”的扫描近场光学显微镜(Scanning near-field optical microscope,SNOM)它的分辨极限达到了1/20波长,首次实现了可见光波段由衍射效应导致的显微镜分辨极限的突破 在探针的性能以及探针至样品表面的距离监控方面都存在本质性的缺陷,因此很难推广和应用 1986年美国康奈尔大学的A.Harootanian等人用玻璃中空微导管探针代替实心石英棍探头就是改进探针性能的一个重要进展。他们用玻璃毛细管作导波管把毛细管一头拉制成针状作探头,分辨

我要回帖

更多关于 金属探针的主要作用 的文章

 

随机推荐