微纳3d立体金属拼图3D打印技术应用:AFM探针

原标题:微纳3D打印2017年营收数千万媄金获得技术转让奖

对于多数关注3D打印的人来说,平时可以听闻的一般是3d立体金属拼图、高分子塑料、树脂等类型的3D打印技术这些技術都可以打印宏观世界里的一些物体。但事实上还有可以打印微观零部件的3D打印技术,而且它应用得很好甚至是闷声发大财。Nanoscribe公司因其微小尺寸3D打印技术而获得德国物理学会(DPG)的认可2018年3月12日,南极熊获悉最近DPG授予该公司和卡尔斯鲁厄理工学院纳米技术研究所(INT)技术转让奖。 该奖项授予了这家增材制造公司因为它成功地将研究成果转化为有用的、复合市场需求和经济上成功的产品。据悉该公司2017年销售收入数千万美金。

Nanoscribe成立于2007年作为卡尔斯鲁厄理工学院研究小组的分拆,该小组正在研究微尺度的3D打印 在过去的十年中,公司巳经成为纳米和微米3D打印的先驱并且在许多项目上都有所作为。去年Nanoscribe 报道其销售额高达数千万美元,主要来自于3D打印机销售(特别是其高分辨率激光光刻机)及其微制造服务Nanoscribe首席执行官兼联合创始人Martin Hermatschweiler表示:“我们的系统中有150多套系统目前已在全球30多个国家使用。 “我們从四名员工开始目前拥有一支60人的团队。”

为了进一步适应日益增长的业务Nanoscribe还宣布将把设施搬迁到KIT投资3000万欧元的蔡司创新中心。 此舉将于2019年底举行将有助于推动微型3D打印领域的更多创新。 Hermatschweiler补充说:“通过这个创新中心能够与KIT靠的更近卡尔斯鲁厄不断为Nanoscribe等公司提供創新和成功发展的理想环境。”Nanoscribe的激光光刻系统用于3D打印世界上最小的超高强度3D晶格结构它使用高精度激光来固化光刻胶中具有小至千汾之一毫米特征的结构。 换句话说激光使基于液体的材料的小液滴内部的特定层硬化。

世界上最小的指尖陀螺宽度仅为100微米

去年11月,ORNL嘚科学家们使用Nanoscribe的增材制造系统来构建世界上最小的指尖陀螺 该迷你玩具的宽度仅为100微米(与人类头发的宽度相当)。除了用于无线技術Nanoscribe的3D打印技术还可用于制造高精度的光学微透镜,衍射光学元件用于生物打印的纳米级支架等等。祝贺Nanoscribe获得当之无愧的奖项!而据南極熊了解在中国有一家可以与Nanoscribe相媲美的公司,就是同样研发微纳3D打印技术的深圳摩方材料

经过多年媒体的熏陶相信绝大哆数人都已经听过3D打印这个概念。不少人甚至认为 3D打印技术将作为重要技术基石之一,把人类的工业文明推进到4.0时代目前的3D打印也已經进入到了细分市场的阶段,有家用桌面级的小型3D打印机也有工业生产的大型工业级3D打印机;打印材料有的是塑料,有的是3d立体金属拼圖甚至还有黏土。

图1 以黏土为基础材料的3D打印作品(笔者2015年拍摄于第二届世界3D打印博览会)

但无论是桌面级还是工业级常见的3D打印机笁作原理都是分层制造,这使得层与层之间的精度很受限存在所谓的“台阶效应”。这使得3D打印机难以制造低粗糙度、高精度的器件洳各种光学元件、微纳尺度的结构器件等等。

今天要给大家介绍的技术则完美的解决了这个问题它被称为双光子3D打印,其实专业名称应該是双光子激光直写技术为了理解这项技术,首先要知道什么叫做“双光子吸收效应”物质对光的吸收作用我们非常熟悉,以此为基礎的造物技术也很常见比如用紫外光照射一些光敏聚合物质,被光照射到的地方就会固化成为固态的物体。如果您曾经利用光敏填充膠补过牙齿就会有更直观的感受了。

中学物理中我们曾经学到过绝大多数物质对光的吸收都是将一个光子作为基础单位进行的吸收的,一次只能吸收一个光子但是实际上,极少数情况下由于物质中存在特殊的能级跃迁模式,也会出现同时吸收两个光子的情况这就昰“双光子吸收效应”。但双光子吸收的条件非常苛刻它要求特定的物质和极高的能量密度。

通常情况下物质与光的相互作用是一种線性作用。常见的物体如一块玻璃或一杯水,对特定波长的光透过率是一定的吸收率也是一定的,这个比例并不会随着光强度变化而變化因此这种作用是线性的。但是双光子吸收却是一种三阶非线性效应即随着光能量密度的增加,该效应会随之加强

图2 线性和非线性吸收示意曲线

这种非线性的双光子吸收效应使得微纳尺度的3D打印成为可能。既然只有当光强达到一定值才会出现明显的双光子吸收效應,那么若是将激光聚焦则可以将反应区域局域在焦点附近极小的位置。通过纳米级精密移动台使得该焦点在光敏物质内移动,焦点經过的位置光敏物质变性、固化,因此可以打印任意形状的3D物体

图3 双光子激光直写技术原理示意图

这种微纳尺度的3D打印机可以用来做什么呢?实际上它给科学家提供了一种强有力的手段,来设计和加工多种多样的微纳结构

图4 利用双光子直写技术加工的三维光子晶体

圖4科研中的一个例子,科学家利用双光子直写技术制作了三维的光子晶体光子晶体(Photonic Crystal)是由不同折射率的介质周期性排列而成的人工微結构,具有很多奇异的光学性质但由于单元结构极其微小,加工起来非常困难使用双光子直写则可以非常方便地加工出这种周期性排列的微纳结构。

图5 利用双光子直写技术在光纤顶端加工的内窥镜

图5则是双光子直写技术应用在科研中的另一个例子内窥镜技术为工业检測和医学诊断领域提供了极为强力的手段,大家最为熟悉的就是胃镜医生将一束长长的光导纤维通过食道插入胃部,则可以观察胃部图潒从而直观判断出胃壁的状态,对检测黏膜损伤、内溃疡、胃出血等症状提供直接证据2016年,科学家利用双光子直写技术在光纤顶端不箌200微米的范围内加工了成像效果良好的透镜组制成了目前世界上最小的内窥镜,如图6所示此项工作笔者会在后续文章中详细介绍。

图6 雙光子直写技术加工的单透镜、双透镜和三透镜组的成像效果a.光路设计图 b.成像效果仿真模拟图 c.单透镜、双透镜和三透镜组剖面电子显微鏡图 d.实验得到的成像效果图

除了科研领域,该项技术越来越多的被利用在艺术领域

图7 模特三维建模过程

2014年,艺术家Jonty Hurwitz与Weitzmann Institute of Science的科学家合作利鼡双光子直写技术制成了世界上最小的雕塑。他们首先通过三维扫描技术记录模特的三维空间信息然后将此信息转化为空间坐标,导入箌软件当中然后他们利用双光子直写技术,在一根针上制作了该人体模特的雕塑不出意外的话,这应该是世界上最小的人体雕塑

图8 雙光子激光直写技术制作的世界最小的人体雕塑

其实利用双光子直写技术加工的微纳雕塑作品很多,例如图9就是利用该技术制作的泰姬陵模型


图9 利用双光子直写技术制作的泰姬陵模型

当然了,虽然双光子激光直写技术在微纳尺度加工领域具有极大的优势但并非全无缺点。用于双光子激光直写技术的光敏物质种类很有限;与胶片拍摄图像类似而且这种光敏物质往往也需要显影和定影等过程,将打印的3D物體固定下来因此加工过程更为繁琐;微纳尺度的加工耗时许久,因此难以利用它加工大尺度的产品

图10典型的双光子直写仪基本配置

而苴从上文叙述中也可以看出,这项技术能够成功的关键很大程度上是纳米精度的移动台因此运动模块极其精密且昂贵,更需要相应的检測和控制系统图10是一台典型双光子直写仪的基本配置,从软件到硬件需要完美配合所以往往造价不菲。

Exaddon AG前身是瑞士Cytosurge公司是由数位瑞士蘇黎世联邦理工学院科学家建立的一家纳米高科技公司。其专利技术μAM(源自于FluidFM)是将微流控、AFM技术以及电化学沉积技术有效整合在一起其不仅具备AFM三维方向超高精度,还具备微流控的精确剂量控制的优点从而实现亚微米级精度的3D打印功能。

Exaddon团队将致力于微纳3d立体金属拼图3D打印技术的开发其旗舰产品CERES微纳3d立体金属拼图3D打印系统在基础物理研究、微纳米加工、 MEMS、仿生、表面等离子激元、微纳结构机械性能研究、太赫兹芯片、微电路修复、微散热结构、生物学、微米高频天线、微针等领域有这广泛的应用。

CERES微纳3d立体金属拼图3D打印系统

CERES微纳3d竝体金属拼图3D打印系统是在FluidFM技术基础上利用电化学原理直接打印亚微米复杂3D3d立体金属拼图结构。

CERES微纳3d立体金属拼图3D打印系统

直接打印亚微米3D3d立体金属拼图结构

室温环境操作简单方便

电化学原理沉积3d立体金属拼图或者合金

打印速度高达10μm/s,无须后处理

90°悬臂结构,无需支撑结构

超高精度剂量控制: fl/s(飞升/秒)

CERES微纳3d立体金属拼图3D打印系统特点

直接打印复杂3D3d立体金属拼图结构结构精度可达亚微米级

通过精确控制剂量和扫描速度获得复杂纳米尺度结构

可将超精细结构直接打印在目标区域,达到对材料表面修饰的目的

可打印Au、Ag、Cu、Pt等3d立体金属拼图30多種水溶性3d立体金属拼图材料正在研发中

更多介绍,请点击查看:

我要回帖

更多关于 3d立体金属拼图 的文章

 

随机推荐