量子时序保护内存的原理和时序包括

简介/量子理论
量子理论量子论是现代物理学的两大基石之一。量子论给我们提供了新的关于自然界的表述方法和思考方法。量子论揭示了微观物质世界的基本规律,为原子物理学、固体物理学、核物理学和粒子物理学奠定了理论基础。它能很好地解释原子结构、原子光谱的规律性、化学元素的性质、光的吸收与辐射等。
基本介绍/量子理论
量子世界我们把科学家们在研究原子、分子、原子核、基本粒子时所观察到的关于微观世界的系列特殊的物理现象称为量子现象。量子世界除了其线度极其微小之外(10^-10~10^-15m量级),另一个主要特征是它们所涉及的许多宏观世界所对应的物理量往往不能取连续变化的值,(如:坐标、动量、能量、角动量、自旋),甚至取值不确定。许多实验事实表明,量子世界满足的物理规律不再是经典的牛顿力学,而是量子物理学。量子物理学是当今人们研究微观世界的理论,也有人称为研究量子现象的物理学。由于宏观物体是由微观世界建构而成的,因此量子物理学不仅是研究微观世界结构的工具,而且在深入研究宏观物体的微结构和特殊的物理性质中也发挥着巨大作用。量子物理学的建立量子物理学是在20世纪初,物理学家们在研究微观世界(分子、原子、原子核…)的结构和运动规律的过程中,逐步建立起来的。量子物理学的内容本书将介绍有关量子力学的基础知识。第1章介绍量子概念的引入--微观粒子的二象性,由此而引起的描述微观粒子状态的特殊方法--波函数,以及微观粒子不同于经典粒子的基本特征--不确定关系。第2章介绍微观粒子的基本运动方程(非相对论形式)--薛定谔方程。对于此方程,首先把它应用于势阱中的粒子,得出微观粒子在束缚态中的基本特征--能量量子化、势垒穿透等。第3章用量子概念介绍(未经详细的数学推导)了电子在原子中运动的规律,包括能量、角动量的量子化,自旋的概念,泡利不相容原理,原子中电子的排布,X光和激光的原理等。第4章介绍固体中的电子的量子特征,包括自由电子的能量分布以及导电机理,能带理论及对导体、绝缘体、半导体性能的解释。第5章介绍原子核的基础知识,包括核的一般性质、结合能、核模型、核衰变及核反应等。关于基本粒子的知识和当今关于宇宙及其发展的知识也都属于量子物理的范围,其基本内容在本套书第一册力学"今日物理趣闻A基本粒子"和第二册热学"今日物理趣闻A大爆炸和宇宙膨胀"中分别有所介绍,在本书中不再重复。量子物理学的价值20世纪物理学的发展表明,量子物理是人们认识和理解微观世界的基础。量子物理和相对论的成就使得物理学从经典物理学发展到现代物理学,奠定了现代自然科学的主要基础。当然,随着物理学和其它自然科学的进一步发展,人们认识的逐步深化,量子物理学也会进一步地丰富和发展。至今为止、量子力学的某些基本观念和哲学意义,科学家们仍然继续争论不休,这是一门科学在走向成熟过程中的一个必经的阶段。
量子力学/量子理论
量子力学量子力学是一门奇妙的理论。它的许多基本概念、规律与方法都和经典物理的基本概念、规律和方法截然不同。量子物理学的现象不同于我们在日常生活中所观察到的物理现象,其理论比较抽象,其数学工具比较艰深。因此人们往往将量子力学称为研究量子现象的数学,本书(量子物理)实际上可以称为量子力学初步或量子力学导论。量子力学诠释:霍金膜上的四维量子论类似10维或11维的“弦论”=振动的弦、震荡中的象弦一样的微小物体。霍金膜上四维世界的量子理论的近代诠释振动的量子(波动的量子=量子鬼波)=平动微粒子的振动;振动的微粒子;震荡中的象量子(粒子)一样的微小物体。波动量子=量子的波动=微粒子的平动+振动=平动+振动=矢量和量子鬼波的DENG'S诠释:微粒子(量子)平动与振动的矢量和粒子波、量子波=粒子的震荡(平动粒子的震动)
发展简史/量子理论
量子力学的独特地位尽管量子力学是为描述远离我们的日常生活经验的抽象原子世界而创立的,但它对日常生活的影响无比巨大。没有量子力学作为工具,就不可能有化学、生物、医学以及其他每一个关键学科的引人入胜的进展。没有量子力学就没有全球经济可言,因为作为量子力学的产物的电子学革命将我们带入了计算机时代。同时,光子学的革命也将我们带入信息时代。量子物理的杰作改变了我们的世界,科学革命为这个世界带来了的福音,也带来了潜在的威胁。或许用下面的一段资料能最好地描述这个至关重要但又难以捉摸的理论的独特地位:量子理论是科学史上能最精确地被实验检验的理论,是科学史上最成功的理论。量子力学深深地困扰了它的创立者,然而,直到它本质上被表述成通用形式的今天,一些科学界的精英们尽管承认它强大的威力,却仍然对它的基础和基本阐释不满意。马克斯·普朗克(MaxPlanck)提出量子概念100多年了,在他关于热辐射的经典论文中,普朗克假定振动系统的总能量不能连续改变,而是以不连续的能量子形式从一个值跳到另一个值。能量子的概念太激进了,普朗克后来将它搁置下来。随后,爱因斯坦在1905年(这一年对他来说是非凡的一年)认识到光量子化的潜在意义。不过量子的观念太离奇了,后来几乎没有根本性的进展。现代量子理论的创立则是崭新的一代物理学家花了20多年时间建立的。量子物理实际上包含两个方面一个是原子层次的物质理论:量子力学,正是它我们才能理解和操纵物质世界;另一个是量子场论,它在科学中起到一个完全不同的作用。
量子理论的发展与建立/量子理论
该文回顾了从量子理论提出到量子力学建立的一段历史,详细叙述了在量子理论发展过程中每一种新的思想提出的曲折经过。马克思有句名言:“历史上有惊人的相似之处。”正处于新的世纪之交的20世纪的物理学硕果累累,但也遇到两大困惑——夸克禁闭和对称性破缺,这预示着物理学正面临新的挑战。重温百年前量子论建立与发展的那段历史,也许会使我们受到新的启迪。历史的孕育在19世纪末,经典物理学理论已经发展到相当完备的阶段,几个主要部门——力学,热力学和分子运动论,电磁学以及光学,都已经建立了完整的理论体系,在应用上也取得了巨大成果,其主要标志是:物体的机械运动在其速度远小于光速的情况下,严格遵守牛顿力学的规律;电磁现象总结为麦克斯韦方程组;光现象有光的波动理论,最后也归结为麦克斯韦方程组;热现象有热力学和统计物理的理论。量子理论在当时看来,物理学的发展似乎已达到了巅峰,于是,多数物理学家认为物理学的重要定律均已找到,伟大的发现不会再有了,理论已相当完善了,以后的工作无非是在提高实验精度和理论细节上作些补充和修正,使常数测得更精确而已。英国著名物理学家开尔文在一篇瞻望20世纪物理学的文章中,就曾谈到:“在已经基本建成的科学大厦中,后辈物理学家只要做一些零碎的修补工作就行了。”然而,正当物理学界沉浸在满足的欢乐之中的时候,从实验上陆续出现了一系列重大发现,如固体比热、黑体辐射、光电效应、原子结构……这些新现象都涉及物质内部的微观过程,用已经建立起来的经典理论进行解释显得无能为力。特别是关于黑体辐射的实验规律,运用经典理论得出的瑞利-金斯公式,虽然在低频部分与实验结果符合得比较好,但是随着频率的增加,辐射能量单调地增加,在高频部分趋于无限大,即在紫色一端发散。这一情况被埃伦菲斯特称为“紫外灾难”。对迈克尔逊-莫雷实验所得出的“零结果”更是令人费解,实验结果表明,根本不存在“以太漂移”。这引起了物理学家的震惊,反映出经典物理学面临着严峻的挑战。这两件事被当时物理学界的权威称为“在物理学晴朗的天空的远处还有两朵小小的,令人不安的乌云”。然而就是这两朵小小的乌云,给物理学带来了一场深刻的革命。下表列出了世纪之交,物理学上有重大意义的实验发现:
发现放射性
发现 磁场 使光谱线分裂
发现放射性元素钋和镭
卢梅尔和鲁本斯等人
发现热辐射能量分布曲线偏离 维恩 分布率
发现电子的质量随速度增加
发现光电效应基本规律
发现热电子发射规律
发现放射性元素的蜕变规律
量子理论这些新的物理现象,打破了沉闷的空气,把人们的注意力引向更深入,更广阔的天地。这一系列新发现,跟经典物理学的理论体系产生了尖锐的矛盾,暴露了经典物理理论中的隐患,指出了经典物理学的局限。物理学只有从观念上,从基本假设上以及从理论体系上来一番彻底的变革,才能适应新的形势。由于这些新发现,物理学面临大发展的局面:1.电子的发现,打破了原子不可分的传统观念,开辟了原子研究的崭新领域;2.放射性的发现,导致了放射学的研究,为原子核物理学作好必要的准备;3.以太漂移的探索,使以太理论处于重重矛盾之中,为从根本上抛开以太存在的假设,创立狭义相对论提供了重要依据;4.黑体辐射的研究导致了普朗克黑体辐射定律的发现,由此提出了能量子假说,为量子理论的建立打响了第一炮。总之,在世纪之交的年代里,物理学处于新旧交替的阶段。这个时期,是物理学发展史上不平凡的时期。经典理论的完整大厦,与晴朗天空的远方漂浮着两朵乌云,构成了19世纪末的画卷;20世纪初,新现象新理论如雨后春笋般不断涌现,物理学界思想异常活跃,堪称物理学的黄金时代。这些新现象与经典理论之间的矛盾,迫使人们冲破原有理论的框架,摆脱经典理论的束缚,在微观理论方面探索新的规律,建立新的理论。旧量子论的建立20世纪初,新的实验事实不断发现,经典物理学在解释一些现象时出现了困难,其中表现最为明显和突出的是以下三个问题:黑体辐射问题;光电效应问题;原子稳定性和原子光谱。量子概念就是在对这三个问题进行理论解释时作为一种假设而提出的。1 黑体辐射的研究热辐射是19世纪发展起来的一门新学科,它的研究得到了热力学和光谱学的支持,同时用到了电磁学和光学的新兴技术,因此发展很快。到19世纪末,由这个领域又打开了一个缺口,即关于黑体辐射的研究,导致了量子论的诞生。为了得出和实验相符合的黑体辐射定律,许多物理学家进行了各种尝试。量子理论1893年德国物理学家维恩(Winhelm Wein,)提出一个黑体辐射能量分布定律,即维恩公式。这个公式在短波部分与实验中观察到的结果较为符合,但是在长波部分则明显地与实验不符。1900年英国物理学家瑞利(Rayleigh)和金斯(J.H.Jeans)又提出一个辐射定律,即瑞利-金斯公式,这个公式在长波部分与观察一致,而在短波(高频)部分则与实验大相径庭,导致了所谓的“紫外灾难”。这个“灾难”使多数物理学家敏锐地看到,经典物理正面临着严重的危机。1900年,才华横溢而又保守谨慎的德国物理学家普朗克(MaxPlanck,)为解决黑体辐射问题,大胆地提出了一个革命性的思想:电磁振荡只能以“量子”的形式发生,量子的能量E和频率u之间有一确定的关系[E=h u] h为一自然的基本常数。普朗克假定:黑体以h u为能量单位不连续地发射和吸收频率为u的辐射,而不是象经典理论所要求的那样可以连续地发射和吸收能量。令人惊叹的是,普朗克利用这个荒谬绝伦的因素,能够在理论上得到与观察一致的能量-频率关系。普朗克是一名出色的物理学工作者,长期从事热力学的研究工作。自1894年起,他把注意力转向黑体辐射问题。瑞利公式提出后,普朗克试图用“内插法”找到一个普遍化公式,把代表短波方向的维恩公式和代表长波方向的瑞利-金斯公式综合在一起。很快地,他就找到了:[frac{8pi h u^}{c^} ullet frac{e^{h u/KT}-1} ]这就是普朗克辐射定律。与维恩公式相比,仅在指数函数后多了一个(-1)。作为理论物理学家,普朗克当然不满足于找到一个经验公式。实验结果越是证明他的公式与实验相符,就越促使他致力于探求这个公式的理论基础。为从理论上推导这一新定律,普朗克以最紧张的工作,经过两三个月的努力,终于在1900年底用一个能量不连续的谐振子假设,按照玻尔兹曼的统计方法,推出了黑体辐射公式。普朗克解决黑体辐射问题并提出能量子假说的关键,是采用了玻尔兹曼的方法。玻尔兹曼是热力学第二定律的统计解释的提出者。1877年,玻尔兹曼在讨论能量在分子间的分配问题时,把实际连续可变的能量分成分立的形式加以讨论。普朗克本来一直是玻尔兹曼统计观点的反对者,为此曾与玻尔兹曼进行过论战。然而,当他从热力学的普遍理论出发,无法直接推出新的辐射定律时,他只好“孤注一掷”地使用玻尔兹曼的统计方法了。出乎所有人的意料,这个"孤注一掷",不仅解决了黑体辐射问题,使一场"灾难"消于无形,更为重要的是,普朗克凭此壮举,揭示了量子论光临的曙光。普朗克的能量子概念,是近代物理学中最重要的概念之一,在物理学发展史上具有划时代的意义。自从17世纪以来,"一切自然过程都是连续的"这条原理,似乎被认为是天经地义的。莱布尼兹和牛顿创立的无限小数量的演算,微积分学的基本精神正体现了这一点;而普朗克的新思想是与经典理论相违背的,它冲破了经典物理传统观念对人们的长期束缚,这就为人们建立新的概念,探索新的理论开拓了一条新路。在这个假设的启发下,许多微观现象得到了正确的解释,并在此基础上建立起一个比较完整的,并成为近代物理学重要支柱之一的量子理论体系。许多物理学家认为,1900年不仅是历史书上一个新世纪的开始,也是物理学发展史上一个新纪元的开端,它标志着人类对自然的认识,对客观规律的探索从宏观领域进入微观领域的物理学新时代的开始。另外,同任何新生理论一样,普朗克的量子理论仍须进一步完善。在普朗克的理论中,他只考虑器壁上振子是量子化的,而对空腔内的电磁辐射,普朗克认为它仍是连续的,只有当它们与器壁振子能量交换时,其能量才显示出不连续性,至于电磁波在空间传播过程中如何分布,普朗克亦未说明。而年轻的爱因斯坦,则在普朗克理论的基础上,为量子理论的发展打开了新的局面。2 光电效应的研究1905年,爱因斯坦针对经典理论解释光电效应所遇到的困难,发表了他的著名论文《关于光的产生和转化的一个试探性观点》。在这篇论文中,爱因斯坦总结了光学发展中微粒说和波动说长期争论的历史,揭示了经典理论的困境,在普朗克能量子假说的基础上,提出了一个崭新的观点——光量子假说。爱因斯坦从经验事实出发,阐明了能量子存在的客观性。他指出,19世纪中期,光的波动说与电磁理论取得了绝对性的胜利,但在光的产生与转化的瞬时现象中,光的波动说与经验事实不相符。爱因斯坦注意到,如果假定黑体空腔中的电磁辐射有粒子性,即假定辐射能量由大小为h u的量子组成,就能理解普朗克的奇怪的黑体辐射定律的某些方面,而光是电磁波,可以看作由光量子组成。他在文中写道:"在我看来,如果假定光的能量在空间的分布是不连续的,就可以更好地理解黑体辐射、光致发光、紫外线产生阴极射线(即光电效应),以及其他有关光的产生和转化的现象的各种观测结果。根据这一假设,从点光源发射出来的光束的能量在传播过程中将不是连续分布在越来越大的空间中,而是由一个数目有限的局限于空间各点的能量子所组成。这些能量子在运动中不再分散,只能整个地被吸收或产生。"爱因斯坦早已意识到量子概念必然会引起物理学基本理论的变革,不过,在普朗克看来,电磁场在本质上还是连续的波。在这里,爱因斯坦明确指出,光的能量不仅在辐射时是一份一份的,即量子化的,而且在传播过程中以及在与物质相互作用过程中也是一份一份的,这就是说,电磁场能量本身是量子化的,辐射场也不是连续的,而是由一个个集中存在的,不可分割的能量子组成的。爱因斯坦把这一个个能量子称为"光量子",1926年被美国物理学家路易斯定名为"光子"。同时,爱因斯坦从维恩公式有效范围内的辐射熵的讨论中,得到了光量子的能量表达式:[E=h u]爱因斯坦认为,当光照到金属表面时,能量为h u的光子与电子之间发生了能量交换,电子全部吸收了光子的能量,从而具有了能量E=h u,但要使电子从金属表面逸出,则须克服金属表面对它的吸引力,损失掉一部分能量,即电子须克服吸引力而做功W(逸出功)。根据能量转化和守恒定律可知,剩下的一部分能量就成为离开表面时的动能:[ E_=h u-W(ox{W和材料有关}) ],这就是爱因斯坦的光电方程。依据爱因斯坦的光量子假说和光电方程,便可以非常出色地解释光电效应的实验结果。从上式可以看到,电子逸出金属表面的速度(动能),只与光的频率和所用材料有关而与光的强度无关;当所用光的频率低于某一特定值时,即h u小于W时,无论光强多大,电子都不会逸出金属表面。1923年,美国物理学家康普顿通过X射线在物质中的散射实验,进一步证实了光量子的存在,为爱因斯坦的理论提供了有力的证据。爱因斯坦之所以能得出光电方程,并对光电效应进行了正确的解释,主要是由于他对黑体辐射现象的深入理解,得到了普朗克能量子假说的启发,再加上他的坚实的知识基础和创新的精神,爱因斯坦提出光量子假说和光电方程,又的确是非常大胆的,因为在当时还没有足够的实验事实来支持他的理论,尽管理论与已有的实际观测结果并无矛盾,爱因斯坦非常谨慎,所以称之为"试探性观点"。但如果我们比较详细地回顾一下光电效应的发现史,就会更加佩服爱因斯坦的胆略。光量子理论在揭示自然规律时的重要意义不仅在于对光电效应作出了正确的解释,还表现在它使人们重新认识了光的粒子性,从而对光的本性的认识产生了一个飞跃,揭示了光既有波动性又有微粒性的双重特性,为光的波粒二象性的提出作了准备。这种特性具体表现在,作为一个"粒子"的光量子的能量E,它是与电磁波的频率u不可分割地联系在一起,具体地说,在光的衍射与干涉现象中,光主要表现出波动性;而在光电效应一类现象中则主要表现出粒子性。1909年爱因斯坦一次学术讨论会上说,理论物理学发展的下一阶段,将会出现关于光的新理论,这个理论将把光的波动说与微粒说统一起来。3 玻尔理论普朗克和爱因斯坦的工作在物理学史上有其重要的地位,但使量子理论产生深远影响的是玻尔。1913年,丹麦物理学家及20世纪主要科学思想家尼尔斯·玻尔再一次极其漂亮地利用了普朗克理论。他从卢瑟福的有核模型,普朗克的能量子概念以及光谱学的成就出发,得到了在相当准确度上,自然实际服从的许多分立的并稳定的能量级和光谱频率的"怪异的"规则,从而成功地解决了原子有核结构的稳定性问题,并出色地解释了氢原子的光谱。后来,依万士(E.J.Evans)的氢光谱实验证实了玻尔关于匹克林(Pickering)谱线的预见。莫塞莱(H.G.J.Moseley)测定各种元素的X射线标识谱线,证明它们具有确定的规律性,为卢瑟福和玻尔的原子理论提供了有力证据。1911年,英国物理学家卢瑟福在alpha粒散射实验的基础上,提出了原子的有核模型这个模型无疑是符合事实的。但是,一个严峻而急迫的难题,挡住了卢瑟福模型进一步发展的道路,那就是它还缺少一个理论支柱。因为,如果按照经典理论和卢瑟福模型,原子将不会稳定存在,并且原子光谱也将是连续变化的。而事实上,原子是稳定的,光谱则是分立的。丹麦物理学家玻尔(N.Bohr,1885---1962)是卢瑟福的学生,他坚信卢瑟福的有核原子模型是符合客观事实的.当然,他也很了解这个模型所面临的困难。玻尔认为,要解决原子的稳定性问题,"只有量子假说是摆脱困难的唯一出路。"也就是说,要描述原子现象,就必须对经典概念进行一番彻底的改造。但是摆在玻尔面前的是重重困难,问题十分棘手。在此之前,为了解决原子模型的稳定性问题,一些物理学家曾试图将普朗克的量子假设引入到种种原子模型中,但均未获成功,但他们的工作,给了玻尔很大的启发,玻尔决定把量子概念引入到卢瑟福的有核原子模型中。1913年初,正当玻尔苦思冥想之际,他的一位朋友汉森向他介绍了氢光谱的巴尔末公式和斯塔克的着作。他立即认识到这个公式与卢瑟福的核模型之间应当存在着密切的关系,他仔细地分析和研究了当时已知的大量光谱数据和经验公式,特别是巴尔末公式,受到了很大的启示。同时他从斯塔克的着作中学习了价电子跃迁产生辐射的理论。这样,光谱学和原子结构,这原先互不相干的两门学科,被玻尔看到了它们的内在联系。光谱学中大量的实验数据和经验公式,为原子结构提供了十分有用的信息。玻尔抓住光谱学的线索,使他的原子理论发展到一个决定性阶段。玻尔在这些基础上,深思了这些问题和前人的设想,分析了原子和光谱之间的矛盾,巧妙地把普朗克、爱因斯坦和卢瑟福的思想结合起来,创造性地将光的量子理论引入到原子结构中来,从原子具有稳定性以及分立的线状光谱这两个经验事实出发,建立了新的原子结构模型。1913年玻尔写出了伟大的三部曲,名为《原子与分子结构》——I、II、III的三篇论文。在这三篇论文中,玻尔提出了与经典理论相违背的两个极为重要的假设,它们是:定态假设和跃迁假设。为了具体确定定态的能量数值,玻尔提出了量子化条件,即电子的角动量J只能是h的整数倍。在这里他运用了在以后经典量子论中一直起指导作用的"对应原理"。玻尔的原子结构模型取得了巨大的成功,较好地了解决原子的稳定性问题,并且成功地解释了氢光谱的巴尔末公式,对氢原子和尖氢离子光谱的波长分布规律作出了完满的解释,使得原子物理学与光谱学很好地结合起来,同时,玻尔理论还成功地解释了元素的周期表,使量子理论取得了重大进展。狄拉克后来曾评论说:"这个理论打开了我的眼界,使我看到了一个新的世界,一个非常奇妙的世界。我认为,在量子力学的发展中,玻尔引进的这些概念,是迈出了最伟大的一步。"玻尔之所以成功,在于他全面地继承了前人的工作,正确地加以综合,在旧的经典理论和新的实验事实的矛盾面前勇敢地肯定实验事实,冲破旧理论的束缚,从而建立了能基本适于原子现象的定态跃迁原子模型。下面的图表摘自洪德(F.Hund)所着《量子理论史》,对玻尔理论的渊源作了精辟的分析:[光谱学成果 | ][卢瑟福原子模型|- 玻尔][量子理论 |/ ]玻尔的原子理论突破了经典理论的框架,是量子理论发展中一个重要里程碑,一举对氢原子光谱和原子稳定性作出了成功的解释。但是,玻尔漂亮的设想虽极其成功,却只是提供了一种临时"凑合物"的理论。因为玻尔在处理原子问题时,并没有从根本上抛弃经典理论,例如玻尔仍然将电子看成是经典物理学中所描述的那样的粒子,这些粒子具有完全确定的轨道行动等,实际上他的理论是经典理论与量子理论的混合体。所以人们常把1900年---1923年中发展起来的量子理论称为旧量子论,这一时期从普郎克的能量子假说,爱因斯坦的光量子说直至玻尔的原子结构模型,都表明物理学已经开始冲破了经典理论的束缚,实现了理论上的飞跃,它们的共同特征是以不连续或量子化概念取代了经典物理学中能量连续的观点。普朗克、爱因斯坦、玻尔同为旧量子理论的奠基者,他们的思想是旧量子论的重要组成部分,而玻尔理论是其核心内容,玻尔则是旧量子论的集大成者。借恩格斯评论19世纪化学状况的话来说,有了玻尔理论,就使得"现已达到的各种结果都具有了秩序相对的可靠性,已经能够系统地,差不多是有计划地向还没有征服的领域进攻,就象计划周密地围攻一个堡垒一样了"。众所周知,随之而来的"进攻"是波澜壮阔声势浩大的,所以说玻尔理论使得物理学迈出了"最大的一步"。虽然新理论本身还不完善,它对实验现象的解释范围有限,但却打开了人们的思路,给人们很大的启发,它推动人们去寻找更为完善的理论。量子力学就是在这种情况下逐步建立起来的,三量子力学的建立与发展自普朗克提出量子概念后,物理学的基本理论研究已进入到近代物理的领域。在本世纪20年代,物理学理论的研究主要集中在下面三方面:一、从经典电动力学的研究进入到相对论的研究。1905年,爱因斯坦提出了狭义相对论,1917年又提出了广义相对论,从此相对论不单是理论物理学家们况相钻研的对象,而且为全世界所瞩目。二、19世纪末麦克斯韦,玻尔兹曼,20世纪初吉布斯等人所建立的统计物理是理论物理中广泛研究的内容之一,到本世纪20年代导致了玻色爱因斯坦统计和费密狄拉克统计的出现。三、关于原子结构的研究。1897年,汤姆生发现电子,开始了对原子结构的研究;1911年,卢瑟福提出原子的有核模型;1913年玻尔提出原子结构的量子论。从此这方面的研究愈来愈活跃,量子力学就是开始于研究原子物理中的一些不能解释的问题,由此可以说,量子力学是从讨论原子结构入手的。它的发展有两条路线,一条路线是由德布罗意提出物质波,后来薛定谔引入波函数的概念,并提出薛定谔方程,建立了波动力学;另一条路线是海森堡提出了矩阵力学,玻恩等人提出了力学量算符表示法。从两条不同的道路解决了同一个问题,即微观粒子的力学方面的运动规律。二者的统一工作主要是由狄拉克完成,并加以推广,最后完成了相对论性的量子力学。3.1 德布罗意物质波作为量子力学的前奏,德布罗意的物质波理论有着特殊的重要性。早在1905年,爱因斯坦在他提出的光量子假说中,就隐含了波动性和粒子性是光的两种表现形式的思想,并预言会出现将波动说与微粒说统一起来的新理论。20年代初,正当现代物理学面临重大突破之际,具有求美眼光的德布罗意不失时机的脱颖而出了。光如何由粒子又如何由振荡组成?1923年,法国贵族及富有洞察力的物理学家——路易斯·德布罗意王子在他的博士论文中使这个粒子-波动的图像更加混淆,他提出实物粒子应象波动那样行为!德布罗意关于波粒二象性的研究,一方面得益于爱因斯坦相对论和光量子概念的启示,另一方面了受到布里渊把实物粒子和波联系起来的观点和影响。布里渊的尝试没有成功,可是他的思想对正在攻读博士学位的德布罗意产生了有益的影响。德布罗意把"以太"的观念去掉,把以太的波动性直接赋予电子本身,对原子理论进行深入探讨。物理学界前辈们的辛勤开拓,为后继者的探索扫清了道路。德布罗意考查了光的微粒说与波动说的历史,注意到了19世纪哈密顿(W.R.Hamilton),)曾阐述几何光学与经典力学的相似性。因而他想到,正如几何光学不能解释光的干涉和衍射一样,经典力学也无法解释微观粒子的运动规律。所以他在一开始就有了这种想法:"看来有必要创立一种具有波动特性的新力学,它与旧力学的关系如同波动光学与几何光学的关系一样。"他大胆地猜测力学和光学的某些原理之间存在着某种类比关系,并试图在物理学的这两个领域里同时建立一种适应两者的理论(这一理论后来由丹麦物理学家薛定谔完成了)。1922年,以发表关于黑体辐射的论文为标标志,德布罗意向前迈出了重要的一步。在这篇文章中,他用光量子假设和热力学分子运动论推导出维恩辐射定律,而从光子气的假设下,得出普朗克定律,这说明他对辐射的粒子性有深刻的理解,这篇文章使他站在了当时物理学的前沿。对量子论的兴趣引导着德布罗意朝着将物质的波动方面和粒子方面统一起来的正确方向继续前进。1923年的夏天,德布罗意的思想突然升华到一个新的境界:普朗克的能量子论和爱因斯坦的光量子论证明了过去被认为是波的辐射具有粒子性,那么过去被认为是粒子的东西是否具有波动性呢?德布罗意后来回忆说关于这类问题"经过长期的孤寂的思索和遐想之后,在1923年我蓦然想到:爱因斯坦在1905年所作出的发现,应当加以推广,使它扩展到包括一切物质粒子,尤其是电子"的整个领域。从这年秋天起,他关于物质波的创造性思想不断地流露出来,并在9月-10月间连续在《法国科学院通报》上发表了三篇有关波和量子的短文,提出了将波和粒子统一起来的思想。在1924年向巴黎大学理学院递交的博士论文《量子论的研究》中,德布罗意把他的新观点更为系统、明确地表达了出来。他在论文中指出:"整个世纪以来,在光学上比起波动的研究方法,是过于忽视了粒子的研究方法;在实物粒子的理论上是否发生了相反的错误呢?是不是我们把关于粒子的图像想得太多,而过分地忽略了波的图像呢?"他认为"任何物体伴随以波,而且不可能将物体的运动和波的传播分开"。这就是说波粒二象性并不只是光才具有的特性,而是一切粒子共有的属性,即原来被认为是粒子的东西也同样具有波动性。这种与实物粒子相联系的波称为物质波或德布罗意波。粒子的这种波粒二象性由德布罗意关系式p=frca可被进一步揭示,这个关系式将长期以来被认为性质完全不同的两个物理概念——动量与波长用Planck常数h有机地联系在一起,从而将粒子性与波动性融于同一客体中。虽然德布罗意的博士论文得到了答辩委员会的高度评价,认为很有独创精神,但是人们认为他的想法过于玄妙,没有认真地加以对待。德布罗意的论文发表以后,关于物质波的理论当时并没有引起物理学界的重视,究其原因大致有以下两个方面:(1)法国科学院会议周报虽是在欧洲广为流传的杂志,但认真看它的人并不多;(2)德布罗意好争论的名声也是一个原因,他曾参与玻尔和索末菲两大学派之间关于对应原理的解释、量子数的作用、能级的数目、量子条件的应用等一系列问题的争论。如果不是他的导师朗之万把他的论文寄给爱因斯坦并劝爱因斯坦认真研读,也许他的论文在物理学界不会留下太深的印象。爱因斯坦看过德布罗意的论文后,事情起了戏剧性的变化。因为爱因斯坦在科学上有超人的美学素养,一向爱好对称的观点,认为物理世界归根结蒂应该是和谐的,德布罗意提出实物粒子具有波动性正好与他提出的光具有粒子性相对应。德布罗意在提出物质波的过程中,运用了几何光学中费马原理与经典力学中莫培督变分原理的类比,并受到爱因斯坦关于光的波粒二象性的启示。这种新观念的建立,表现出大自然具有的和谐和对称性质,同时也为波动力学的建立,提供了重要依据。另外,爱因斯坦很理解德布罗意的学说不易为人们所接受,因为他本人在1905年提出光的粒子性时,为了使他的同行们接受这个观点曾颇费周折。所以爱因斯坦给了德布罗意以有力的支持,并向其他物理学界的工作者们一一呼吁,不要小看了这位小将的工作。这样一来,德布罗意的论文经爱因斯坦的大力推荐后,引起了物理学界的广泛关注。德布罗意设想晶体对电子束的衍射实验,有可能观察到电子束的波动性。后来,戴维森和G.P汤姆森各自从电子在晶体中的衍射证明了物质波的存在。由于这方面的杰出工作,他们共同获得了1937年的诺贝尔物理学奖。3.2 波动力学的建立德布罗意物质波理论提出以后,人们希望建立一种新的原子力学理论来描述微观客体的运动,完成这一工作的是奥地利物理学家薛定谔,他在德布罗意物质波理论的基础上,以波动方程的形式建立了新的量子理论——波动力学。1925年夏秋之际,薛定谔正在从事量子气体的研究,这时正值爱因斯坦和玻色关于量子统计理论的着作发表不久。爱因斯坦在1924年发表的《单原子理想气体的量子理论》一文,薛定谔表示不能理解,于是经常与爱因斯坦通信进行讨论。可以说,爱因斯坦是薛定谔直接的领路人,正是爱因斯坦的这篇文章,引导了薛定谔的研究方向。爱因斯坦曾大力推荐德布罗意的论文,所以薛定谔就设法找到了一份德布罗意的论文来读,在深入研究之后,薛定谔萌发了用新观点来研究原子结构的想法,他决心立即把物质波的思想推广到描述原子现象。另外,著名化学物理学家德拜对薛定谔也有积极的影响。薛定谔曾在苏黎世工业大学的报告会上向与会者介绍德布罗意的工作,作为会议主持人的德拜教授问薛定谔:物质微粒既然是波,那有没有波动方程?没有波动方程!薛定谔明白这的确是个问题,也是一个机会,于是他立刻伸手抓住了这个机会,终于获得了成功。可见,能够长期坚持做好准备,一有机会就立即抓住,是获得成功的一个关键。薛定谔认为德布罗意的工作"没有从普遍性上加以说明"。因此他试图寻求一个更普遍的规律,同时,他看到矩阵力学采用了十分抽象的艰深的超越代数,因而缺乏直观性时,他决定探索新的途径。刚开始时,薛定谔试图建立一个相对论性的运动方程,他经过紧张地研究,克服了许多数学上的困难,从相对论出发,终于在1925年得到了一个与在电磁场中运动的电子相联系的波的波动方程。但是他随即发现这个波动方程在计算氢原子的光谱时得出的结果却和实验值不符合,也不能得到氢原子谱线的精细结构。他当时十分沮丧,以为自己的路线错了,过了几个月,他才从沮丧情绪中恢复过来,重新回到这一工作中来。量子理论
力学要点/量子理论
伴随着这些进展,围绕量子力学的阐释和正确性发生了许多争论。玻尔和海森堡是倡导者的重要成员,他们信奉新理论,爱因斯坦和薛定谔则对新理论不满意。波函数系统的行为用薛定谔方程描述,方程的解称为波函数。系统的完整信息用它的波函数表述,通过波函数可以计算任意可观察量的可能值。在空间给定体积内找到一个电子的概率正比于波函数幅值的平方,因此,粒子的位置分布在波函数所在的体积内。粒子的动量依赖于波函数的斜率,波函数越陡,动量越大。斜率是变化的,因此动量也是分布的。这样,有必要放弃位移和速度能确定到任意精度的经典图像,而采纳一种模糊的概率图像,这也是量子力学的核心。对于同样一些系统进行同样精心的测量不一定产生同一结果,相反,结果分散在波函数描述的范围内,因此,电子特定的位置和动量没有意义。这可由测不准原理表述如下:要使粒子位置测得精确,波函数必须是尖峰型的,然而,尖峰必有很陡的斜率,因此动量就分布在很大的范围内;相反,若动量有很小的分布,波函数的斜率必很小,因而波函数分布于大范围内,这样粒子的位置就更加不确定了。波的干涉波相加还是相减取决于它们的相位,振幅同相时相加,反相时相减。当波沿着几条路径从波源到达接收器,比如光的双缝干涉,一般会产生干涉图样。粒子遵循波动方程,必有类似的行为,如电子衍射。至此,类推似乎是合理的,除非要考察波的本性。波通常认为是媒质中的一种扰动,然而量子力学中没有媒质,从某中意义上说根本就没有波,波函数本质上只是我们对系统信息的一种陈述。对称性和全同性氦原子由两个电子围绕一个核运动而构成。氦原子的波函数描述了每一个电子的位置,然而没有办法区分哪个电子究竟是哪个电子,因此,电子交换后看不出体系有何变化,也就是说在给定位置找到电子的概率不变。由于概率依赖于波函数的幅值的平方,因而粒子交换后体系的波函数与原始波函数的关系只可能是下面的一种:要么与原波函数相同,要么改变符号,即乘以-1。到底取谁呢?量子力学令人惊诧的一个发现是电子的波函数对于电子交换变号。其结果是戏剧性的,两个电子处于相同的量子态,其波函数相反,因此总波函数为零,也就是说两个电子处于同一状态的概率为0,此即泡利不相容原理。所有半整数自旋的粒子(包括电子)都遵循这一原理,并称为费米子。自旋为整数的粒子(包括光子)的波函数对于交换不变号,称为玻色子。电子是费米子,因而在原子中分层排列;光由玻色子组成,所以激光光线呈现超强度的光束(本质上是一个量子态)。最近,气体原子被冷却到量子状态而形成玻色-爱因斯坦凝聚,这时体系可发射超强物质束,形成原子激光。这一观念仅对全同粒子适用,因为不同粒子交换后波函数显然不同。因此仅当粒子体系是全同粒子时才显示出玻色子或费米子的行为。同样的粒子是绝对相同的,这是量子力学最神秘的侧面之一,量子场论的成就将对此作出解释。
争议混乱/量子理论
量子力学争论的焦点量子力学意味着什么?波函数到底是什么?测量是什么意思?这些问题在早期都激烈争论过。直到1930年,玻尔和他的同事或多或少地提出了量子力学的标准阐释,即哥本哈根阐释;其关键要点是通过玻尔的互补原理对物质和事件进行概率描述,调和物质波粒二象性的矛盾。爱因斯坦不接受量子理论,他一直就量子力学的基本原理同玻尔争论,直至1955年去世。关于量子力学争论的焦点是:究竟是波函数包含了体系的所有信息,还是有隐含的因素(隐变量)决定了特定测量的结果。60年代中期约翰·S·贝尔(JohnS.Bell)证明,如果存在隐变量,那么实验观察到的概率应该在一个特定的界限之下,此即贝尔不等式。多数小组的实验结果与贝尔不等式相悖,他们的数据断然否定了隐变量存在的可能性。这样,大多数科学家对量子力学的正确性不再怀疑了。然而,由于量子理论神奇的魔力,它的本质仍然吸引着人们的注意力。量子体系的古怪性质起因于所谓的纠缠态,简单说来,量子体系(如原子)不仅能处于一系列的定态,也可以处于它们的叠加态。测量处于叠加态原子的某种性质(如能量),一般说来,有时得到这一个值,有时得到另一个值。至此还没有出现任何古怪。但是可以构造处于纠缠态的双原子体系,使得两个原子共有相同的性质。当这两个原子分开后,一个原子的信息被另一个共享(或者说是纠缠)。这一行为只有量子力学的语言才能解释。这个效应太不可思议以至于只有少数活跃的理论和实验机构在集中精力研究它,论题并不限于原理的研究,而是纠缠态的用途;纠缠态已经应用于量子信息系统,也成为量子计算机的基础。二次革命在20年代中期创立量子力学的狂热年代里,也在进行着另一场革命,量子物理的另一个分支——量子场论的基础正在建立。不像量子力学的创立那样如暴风疾雨般一挥而就,量子场论的创立经历了一段曲折的历史,一直延续到今天。尽管量子场论是困难的,但它的预测精度是所有物理学科中最为精确的,同时,它也为一些重要的理论领域的探索提供了范例。激发提出量子场论的问题是电子从激发态跃迁到基态时原子怎样辐射光。1916年,爱因斯坦研究了这一过程,并称其为自发辐射,但他无法计算自发辐射系数。解决这个问题需要发展电磁场(即光)的相对论量子理论。量子力学是解释物质的理论,而量子场论正如其名,是研究场的理论,不仅是电磁场,还有后来发现的其它场。1925年,玻恩,海森堡和约当发表了光的量子场论的初步想法,但关键的一步是年轻且本不知名的物理学家狄拉克于1926年独自提出的场论。狄拉克的理论有很多缺陷:难以克服的计算复杂性,预测出无限大量,并且显然和对应原理矛盾。量子场论出现40年代晚期,量子场论出现了新的进展,理查德·费曼(RichardFeynman),朱利安·施温格(JulianSchwinger)和朝永振一郎(SinitiroTomonaga)提出了量子电动力学(缩写为QED)。他们通过重整化的办法回避无穷大量,其本质是通过减掉一个无穷大量来得到有限的结果。由于方程复杂,无法找到精确解,所以通常用级数来得到近似解,不过级数项越来越难算。虽然级数项依次减小,但是总结果在某项后开始增大,以至于近似过程失败。尽管存在这一危险,QED仍被列入物理学史上最成功的理论之一,用它预测电子和磁场的作用强度与实验可靠值仅差2/1,000,000,000,000。尽管QED取得了超凡的成功,它仍然充满谜团。对于虚空空间(真空),理论似乎提供了荒谬的看法,它表明真空不空,它到处充斥着小的电磁涨落。这些小的涨落是解释自发辐射的关键,并且,它们使原子能量和诸如电子等粒子的性质产生可测量的变化。虽然QED是古怪的,但其有效性是为许多已有的最精确的实验所证实的。对于我们周围的低能世界,量子力学已足够精确,但对于高能世界,相对论效应作用显着,需要更全面的处理办法,量子场论的创立调和了量子力学和狭义相对论的矛盾。量子场论的杰出作用体现在它解释了与物质本质相关的一些最深刻的问题。它解释了为什么存在玻色子和费米子这两类基本粒子,它们的性质与内禀自旋有何关系;它能描述粒子(包括光子,电子,正电子即反电子)是怎样产生和湮灭的;它解释了量子力学中神秘的全同性,全同粒子是绝对相同的是因为它们来自于相同的基本场;它不仅解释了电子,还解释了μ子,τ子及其反粒子等轻子。QED是一个关于轻子的理论,它不能描述被称为强子的复杂粒子,它们包括质子、中子和大量的介子。对于强子,提出了一个比QED更一般的理论,称为量子色动力学(QCD)。QED和QCD之间存在很多类似:电子是原子的组成要素,夸克是强子的组成要素;在QED中,光子是传递带电粒子之间作用的媒介,在QCD中,胶子是传递夸克之间作用的媒介。尽管QED和QCD之间存在很多对应点,它们仍有重大的区别。与轻子和光子不同,夸克和胶子永远被幽禁在强子内部,它们不能被解放出来孤立存在。QED和QCD构成了大统一的标准模型的基石。标准模型成功地解释了现今所有的粒子实验,然而许多物理学家认为它是不完备的,因为粒子的质量,电荷以及其它属性的数据还要来自实验;一个理想的理论应该能给出这一切。对物质终极本性的理解成为重大科研的焦点今天,寻求对物质终极本性的理解成为重大科研的焦点,使人不自觉地想起创造量子力学那段狂热的奇迹般的日子,其成果的影响将更加深远。现在必须努力寻求引力的量子描述,半个世纪的努力表明,QED的杰作——电磁场的量子化程序对于引力场失效。问题是严重的,因为如果广义相对论和量子力学都成立的话,它们对于同一事件必须提供本质上相容的描述。在我们周围世界中不会有任何矛盾,因为引力相对于电力来说是如此之弱以至于其量子效应可以忽略,经典描述足够完美;但对于黑洞这样引力非常强的体系,我们没有可靠的办法预测其量子行为。一个世纪以前,我们所理解的物理世界是经验性的;20世纪,量子力学给我们提供了一个物质和场的理论,它改变了我们的世界;展望21世纪,量子力学将继续为所有的科学提供基本的观念和重要的工具。我们作这样自信的预测是因为量子力学为我们周围的世界提供了精确的完整的理论;然而,今日物理学与1900年的物理学有很大的共同点:它仍旧保留了基本的经验性,我们不能彻底预测组成物质的基本要素的属性,仍然需要测量它们。或许,超弦理论是唯一被认为可以解释这一谜团的理论,它是量子场论的推广,通过有长度的物体取代诸如电子的点状物体来消除所有的无穷大量。无论结果何如,从科学的黎明时期就开始的对自然的终极理解之梦将继续成为新知识的推动力。从现在开始的一个世纪,不断地追寻这个梦,其结果将使我们所有的想象成为现实。时空不同区域之间的虫洞的思想并非科学幻想作家的发明,它的起源是非常令人尊敬的。爱因斯坦——罗森“桥”1935年爱因斯坦和纳珍·罗森写了一篇论文。在该论文中他们指出广义相对论允许他们称为“桥”,而现在称为虫洞的东西。爱因斯坦——罗森桥不能维持得足够久,使得空间飞船来得及穿越:虫洞会缩紧,而飞船撞到奇点上去。然而,有人提出,一个先进的文明可能使虫洞维持开放。人们可以把时空以其他方式卷曲,使它允许时间旅行。可以证明这需要一个负曲率的时空区域,如同一个马鞍面。通常的物质具有正能量密度,赋予时空以正曲率,如同一个球面。所以为了使时空卷曲成允许旅行到过去的样子,人们需要负能量密度的物质。能量有点像金钱:如果你有正的能量,就可以用不同方法分配,但是根据本世纪初相信的经典定律,你不允许透支。这样,这些经典定律排除了时间旅行的任何可能性。然而,量子定律已经超越了经典定律。量子定律是以不确定性原理为基础的。量子定律更慷慨些,只要你总的能量是正的,你就允许从一个或两个账号透支。换言之,量子理论允许在一些地方的能量密度为负,只要它可由在其他地方的正的能量密度所补偿,使得总能量保持为正的。量子理论允许负能量密度的一个例子是所谓的卡西米尔效应,甚至我们认为是“空”的空间也充满了虚粒子和虚反粒子对,它们一起出现分离开,再返回一起并且相互湮灭。现在,假定人们有两片距离很近的平行金属板。金属板对于虚光子起着类似镜子的作用。事实上,在它们之间形成了一个空腔。它有点像风琴管,只对指定的音阶共鸣。这意味着,只有当平板间的距离是虚光子波长(相邻波峰之间的距离)的整数倍时,这些虚光子才会在平板之中的空间出现。如果空腔的宽度是波长的整数倍再加上部分波长,那么在前后反射多次后,一个波的波峰就会和另一个波谷相重合,这样波动就被抵消了。因为平板之间的虚光子只能具有共振的波长,所以虚光子的数目比在平板之外的区域要略少些,在平板之外的虚光子可以具有任意波长。所以人们可以预料到这两片平板遭受到把它们往里挤的力。实际上已经测量到这种力。并且和预言的值相符。这样,我们得到了虚粒子存在并具有实在效应的实验证据。在平板之间存在更少虚光子的事实意味着它们的能量密度比它处更小。但是在远离平板的“空的”空间的总能量密度必须为零,因为否则的话,能量密度会把空间卷曲起来,而不能保持几乎平坦。这样,如果平板间的能量密度比远处的能量密度更小,它就必须为负的。这样,我们对以下两种现象都获得了实验的证据。第一,从日食时的光线弯折得知时空可以被卷曲。第二,从卡西米尔效应得知时空可被弯曲成允许时间旅行的样子。所以,人们希望随着科学技术的推进,我们最终能够造出时间机器。但是,如果这样的话,为什么从来没有一个来自未来的人回来告诉我们如何实现呢?鉴于我们现在处于初级发展阶段,也许有充分理由认为,让我们分享时间旅行的秘密是不智的。除非人类本性得到彻底改变,非常难以相信,某位从未来飘然而至的访客会贸然泄漏天机。当然,有些人会宣称,观察到幽浮就是外星人或者来自未来的人们来访的证据(如果外星人在合理的时间内到达此地,他们则需要超光速旅行,这样两种可能性其实是等同的)。然而,任何外星来的或者来自未来的人的造访应该是更加明显,或许更加令人不悦。如果他们有意显灵的话,为何只对那些被认为不太可靠的证人进行?如果他们试图警告我们大难临头,这样做也不是非常有效的。一种对来自未来的访客缺席的可能解释方法是,因为我们观察了过去并且发现它并没有允许从未来旅行返回所需的那类卷曲,所以过去是固定的。另一方面,未来是未知的开放的,所以也可能有所需的曲率。这意味着,任何时间旅行都被局限于未来。此时此刻,柯克船长和星际航船没有机会出现。
与相对论/量子理论
量子理论量子理论提供了精确一致地解决关于原子、激光、X射线、超导性以及其他无数事情的能力,几乎完全使古老的经典物理理论失去了光彩。但我们仍旧在日常的地面运动甚至空间运动中运用牛顿力学。在这个古老而熟悉的观点和这个新的革命性的观点之间一直存在着冲突。宏观世界的定律保持着顽固的可验证性,而微观世界的定律具有随机性。对抛射物和彗星的动态描述具有明显的视觉特征,而对原子的描述不具有这种特征,桌子、凳子、房屋这样的世界似乎一直处于我们的观察中,而电子和原子的实际的或物理性状态没有缓解这一矛盾。如果说这些解释起了些作用的话,那就是他们加大了这两个世界之间的差距。对大多数物理学家来说,这一矛盾解决与否并无大碍,他们仅仅关心他们自己的工作,过分忽视了哲学上的争议和存在的冲突。毕竟,物理工作是精确地预测自然现象并使我们控制这些现象,哲学是不相关的东西。广义相对论在大尺度空间、量子理论在微观世界中各自取得了辉煌的成功。基本粒子遵循量子论的法则,而宇宙学遵循广义相对论的法则,很难想象它们之间会出现大的分歧。很多科学家希望能将这两者结合起来,开创一门将从宏观到微观的所有物理学法则统一在一起的新理论。但迄今为止所有谋求统一的努力都遭到失败,原因是这两门20世纪物理学的重大学科完全矛盾。
万方数据期刊论文
原子能科学技术
万方数据期刊论文
万方数据期刊论文
&|&相关影像
互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于www.baike.com。
登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。
此词条还可添加&
编辑次数:22次
参与编辑人数:10位
最近更新时间: 19:00:28
贡献光荣榜
扫码下载APP

我要回帖

更多关于 时序控制器原理图 的文章

 

随机推荐