配置tomcat环境变量内存100% 能看出什么问题么,求助

  • 控和管理控制台,用于对JVM中内存,线程和类等的监控

  • jvisualvm,jdk自带全能工具,可以分析内存快照、线程快照;监控内存变化、GC变化等。

  • Java heap分析工具,它可以帮助我们查找内存泄漏和减少内存消耗

  • GChisto,一款专业分析gc日志的工具

新生代内存不够用时候发生MGC也叫YGC,JVM内存不够的时候发生FGC

  • -Xmx:堆内存最大限制。

  • 设定新生代大小。 新生代不宜太小,否则会有大量对象涌入老年代

「对象一定分配在堆中吗?」 不一定的,JVM通过「逃逸分析」,那些逃不出方法的对象会在栈上

逃逸分析(Escape Analysis),是一种可以有效减少Java 程序中同步负载和内存堆分配压力的跨函数

全局数据流分析算法。通过逃逸分析,Java Hotspot编译器能够分析出一个新的对象的引用的使用

范围,从而决定是否要将这个对象分配到堆上。

逃逸分析是指分析指针动态范围的方法,它同编译器优化原理的指针分析和外形分析相关联。当变

量(或者对象)在方法中分配后,其指针有可能被返回或者被全局引用,这样就会被其他方法或者

线程所引用,这种现象称作指针(或者引用)的逃逸(Escape)。通俗点讲,如果一个对象的指针被

多个方法或者线程引用时,那么我们就称这个对象的指针发生了逃逸。

  • 栈上分配,可以降低垃圾收集器运行的频率。

  • 同步消除,如果发现某个对象只能从一个线程可访问,那么在这个对象上的操作可以不需要同

  • 标量替换,把对象分解成一个个基本类型,并且内存分配不再是分配在堆上,而是分配在栈

    上。这样的好处有,一、减少内存使用,因为不用生成对象头。二、程序内存回收效率高,并

「什么是元空间?什么是永久代?为什么用元空间代替永久代?」 我们先回顾一下「方法区」吧,看

看虚拟机运行时数据内存图,如下:

线上故障主要会包括cpu、磁盘、内存以及网络问题,而大多数故障可能会包含不止一个层面的问题,所以进行排查时候尽量四个方面依次排查一遍。内存问题排查起来相对比CPU麻烦一些,场景也比较多。解决思路仍然是先应该在代码中找,怀疑存在内存泄漏,通过jstack和jmap去定位问题。gc问题除了影响cpu也会影响内存,排查思路也是一致的。我们在排查故障时候怎么确定有RST包的存在呢?

线上故障主要会包括cpu、磁盘、内存以及网络问题,而大多数故障可能会包含不止一个层面的问题,所以进行排查时候尽量四个方面依次排查一遍。同时例如jstack、jmap等工具也是不囿于一个方面的问题的,基本上出问题就是df、free、top 三连,然后依次jstack、jmap伺候,具体问题具体分析即可。

一般来讲我们首先会排查cpu方面的问题。cpu异常往往还是比较好定位的。原因包括业务逻辑问题(死循环)、频繁gc以及上下文切换过多。而最常见的往往是业务逻辑(或者框架逻辑)导致的,可以使用jstack来分析对应的堆栈情况。

我们先用ps命令找到对应进程的pid(如果你有好几个目标进程,可以先用top看一下哪个占用比较高)。

接着用top -H -p pid来找到cpu使用率比较高的一些线程

可以看到我们已经找到了nid为0x42的堆栈信息,接着只要仔细分析一番即可。

当然我们还是会使用jstack来分析问题,但有时候我们可以先确定下gc是不是太频繁,使用jstat -gc pid 1000命令来对gc分代变化情况进行观察,1000表示采样间隔(ms),S0C/S1C、S0U/S1U、EC/EU、OC/OU、MC/MU分别代表两个Survivor区、Eden区、老年代、元数据区的容量和使用量。YGC/YGT、FGC/FGCT、GCT则代表YoungGc、FullGc的耗时和次数以及总耗时。如果看到gc比较频繁,再针对gc方面做进一步分析,具体可以参考一下gc章节的描述。

针对频繁上下文问题,我们可以使用vmstat命令来进行查看

如果我们希望对特定的pid进行监控那么可以使用 pidstat -w pid命令,cswch和nvcswch表示自愿及非自愿切换。

磁盘问题和cpu一样是属于比较基础的。首先是磁盘空间方面,我们直接使用df -hl来查看文件系统状态

更多时候,磁盘问题还是性能上的问题。我们可以通过iostatiostat -d -k -x来进行分析

最后一列%util可以看到每块磁盘写入的程度,而rrqpm/s以及wrqm/s分别表示读写速度,一般就能帮助定位到具体哪块磁盘出现问题了。

另外我们还需要知道是哪个进程在进行读写,一般来说开发自己心里有数,或者用iotop命令来进行定位文件读写的来源。

我们还可以通过lsof命令来确定具体的文件读写情况lsof -p pid

内存问题排查起来相对比CPU麻烦一些,场景也比较多。主要包括OOM、GC问题和堆外内存。一般来讲,我们会先用free命令先来检查一发内存的各种情况。

内存问题大多还都是堆内内存问题。表象上主要分为OOM和StackOverflow。

JMV中的内存不足,OOM大致可以分为以下几种:

这个意思是没有足够的内存空间给线程分配java栈,基本上还是线程池代码写的有问题,比如说忘记shutdown,所以说应该首先从代码层面来寻找问题,使用jstack或者jmap。如果一切都正常,JVM方面可以通过指定Xss来减少单个thread

这个意思是堆的内存占用已经达到-Xmx设置的最大值,应该是最常见的OOM错误了。解决思路仍然是先应该在代码中找,怀疑存在内存泄漏,通过jstack和jmap去定位问题。如果说一切都正常,才需要通过调整Xmx的值来扩大内存;

这个意思是元数据区的内存占用已经达到XX:MaxMetaspaceSize设置的最大值,排查思路和上面的一致,参数方面可以通过XX:MaxPermSize来进行调整(这里就不说1.8以前的永久代了);

栈内存溢出,这个大家见到也比较多。

表示线程栈需要的内存大于Xss值,同样也是先进行排查,参数方面通过Xss来调整,但调整得太大可能又会引起OOM。

3、使用JMAP定位代码内存泄漏

overview进行分析。除此之外就是选择Histogram类概览来自己慢慢分析,大家可以搜搜mat的相关教程。

日常开发中,代码产生内存泄漏是比较常见的事,并且比较隐蔽,需要开发者更加关注细节。比如说每次请求都new对象,导致大量重复创建对象;进行文件流操作但未正确关闭;手动不当触发gc;ByteBuffer缓存分配不合理等都会造成代码OOM。

gc问题除了影响cpu也会影响内存,排查思路也是一致的。一般先使用jstat来查看分代变化情况,比如youngGC或者fullGC次数是不是太多呀;EU、OU等指标增长是不是异常呀等。

或者直接通过查看/proc/pid/task的数量即为线程数量。

如果碰到堆外内存溢出,那可真是太不幸了。首先堆外内存溢出表现就是物理常驻内存增长快,报错的话视使用方式都不确定,如果由于使用Netty导致的,那错误日志里可能会出现OutOfDirectMemoryError错误,如果直接是DirectByteBuffer,那会报OutOfMemoryError: Direct buffer memory。

堆外内存溢出往往是和NIO的使用相关,一般我们先通过pmap来查看下进程占用的内存情况pmap -x pid | sort -rn -k3 | head -30,这段意思是查看对应pid倒序前30大的内存段。这边可以在一段时间后再跑一次命令看看内存增长情况,或者和正常机器比较可疑的内存段在哪里。

可以看到jcmd分析出来的内存十分详细,包括堆内、线程以及gc(所以上述其他内存异常其实都可以用nmt来分析),这边堆外内存我们重点关注Internal的内存增长,如果增长十分明显的话那就是有问题了。

detail级别的话还会有具体内存段的增长情况,如下图。

不过其实上面那些操作也很难定位到具体的问题点,关键还是要看错误日志栈,找到可疑的对象,搞清楚它的回收机制,然后去分析对应的对象。比如DirectByteBuffer分配内存的话,是需要full GC或者手动system.gc来进行回收的(所以最好不要使用-XX:+DisableExplicitGC)。那么其实我们可以跟踪一下DirectByteBuffer对象的内存情况,通过jmap -histo:live pid手动触发fullGC来看看堆外内存有没有被回收。如果被回收了,那么大概率是堆外内存本身分配的太小了,通过-XX:MaxDirectMemorySize进行调整。如果没有什么变化,那就要使用jmap去分析那些不能被gc的对象,以及和DirectByteBuffer之间的引用关系了。

堆内内存泄漏总是和GC异常相伴。不过GC问题不只是和内存问题相关,还有可能引起CPU负载、网络问题等系列并发症,只是相对来说和内存联系紧密些,所以我们在此单独总结一下GC相关问题。

常见的Young GC、Full GC日志含义在此就不做赘述了。

针对gc日志,我们就能大致推断出youngGC与fullGC是否过于频繁或者耗时过长,从而对症下药。我们下面将对G1垃圾收集器来做分析,这边也建议大家使用G1-XX:+UseG1GC。

youngGC频繁一般是短周期小对象较多,先考虑是不是Eden区/新生代设置的太小了,看能否通过调整-Xmn、-XX:SurvivorRatio等参数设置来解决问题。如果参数正常,但是young gc频率还是太高,就需要使用Jmap和MAT对dump文件进行进一步排查了。

耗时过长问题就要看GC日志里耗时耗在哪一块了。以G1日志为例,可以关注Root Scanning、Object Copy、Ref Proc等阶段。Ref Proc耗时长,就要注意引用相关的对象。Root Scanning耗时长,就要注意线程数、跨代引用。Object Copy则需要关注对象生存周期。而且耗时分析它需要横向比较,就是和其他项目或者正常时间段的耗时比较。比如说图中的Root Scanning和正常时间段比增长较多,那就是起的线程太多了。

G1中更多的还是mixedGC,但mixedGC可以和youngGC思路一样去排查。触发fullGC了一般都会有问题,G1会退化使用Serial收集器来完成垃圾的清理工作,暂停时长达到秒级别,可以说是半跪了。

fullGC的原因可能包括以下这些,以及参数调整方面的一些思路:

这样得到2份dump文件,对比后主要关注被gc掉的问题对象来定位问题。

涉及到网络层面的问题一般都比较复杂,场景多,定位难,成为了大多数开发的噩梦,应该是最复杂的了。这里会举一些例子,并从tcp层、应用层以及工具的使用等方面进行阐述。

超时错误大部分处在应用层面,所以这块着重理解概念。超时大体可以分为连接超时和读写超时,某些使用连接池的客户端框架还会存在获取连接超时和空闲连接清理超时。

我们在设置各种超时时间中,需要确认的是尽量保持客户端的超时小于服务端的超时,以保证连接正常结束。

在实际开发中,我们关心最多的应该是接口的读写超时了。

如何设置合理的接口超时是一个问题。如果接口超时设置的过长,那么有可能会过多地占用服务端的tcp连接。而如果接口设置的过短,那么接口超时就会非常频繁。

服务端接口明明rt降低,但客户端仍然一直超时又是另一个问题。这个问题其实很简单,客户端到服务端的链路包括网络传输、排队以及服务处理等,每一个环节都可能是耗时的原因。

tcp队列溢出是个相对底层的错误,它可能会造成超时、rst等更表层的错误。因此错误也更隐蔽,所以我们单独说一说。

那么在实际开发中,我们怎么能快速定位到tcp队列溢出呢?

如上图所示,overflowed表示全连接队列溢出的次数,sockets dropped表示半连接队列溢出的次数。

上面看到Send-Q 表示第三列的listen端口上的全连接队列最大为5,第一列Recv-Q为全连接队列当前使用了多少。

接着我们看看怎么设置全连接、半连接队列大小吧:

在日常开发中,我们往往使用servlet容器作为服务端,所以我们有时候也需要关注容器的连接队列大小。在tomcat中backlog叫做acceptCount,在jetty里面则是acceptQueueSize。

RST包表示连接重置,用于关闭一些无用的连接,通常表示异常关闭,区别于四次挥手。

如果向不存在的端口发出建立连接SYN请求,那么服务端发现自己并没有这个端口则会直接返回一个RST报文,用于中断连接。

2、主动代替FIN终止连接

一般来说,正常的连接关闭都是需要通过FIN报文实现,然而我们也可以用RST报文来代替FIN,表示直接终止连接。实际开发中,可设置SO_LINGER数值来控制,这种往往是故意的,来跳过TIMED_WAIT,提供交互效率,不闲就慎用。

3、客户端或服务端有一边发生了异常,该方向对端发送RST以告知关闭连接

我们上面讲的tcp队列溢出发送RST包其实也是属于这一种。这种往往是由于某些原因,一方无法再能正常处理请求连接了(比如程序崩了,队列满了),从而告知另一方关闭连接。

4、接收到的TCP报文不在已知的TCP连接内

比如,一方机器由于网络实在太差TCP报文失踪了,另一方关闭了该连接tomcat 内存溢出,然后过了许久收到了之前失踪的TCP报文,但由于对应的TCP连接已不存在,那么会直接发一个RST包以便开启新的连接。

5、一方长期未收到另一方的确认报文,在一定时间或重传次数后发出RST报文

这种大多也和网络环境相关了,网络环境差可能会导致更多的RST报文。

之前说过RST报文多会导致程序报错,在一个已关闭的连接上读操作会报connection reset,而在一个已关闭的连接上写操作则会报connection reset by peer。通常我们可能还会看到broken pipe错误,这是管道层面的错误,表示对已关闭的管道进行读写,往往是在收到RST,报出connection reset错后继续读写数据报的错,这个在glibc源码注释中也有介绍。

我们在排查故障时候怎么确定有RST包的存在呢?当然是使用tcpdump命令进行抓包,并使用wireshark进行简单分析了。tcpdump -i en0 tcp -w xxx.cap,en0表示监听的网卡。

接下来我们通过wireshark打开抓到的包,可能就能看到如下图所示,红色的就表示RST包了。

time_wait的存在一是为了丢失的数据包被后面连接复用,二是为了在2MSL的时间范围内正常关闭连接。它的存在其实会大大减少RST包的出现。

过多的time_wait在短连接频繁的场景比较容易出现。这种情况可以在服务端做一些内核参数调优:

#表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭

当然我们不要忘记在NAT环境下因为时间戳错乱导致数据包被拒绝的坑了,另外的办法就是改小tcp_max_tw_buckets,超过这个数的time_wait都会被干掉,不过这也会导致报time wait bucket table overflow的错。

close_wait往往都是因为应用程序写的有问题,没有在ACK后再次发起FIN报文。close_wait出现的概率甚至比time_wait要更高,后果也更严重。往往是由于某个地方阻塞住了,没有正常关闭连接,从而渐渐地消耗完所有的线程。

想要定位这类问题,最好是通过jstack来分析线程堆栈来排查问题,具体可参考上述章节。这里仅举一个例子。

开发同学说应用上线后CLOSE_WAIT就一直增多,直到挂掉为止,jstack后找到比较可疑的堆栈是大部分线程都卡在了countdownlatch.await方法,找开发同学了解后得知使用了多线程但是却没有catch异常,修改后发现异常仅仅是最简单的升级sdk后常出现的class not found。

dbaplus社群(ID:dbaplus),关注了解更多原创精选内容

以上由丰涵科技用户整理投稿发布,希望对大家有所帮助!

    关注技术领域的头条文章

    聚合全网技术文章,根据你的阅读喜好进行个性推荐

服务器主进程占用1.5G

聚合全网技术文章,根据你的阅读喜好进行个性推荐

深圳市奥思网络科技有限公司版权所有

我要回帖

更多关于 配置tomcat环境变量 的文章

 

随机推荐