单片机与直流电机驱动和三极管驱动电机

请教一个单片机驱动小马达的电路
[问题点数:40分,结帖人chenxp99]
请教一个单片机驱动小马达的电路
[问题点数:40分,结帖人chenxp99]
不显示删除回复
显示所有回复
显示星级回复
显示得分回复
只显示楼主
2015年9月 VC/MFC大版内专家分月排行榜第二2015年7月 硬件/嵌入开发大版内专家分月排行榜第二2014年5月 VC/MFC大版内专家分月排行榜第二2014年3月 VC/MFC大版内专家分月排行榜第二2013年10月 VB大版内专家分月排行榜第二2013年7月 VB大版内专家分月排行榜第二2012年5月 VB大版内专家分月排行榜第二2012年4月 VB大版内专家分月排行榜第二2012年2月 VB大版内专家分月排行榜第二2011年11月 VB大版内专家分月排行榜第二
2015年11月 VC/MFC大版内专家分月排行榜第三2015年6月 VC/MFC大版内专家分月排行榜第三2015年2月 VC/MFC大版内专家分月排行榜第三2014年1月 VC/MFC大版内专家分月排行榜第三2012年3月 VB大版内专家分月排行榜第三2011年12月 VB大版内专家分月排行榜第三2011年10月 VB大版内专家分月排行榜第三
匿名用户不能发表回复!|有没有人会用单片机io口和三极管来控制直流电机的开关_单片机吧_百度贴吧
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&签到排名:今日本吧第个签到,本吧因你更精彩,明天继续来努力!
本吧签到人数:0成为超级会员,使用一键签到本月漏签0次!成为超级会员,赠送8张补签卡连续签到:天&&累计签到:天超级会员单次开通12个月以上,赠送连续签到卡3张
关注:149,191贴子:
有没有人会用单片机io口和三极管来控制直流电机的开关收藏
同步整流升压芯片,小封装升压芯片,大电流升压芯片,免费提供样品及DEM板测试,快充3V升12V/1.5A升压方案 免费提供样品板联系:
做了半天,能控制led的开关但是换上直流电机要不就开不了要不就关不上
按理说p0.6=0的时候三极管关闭,电机不转,可实测电机一直转,把连接p0.6那根线接地电机就不转了
你这个电路不规范,npn一般低端控制,高端用pnp,把电极放在c和电源之间试下
基极加限流电阻
我都是直接输出的
P0有没有上拉电阻?
基极串1k电阻,500Ω换10K以内
支流问题我来肯定好,多大
楼主解决了吗,p0.6不接5V可以吗?或许换成3V或者放1k电阻呢
用共发射集电路驱动
给你一个经典驱动电路
登录百度帐号单片机如何驱动电机
我要做一个课题,但不知道怎么用单片机来控制电机工作,
09-03-11 &匿名提问
51没有硬件的PWM,得全靠软件模拟。调速程序可以用定时器做,首先设置两个定时用的全局变量,一个代表高电平时间一个代表低电平时间。先给定时器初值(既那两个全局变量中的一个),溢出后触发中断,在中断里设置另另一个初值并且取反PWM的输出端口,两个初值轮流给定时器,就可以任意调整占空比,占空比取决于两个初值。PWM输出后,驱动三极管,后面接上电机就是了。按键调速也不难,看你具体的按键处理程序了,通过获得的键值控制上面说的两个全局变量就可以了。测速可以用计数器做,得到计数值处理一下即可。如果是自动调速,那需要做点简单的算法程序。反正51有那么多I/O口,再来一个转速显示什么的也可以。
请登录后再发表评论!
io接口的电流不够维持达林顿的导通状态造成的,可以给大功率管加一个的前级放大,最好不要直接使用单片机驱动,建议使用光耦达林顿管又称复合管。它将二只三极管适当的连接在一起,以组成一只等效的新的三极管。这等于效三极管的放大倍数是二者之积。在电子学电路设计中,达林顿接法常用于功率放大器和稳压电源中。 达林顿电路有四种接法:npn+npn,pnp+pnp,npn+pnp,pnp+npn. 前二种是同极性接法,后二种是异极性接法。同极性接法,一楼楼主已经介绍过,这里说一下异极性接法。以npn+pnp为例。设前一三极管t1的三极为c1b1e1,后一三极管t2的三极为c2b2e2。达林顿管的接法应为:c1b2应接一起,e1c2应接一起。等效三极管cbe的管脚,c=e1,b=b1,e=e1(即c2)。等效三极管极性,与前一三极管相同。即为npn型。 pnp+npn的接法与此类同。
请登录后再发表评论!
图1中所示为一个典型的直流电机控制电路。电路得名于“H桥式驱动电路”是因为它的形状酷似字母H。4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图1及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。 如图所示,H桥式电机驱动电路包括4个三极管和一个电机。要使电机运转,必须导通对角线上的一对三极管。根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。
                                        图1 H桥式电机驱动电路 要使电机运转,必须使对角线上的一对三极管导通。例如,如图2所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。 当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。
                                      图2 H桥电路驱动电机顺时针转动 图3所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。 当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。
                                     图3 H桥电路驱动电机逆时针转动
引用内容二、使能控制和方向逻辑 驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。此时,电路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。 基于上述原因,在实际驱动电路中通常要用硬件电路方便地控制三极管的开关。 图4所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制整个电路的开关。而2个非门通过提供一种方向输人,可以保证任何时候在H桥的同侧腿上都只有一个三极管能导通。(与本节前面的示意图一样,图4所示也不是一个完整的电路图,特别是图中与门和三极管直接连接是不能正常工作的。)
                                   图4 具有使能控制和方向逻辑的H桥电路 采用以上方法,电机的运转就只需要用三个信号控制:两个方向信号和一个使能信号。如果DIR-L信号为0,DIR-R信号为1,并且使能信号是1,那么三极管Q1和Q4导通,电流从左至右流经电机(如图5所示);如果DIR-L信号变为1,而DIR-R信号变为0,那么Q2和Q3将导通,电流则反向流过电机。
                                   图5 使能信号与方向信号的使用 实际使用的时候,用分立件制作H桥式是很麻烦的,好在现在市面上有很多封装好的H桥集成电路,接上电源、电机和控制信号就可以使用了,在额定的电压和电流内使用非常方便可靠。比如常用的L293D、L298N、TA7257P、SN754410等。
请登录后再发表评论!
如果是步进电机 就用不同的i/o脚产生的电压差加上驱动电路就ok了如果是普通电机 通过继电器或者光藕元件进行隔离即可控制
请登录后再发表评论!
只要电流符合要求的MOS管就可以.微型电机电流都很小,因此选择余地非常大.原则上MOS可以直接用PIC驱动,但是考虑到干扰等问题,因此使用隔离电路会好些.
请登录后再发表评论!
只要电流符合要求的MOS管就可以.微型电机电流都很小,因此选择余地非常大.原则上MOS可以直接用PIC驱动,但是考虑到干扰等问题,因此使用隔离电路会好些.
请登录后再发表评论!详细无刷电机驱动程序_五款无刷电机驱动电路-电子发烧友网触屏版
  五款无刷电机驱动电路
  1、三相六臂全桥驱动电路
  无刷直流电机驱动控制电路如图1 所示。该电路采用三相六臂全桥驱动方式,采用此方式可以减少电流波动和转矩脉动,使得电机输出较大的转矩。在电机驱动部分使用6个功率场效应管控制输出电压,四轴飞行器中的直流无刷电机驱动电路电源电压为12 V.驱动电路中,Q1~Q3采用IR公司的IRFR5305(P沟道),Q4~Q6为IRFR1205(N 沟道)。该场效应管内藏续流二极管,为场效应管关断时提供电流通路,以避免管子的反向击穿,其典型特性参数见表1.T1~T3 采用PDTC143ET 为场效应管提供驱动信号。
  由图1 可知,A1~A3 提供三相全桥上桥臂栅极驱动信号,并与ATMEGA16单片机的硬件PWM驱动信号相接,通过改变PWM信号的占空比来实现电机转速控制;B1~B3提供下桥臂栅极驱动信号,由单片机的I/O口直接提供,具有导通与截止两种状态。
  无刷直流电机驱动控制采用三相六状态控制策略,功率管具有六种触发状态,每次只有两个管子导通,每60&电角度换向一次,若某一时刻AB 相导通时,C 相截至,无电流输出。单片机根据检测到的电机转子位置,利用MOSFET的开关特性,实现电机的通电控制,例如,当Q1、Q5 打开时,AB 相导通,此时电流流向为电源正极&Q1&绕组A&绕组B&Q5&电源负极。类似的,当MOSFET 打开顺序分别为Q1Q5,Q1Q6,Q2Q6,Q2Q4,Q3Q4,Q3Q5时,只要在合适的时机进行准确换向,就可实现无刷直流电机的连续运转。
  2、三相全桥驱动电路
  下图为无刷电机的三相全桥驱动电路,使用六个N沟道的MOSFET管(Q1~Q6)做功率输出元件,工作时输出电流可达数十安。为便于描述,该电路有以下默认约定:Q1/Q2/Q3称做驱动桥的&上臂&,Q4/Q5/Q6称做&下臂&。
  图中R1/R2/R3为Q1/Q2/Q3的上拉电阻,连接到二极管和电容组成的倍压整流电路(原理请自行分析),为上臂驱动管提供两倍于电源电压(2&11V)的上拉电平,使上臂MOSFET在工作时有足够高的VGS压差,降低MOSFET大电流输出时的导通内阻,详细数据可参考MOS管DataSheet。
  上臂MOS管的G极分别由Q7/Q8/Q9驱动,在工作时只起到导通换相的作用。下臂MOS由MCU的PWM输出口直接驱动,注意所选用的MCU管脚要有推挽输出特性。
  3、单片机控制直流无刷电动机驱动及接口电路图
  图1示出采用8751单片机来控制直流无刷电动机的原理框图。8751的P1口同7406反相器联结控制直流无刷电动机的换相,P2口用于测量来自于位置传感器的信号H1、H2、H3,P0口外接一个数模转换器。
  图1 直流无刷电动机计算机控制原理图
  4、电动车无刷电机控制器驱动电路图
  5、全桥驱动电路
  无刷直流电机一般使用全桥驱动,即6个MOSFET分别构成上臂和下臂,通过MCU具有推挽输出的IO口控制,或者使用电机驱动专用芯片控制。
  最常用的应该是3个P-MOS+3个N-MOS,电路结构简单。如下图所示。
  这里使用的是MK电调V2.0版本中使用的MOSFET,P-MOS&IRFR5305、N-MOS&IRFR1205N-MOS的Vgs(th)=2V~4V,直接用工作在VCC=5V的MCU即可驱动控制,但注意IO口必须具有推挽输出功能,否则IO口的驱动能力不够。图中R7/R8/R9可视为下拉电阻,使N-MOS的栅极电平有一个参考地,电平稳定不会意外导通MOSFET。R10/R11/R12电阻的作用有三个,一是减少振荡,二是减小栅极充电的峰值电流,三是防止N-MOS的漏-源极击穿。
  由于MCU的IO引脚都存在杂散电感,与栅极电容串联形成LC振荡,加入电阻后会增大振荡阻尼而减小振荡;当对栅极加驱动电压时,会对栅源电容Ciss充电,此时Vgs上升但未到达阈值电压Vgs(th)时Vds基本不变,这段时间称为导通延迟时间td(on)。当Vgs》Vgs(th)时,Vds下降同时id上升,这期间栅极和漏极之间的传输反向电容Crss开始向漏极放电,而此时栅极电流会流向该电容对其充电,但基本没有对Ciss充电,所以Vgs基本保持不变,这段时间称为上升时间tr,tr之后才会继续对Ciss充电。电容充电的尖峰电流可以计算如下:I=Qg/(td+tr),其中Qg=Qgs+Qgd,即td+tr时间内的充电电量,计算结果电流是远大于MCu的IO口输出驱动电流,因此通过串联电阻,增加充电时间,即t=RC。但这会导致Vgs的上升沿和Vds的下降沿斜率减小,影响MOSFET的开关性能,所以电阻的选取要准确。(此处理论知识分析可能不正确,我也在学习MOSFET的驱动应用原理,若有误或需要补充会再做修改)
  防止漏源击穿的原因也是和电容的时间常数有关,当栅极驱动电压快速关断,漏源极从导通状态变为截止状态,Vds迅速增加,当dVds/dt过大就会击穿器件,串联电阻可以减缓Ciss的放电时间,使Vgs缓慢变化,因此Vds不会迅速增加。
  P-MOS的Vgs(th)《0,源极一般加11V电压,MCU的IO口无法正常控制P-MOS的开关,我们需要用三级管驱动栅极,三极管由IO口驱动控制。电阻R1/R2/R3上拉栅极电压,使P-MOS能关断。这个电阻不能太小,否则会造成三极管导通时承受过大的电流。同时电阻也不能太大,否则会增加三极管BC极间电容的充电时间,延长三极管的导通时间,进而影响P-MOS栅极电压Vgs的上升时间。
  三极管的选择不能选用我们常用的小信号的三极管,它们的耐压和导通电流太低,所以这里我选择了SS8050(MK中使用的三极管找不到)。R4/R5/R6阻值的选择无特别要求,只要使三极管工作在饱和区即可。
  三相直流无刷电机驱动程序
文章来源栏目
加载更多评论
后参与评论基于51单片机的直流电机驱动_百度文库
赠送免券下载特权
10W篇文档免费专享
部分付费文档8折起
每天抽奖多种福利
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
基于51单片机的直流电机驱动
易发表网提供各学科期刊论文下载、毕业论文...|
总评分0.0|
试读已结束,如果需要继续阅读或下载,敬请购买
定制HR最喜欢的简历
你可能喜欢

我要回帖

更多关于 单片机驱动步进电机 的文章

 

随机推荐