机器人旋转关节和回转关节区别?

本文转载自微信公众号ROBOTICS

本科阶段的机器人竞赛制作的机器人、生活中见到的扫地机器人,它们都是轮式的移动机器人;移动机器人本身运动控制比较简单,难点在于对外界的感知理解,因此相关研究更多的是人工智能、机器视觉、自然语言处理这一类。然而移动机器人除了移动、简单的搬运货物等功能,缺乏真正的操作(manipulate)外界物体的能力;对这种能力的需求,就是机械臂存在的意义,也是我们学习它的意义。 狭义的机器人学,其基础研究对象是链式(chain)机器人,它们最基本的组成部分,就是关节(Joint)和连杆(Link)。连杆是连接不同关节的机械结构;链式机器人,就是可以用关节-连杆-关节-连杆-……-末端执行机构(end effector)这样的公式表达其结构的机器人。除了链式,还会有树状(如人形机器人,humanoiid

RP关节是组成机械臂/机器人的基础,R是旋转关节(Revolute Joint),P是平移关节(Prismatic Joint)。请注意,基础关节肯定是只有个自由度(Degree of freedom/DOF)的,旋转关节只绕某一个轴旋转,平移 关节只在某一条直线上运动。因为更高维度的关节(比如有三个自由度的球形关节,Spherical Joint)一定可以由多个基础关节表示。 现在可以来看看(上一篇文章被鄙视的)PPP笛卡尔坐标机器人:

无论它长怎样,你都可以清楚地看到它有三个空间上互相垂直的平移关节,正如最常用的笛卡尔坐标系。这种情况下,我们说这个机器人有三个关节,是三轴机器人,关节空间(joint space)有三个自由度,end effector的操作空间(operational space)同样有三个平动(位置)自由度。joint space和operational effector沿着空间某一条直线走,那么你需要使用operational space来描述;而如果你需要机器人每一个关节都按照你计算好的角度/位置运动,那么你需要用joint space来描述。现在再回头看看我们之前提到过的SCARA机器人(结构为RRPR): 可以很明显地看出,P关节是唯一能让end effector在竖直方向移动的关节,剩下的三个旋转关节,前两个可以确定end effector在水平面上的位置,最后一个再调整方向……笛卡尔和SCARA机器人,都属于joint space和operational space的映射关系比较简单的机器人;对于复杂一些的机器人,比如后面会出现的由6个R关节组成的PUMA,它们的关系就不是这么简单了。顺便提一下,空间中的自由刚体有六个自由度,三个平动、三个转动。

为了更直观地表明机器人的结构,不知道谁发明了两类关节符号,画出了如题图那样的机械臂结构图。图中圆形表示的R关节旋转轴垂直于屏幕。P关节却没有垂直屏幕的表示方法——发明人很任性地说,除了PPP,谁需要这个,你把机器人转个个儿就都能画了。 学会看结构,我们要能来看点有趣的内容了。上一篇文章我们说,人的手臂有七个(基础)关节,你能数出来吗?——别看手机了,现在动动你的肩膀、你的手肘、你的手腕,数一数它们都有几个基础关节? 人体的手臂结构图如下所示(耸肩可能可以算一个P关节,可是人极少用它来完成什么操作,因此忽略不计): 只是为了更直观地表现头和手在哪里而已…… 我们前面说,空间刚体有六个自由度,PPP的joint space有3个自由度,operational 不太严谨地说,这种joint space的自由度比operational space多的情况,就可称为冗余自由度(redundancy)。 对于冗余自由度最直观的理解,就是你用你的手握紧近处一个固定的东西(这时在你的operational space,你的手的位置和角度都确定了),你的身体也固定不动,这种情况下,你的手臂(手肘)竟然没有卡死还能动! 冗余自由度绝对是大自然赋予人类的伟大创造。在机器人界,冗余自由度通常意味着更高的灵活性。许多研究利用机械臂的冗余自由度实现避障(obstacle avoidance)、或避免自己撞到自己(self-collision avoidance);防止超出关节可运动范围的限制(joint limit);或防止机械臂进入奇异点(singularity),关于奇异点,我们下面很快会讲到。 然而,虽然人类控制自己的手臂去完成各种任务是一件几乎完全不用经过大脑的事,控制一个有冗余自由度的机械臂却不那么简单。直观上说,当一个机械臂有冗余自由度时,对应同一个end effector position and orientation的joint position(这是逆运动学研究的内容,即inverse kinematics)通常有无数个解;如何解决这个问题,在无数个解中找出最合理的那一个,已经是机器人学高级阶段才会学习到的内容。 最后还要说,冗余自由度其实是一个相对的概念。更确切地说,是一个joint space呢?顾名思义,如果你的任务是要在一个平面内定位,那么你的任务空间就需要两个自由度;如果你的任务是要在三维世界中确定朝向,那么你的任务空间就需要三个自由度。严谨地说,当可用于完成任务的关节空间自由度大于任务空间自由度时,我们就称之为redundancy

我们前面提到redundancy可以用来避免进入奇异点,奇异点是什么,又为什么需要避免呢? 试试看,当你伸直手臂、并把你的手臂和桌子边缘一条直线重合时,若保持身体不动,你能让你的手沿着这条直线前进或后退吗?我们前面说,人的手(即人手臂的end effector)是具有全部6个自由度的,为什么在这个时候,它在与手臂平行的方向完全无法运动了呢? 像这种机械臂的end effector失去了某个方向的自由度,在该方向上运动速度只能为0、该方向上的力/扭矩全完全由机械结构承担(而不需要关节上的电机/肌肉等actuator出力)的情况,就称为kinematic singularity。 除了伸直手臂这一个singularity(我们称为elbow lock,肘部奇点),机械臂的世界还有很多singularity的情况。比如很经典的wrist lock(腕部奇点),工业上通常称为第4-第6轴平行产生奇异点(如果你看第二张图一个经典工业机械臂PUMA的示意图,里面也出现了wrist lock,正是由第4-第6轴平行产生),此时end effector失去了在垂直屏幕方向运动的自由度。再比如overhead lock(顶置奇点), 通常是当第4关节位置与第1关节旋转轴重合时产生,此时end effector同样只能在屏幕面上运动,无法在垂直屏幕的方向运动;你可以把手举高让手腕与肩膀在同一直线上,然后试着在垂直手臂平面的方向移动手腕感受一下。 在机械臂的线性代数世界里,redundancy意味着线性方程有无数个解,而singularity则意味着某个矩阵(雅可比矩阵)的降秩(从而不可逆、线性方程无解)。更重要的是,当机器人接近singularity时,这个矩阵也越来越接近不可逆,此时由operational space的速度来计算joint space的速度,可能会得到接近无限大的计算结果;这种情况对于机器人来说,当然是非常危险。 以上讲的所有东西都只是为了建立直观印象,窥探机器人学里的趣味与难题。要真正学好机器人学,最终还得从线性代数的角度去理解。从下一篇标明干货的文章开始,我们要拿起线性代数这个工具,从坐标变换开始,到描述机器人关节和连杆关系的DH参数,到正运动学(forward kinematics)、逆运动学(inverse kinematics)和动力学(dynamics);走进机器人学的数学世界,才算真正走进了机器人学。   这篇文章介绍了一些重要概念:

第八章 操作臂的机械设计【(一)8.1-8.9】

1、机器人系统的组成大体可分为四个部分

(1)操作臂,包括它的内部或本体传感器;

(2)末端执行器,或者叫做工具端

(3)外部传感器和执行器,比如视觉系统和反馈装置;

(二)基于任务需求的设计

(1)图8-1所示未操作臂以两种不同的方法对磨削工具进行定位。实际上只需要5个自由度

(2)在一些任务中,当由主动定位装置来放置零件时,则可以使用少于6个自由度的机器人。如图8-2,在计算圆管和末端执行器之间的自由度时,倾斜/转动工作台来放置焊接的零件,应该被视为2个自由度。这样在进行弧焊时,由于其工具端具有对称性,理论上只要3个自由度。

(3)若零件自身具有对称轴,嘛呢也会减少操作臂所需要的自由度数目。

(1)工作空间有时也被称为工作空间体积工作空间包络

(1)操作臂的负载能力与结构尺寸动力传递系统驱动器有关。

(1)对于特定任务,操作臂末端执行器的最大速度和总体循环时间是由很大区别的。通常加速和减速时间占据了大部分的循环时间。因此,除了最大速度,加速能力也很重要。

5、重复精度和定位精度

(1)通常可以在操作臂制造完成后进行精确的测量,或者在制作过程中保证公差。

几乎所有的工业操作臂都采用腕部机构布局形式,前面3个关节确定腕关节原点的位置(即定位结构),后面三个关节轴相交于腕关节原点(即定向结构)。这样可以产生封闭的运动学解。

另外,定位结构几乎都采用一种简单的运动学结构:连杆转角为0°或±90°,连杆长度不同,但偏距都为0

根据前三个关节(定位结构)的设计形式对操作臂的腕部进行简单的分类:

(1)如图8-3,关节1到关节3都是移动副,且相互垂直,分别对应笛卡尔坐标的 轴

(2)这类机器人由很高的结构刚度,因此可以制造大型机器人。通常称为龙门式机器人

(3)另一个优点是前三个关节式解耦的,避免了前三个关节出现运动学奇异点。

(4)主要缺点,所有电缆和固定装置均须“内置”于机器人中,因此,所能完成的工作完全取决于本身的机械结构。

(1)如图8-4,铰接型操作臂有时被称为关节型肘型拟人操作臂。这种类型的操作臂通常由2个“肩”关节(一个绕竖直轴旋转,一个改变相对于水平的仰角),1个“肘”关节(通常平行于俯仰关节)以及2个或者3个位于操作臂末端的腕关节组成。

(2)此种操作臂减少了工作空间中的干涉,式操作臂能够到达指定的空间位置。他们的整体结构比笛卡尔操作臂小,可应用于工作空间较小的场合,成本较低。

(1)如图8-5,SCARA有三个平行的旋转关节(平面内移动和定向),第四个移动关节可以使末端执行器垂直于该平面。

(2)优点1:前三个关节不必支承操作臂或负载的任何重量。优点2:便于在连杆0中固定前两个关节的驱动器。驱动器可以做的较大,可以提供更大的速度,一般速度是铰接型机器人的10倍,适合执行平面内的任务。

如图8-6,与铰接型操作臂相类似,但用移动关节代替了肘关节。移动连杆可以伸缩,缩回时,甚至可以“从后面伸出”。

5、圆柱面坐标型操作臂

如图8-7,由1个使手臂竖直运动的移动关节和1个带有竖直轴的旋转关节组成,另1个移动关节与旋转关节正交。

(1)在实际中,很难制作出这种三轴正交且不受关节角度限制的腕关节。图8-8是这类腕关节的设计原理图,远端的驱动器通过几组锥齿轮来驱动这个机构。

(2)如图1-4,许多机器人采用了三个相交,但不垂直的轴构成腕关节。然而由于不正相交,从而使腕部不能到达一些方位。这些方位描述为腕部的第三个轴不能进入的锥体。然而,这个腕关节能被安装在操作臂的连杆3上,这种情况下,连杆结构部分占据了这个圆锥,因此可能会阻碍操作臂运动,如图8-9

(3)若第四个关节与第2、3个关节轴平行,也可以得到一个封闭形式的运动学解,如图8-10

(4)典型的5自由度焊接机器人使用两轴腕关节确定方向,如图8-11,在安装工具时必须使其对称轴与关节5的轴正交。

(四)工作空间属性的定量测量

1、按照生成工作空间设计的效果

(1)当具有相似的工作空间体积 时,制作笛卡尔操作臂比制作铰接型操作臂要消耗更多的材料。

结构长度指标 越小越好

(2)笛卡尔操作臂 最小值为3.0。铰接型操作臂 =0.62。

2、设计良好条件的工作空间

(1)操作臂离奇异点越远,操作臂越能均匀地在各个方向上移动和施力,即称为良好条件

(2)笛卡尔质量矩阵 的特征根可以作为评判操作臂在各个笛卡尔方向的加速能力的方法

(3)图8-2以图形的方式展示了平面两杆操作臂的特性。在工作空间的中间,椭球近似于球星,操作臂处于良好条件。但工作空间边界上椭球变扁,说明某些方向上加速困难

(五)冗余机构于闭链机构

1、微操作臂和其他冗余机构

(1)微操作臂一般由几个安装在“传统”操作臂末端附近的快速而精确的自由度构成。主要用于完成惊喜的运动与力的控制。图8-13所示为两种7自由度的操作臂位形。

(2)冗余自由度机器人的主要用途是在杂乱的工作环境中工作时,避免发生碰撞。

(1)闭环结构的好处,提高了机构的刚度。坏处,通常会减小关节的运动范围,从而减小了工作空间,如图8-14所示的Stewart机构,通过控制6个和基座相连的直线驱动器行程,实现“末端执行器”的位姿。每个驱动器的一端用2自由度的万象关节与基座相连,另一端用一个3自由度的球关节与末端执行器相连。

(2)通常,闭环机构的自由度可以用式(8-9)求解

(1)直接驱动布局,将驱动器的输出轴与关节直接相连。有点是没有传动元件与减速元件,关节精度与驱动器精度相同。

(2)减速系统,大多数驱动器高转速,低扭矩,而机械臂需求是低转速,高扭矩,这就需要减速系统来进行转换。

(3)传动系统,一般驱动器都比较重,所以靠近基座安装是比较合理的,这样操作臂的总体惯性将会明显下降,反过来也减小了驱动器的尺寸。为此需要传动系统将驱动器的运动传送给关节。

2、减速系统和传动系统

(1)第一类减速元件:齿轮。优点是结构紧凑,传动比大。觉电视额外引入了间隙与摩擦。

(2)第二类减速元件:柔性带、钢缆、皮带。如图8-15

(3)传动方案:普通丝杠或滚珠丝杠。如图8-16

典型的操作臂都不具备能够直接测量工具坐标系{T}位置的传感器,因此只能根据关节传感器的位置,通过正向运动学计算工具坐标系{T}的位置。所以希望在各种在和情况下对D-H的描述都是固定不变的。

1、并联和串联的柔性元件

因此,齿轮减速可以增大刚度 倍。

(1)为了对连杆的刚度进行近似处理,将单连杆视为悬臂梁,计算其端点刚度,如图8-17。分为中空圆截面梁方截面中空梁

(2)有限元技术可以用来更准确地估算更真实的结构元件的刚度。

(3)电动机:直流有刷电机,如图8-18;无刷电机;交流电机;步进电机

2、感应同步器:输出两个模拟信号,一个是轴转角的正弦信号,一个是余弦信号。轴的转角由这两个信号的相对幅值计算得到。一般比编码器可靠,但他的分辨率较低。

3、电位器:最直接的位置检测形式。连接在电桥中,能够产生与轴角成正比的电压信号。缺点是分辨率低,电信号不好,对噪声敏感。

4、转速计,能够输出与轴的转速成正比的模拟信号。这种数值微分会产生噪声和延时。

1、用来测量操作臂末端执行器与其接触工作环境之间的接触力,此类装置大都使用由半导体金属箔制作的检测元件,称为应变片

2、使用应变计测量力是依靠受压后的挠曲变形来实现的。因此,在设计力传感器时,首先要权衡刚度灵敏度之间的关系,因为刚度较高的传感器一般灵敏度较低。

3、传感器的刚度对过载保护装置也有影响,应变计可能会受到冲击载荷而损坏,所以必须具有过载保护装置,可以通过使用限位挡块避免传感器的损坏。

4、设计传感器时,消除滞后现象是很重要的。若没有过载,大多数用于产生挠曲变形的金属具有很小的滞后。然而,发生挠曲变形位置附近,有螺丝连接,过盈配合、焊接关节等都会产生滞后。理想情况下,发生挠曲变形的部分及其复紧的部分应使用同一块金属制成。

5、采用差分测量的办法可以提高力矩传感器线性度抗干扰能力

6、利用传感器不同物理构形能消除由于温度效应偏心力带来的影响。

7、金属箔式应变计相对耐用,但整个量程范围只能产生很小电阻变化。为了让其具有良好的动态测量范围消除电缆电路中的噪声是至关重要的。

8、半导体应变计过载时非常容易损坏。优点是在给定应力下,能够产生相当于约70倍的金属箔式应变计的电阻变化。对于给定的动态测量范围,半导体应变计的信号处理工作相对简单


如图8-5所示SCARA操作臂,连杆1和连杆2的长度均为L/2,移动关节3的行程为 ,为简单起见,不计馆街转角的限制,求 。当 为何值时, 最小,并求出最小的 。

所以 的最小值为1.29,当 时取得。

用式(8-6)公式验证图8-14所示的Stewart机构确实具有6个自由度。

轴的扭转刚度是500.0Nt-m/rad,与齿轮转动装置中的输入端相连, =10,输出齿轮(输入齿轮固定)的刚度是5000.0Nt-m/rad,求驱动系统的输出刚度。

在具有多级传动的系统中,如果最后一级的传动比很大,那么在这级传动之前的刚度通常可以忽略。

一个5X5X50cm的方截面连杆,壁厚1cm,由一组 =10的刚性齿轮驱动,输入齿轮由直径0.5cm、长30cm的轴驱动。试求当100Nt的力作用在杆端时,杆端的变形。(材料为钢材, )

一、工业机器人的发展背景

1920年,捷克剧作家卡里洛·奇别克在其科幻剧本《罗萨姆万能机器人制造公司》(Rossum's Universal Robots)首次使用了ROBOT这个名词,之后便成为机器人的代名词。

Magazine报道了一款搬运机器人模型,这是最早的关于以工业应用为目标的机器人模型的报道。它由GriffithP.Taylor于1935年设计,可以通过一个电动机实现5个轴的运动。到了1954年,美国的



我要回帖

更多关于 机器人关节 的文章

 

随机推荐