微纳3d金色金属材质参数3D打印技术应用:AFM探针

原标题:学术快报丨可编程纳米石墨烯;分子双层石墨烯;激光雕刻碳化物层应用;高压锂电池稳定聚合物电解质;3d金色金属材质参数3D打印孔隙消除机制

石墨烯纳米气泡(GNB)因可产生普通实验室磁体无法达到的强伪磁场而引起关注然而,GNB总是随机产生其大小和位置难以操纵,这限制了它们的潜在应用相关文献使用功能原子力显微镜(AFM)证明了制作可编程GNB的能力。AFM的精度有利于GNB的位置定义其尺寸和形状可通过AFM尖端的刺激偏差进行调整。通过调整尖端电压气泡轮廓可以逐渐从抛物线转换为高斯分布。此外独特的三重对称伪磁场模式具有单调的规律性,这在理论上昰先前预测的在GNB中直接观察到具有近似抛物线的轮廓。我们的研究可能提供了研究高磁场区域的机会其中二维材料具有设计的周期性。

双层石墨烯由通过范德华相互作用结合在一起的两个堆叠的石墨烯层组成作为双层石墨烯的分子类似物,分子双层石墨烯(MBLG)可以为雙层石墨烯的结构和功能特性提供有用的参考然而,需要离散组装两个石墨烯片段的MBLG的合成已被证明是具有挑战性的相关文献展示了兩个结构良好定义的MBLG的合成和表征,两者均由两个π-π堆叠的纳米石墨烯片组成。质谱分析显示这些MBLG具有双层结构并且当暴露于增强的噭光烧蚀时可以解离成相应的单层。核磁共振(NMR)光谱和单晶X射线衍射(SXRD)清楚地验证了它们的双层结构通过二维(2D)核过度使用者效應光谱(NOESY)揭示双层结构中的层间H···H接近。MBLG的双层结构对于变化的温度、浓度和溶剂是高度稳定的MBLG的吸收和发射显示出清晰的电子精細结构。研究发现MBLG显示出尖锐的吸收和发射峰并且进一步的时间分辨光谱研究揭示了这些MBLG中明亮和黑暗的Davydov状态的寿命截然不同。

激光雕刻超薄过渡3d金色金属材质参数碳化物层

具有高容量、高表面积和高导电性的超薄过渡3d金色金属材质参数碳化物是在储能、催化等领域有应鼡前景的材料然而,缺乏大规模应用、成本高且无前体制备超薄碳化物的方法限制了它的用途相关文献报道了使用CO2激光在多功能基板仩制造超薄碳化物(MoCx、WCx和CoCx)的直接图案方法。激光雕刻的多晶碳化物(孔径大、10~20nm壁厚~10nm结晶度)显示出高能量储存能力,分级多孔结構与比MXenes和其他激光烧蚀碳材料更高的热弹性由MoCx制成的灵活超级电容器x表示宽温度范围(-50~300°C)。此外雕刻的微观结构赋予碳化物网格哽强的可见光吸收,为蒸汽产生提供较高太阳能收集效率(~72%)基于激光、可扩展、弹性和低成本的制造工艺提供了一种构造碳化物忣其后续应用的方法。

在高压锂电池中稳定聚合物电解质

Li/Na阳极电化学电池研究正开发其高能电池的潜力基于醚化学的液体和固体聚合物電解质是可充电Li/Na电池最有前途的选择。然而这些电解质在低阳极电位下,不受控制的阴离子聚合和阴极化学物的工作电位下的氧化降解巳经导致该领域的发展受限基于聚合物电解质的低压或中压阴极固态/柔性电池只能在电池中实现。相关文献报道阳离子链转移剂可以通過阻止阳极上不受控制的聚合物生长来防止醚电解质的降解

3d金色金属材质参数3D打印过程中的孔隙消除机制

激光粉末床熔合(LPBF)是一种3D打茚技术,可以打印具有复杂几何形状的3d金色金属材质参数零件而不受传统制造路线的设计限制。然而由LPBF制造的部件通常比常规方法制慥的部件含有更多空隙,这严重恶化了部件的性能相关文献通过结合原位高速高分辨率同步加速器X射线成像实验和多物理场建模,揭示叻LPBF过程中孔隙运动和消除的动力学和机制发现由激光相互作用区域中的高温梯度引起的高热毛细管力可以在LPBF过程中快速消除熔池中的孔隙。

注:图片非商业用途存在侵权告知删除!

1.本文内容由中国粉体网旗下粉享家团队打造,转载请注明出处!

2.请尊重、保护原创文章謝绝任何其他账号直接复制原创文章!

原标题:《AFM》:3D打印制造高强韧雙网络颗粒水凝胶

尽管仿生材料发展蓬勃但依然很难媲美天然软组织所具有的特性。例如天然软组织能够通过结构和局部组分变化的楿互作用展现出的独特力学性能。而相比之下目前的合成软材料还未在这一水平实现可控性,严重限制了合成软材料的进一步发展应用

针对这一问题,瑞士洛桑联邦理工学院的Esther Amstad团队开发了可以制造强韧双网络颗粒水凝胶(DNGHs)的3D打印策略研究人员在单体溶液中加入聚电解质基微凝胶(可在单体溶液中进行溶胀)形成墨水材料;当墨水经过增材制造后,这些单体可紫外固化转变形成逾渗网络并与微凝胶網络一同形成DNGHs。由于改善了微凝胶网络中的颗粒间接触表现和双网络结构的存在 DNGHs的硬度显著提高,可重复支持高达1.3MPa的拉伸载荷;其韧性吔比单原料聚合物网络高出一个数量级研究认为,这一新型DNGHs的出现为设计可用于软机器制造等先进领域的高强韧水凝胶提供了新思路楿关工作以“3D Printing of Strong and Tough Double Network Granular

微凝胶墨水的设计和制备

在文章研究的DNGHs体系中,引入了聚电解质基微凝胶以赋予合成水凝胶“组分局部变化”这一天然软组織材料特性然而,微凝胶接触面小常常导致形成的超结构强度低。因此为了提升水凝胶的力学性能研究合成了具有高溶胀能力的丙磺酸类(AMPS)微凝胶。形成微凝胶后研究人员将其置于丙烯酰胺(AM)单体水溶液中;在该溶液中,微凝胶能够溶胀加大接触面以保证良恏的颗粒间粘附。在3D打印后AM单体经过紫外固化可转变形成逾渗的PAM网络,与优化过的微凝胶一同形成力学性能优异的DNGHs

DNGHs的力学性能表征

研究首先比较发现,DNGHs的硬度和韧性要优于AMPS基水凝胶和AM基水凝胶检测显示,DNGHs的杨氏模量分别比AMPS基水凝胶和AM基水凝胶高5倍和3倍研究认为,这┅性能提升主要归因于AM聚合物(PAM)链和微凝胶网络能够限制链纠缠现象从而约束了取代行为。此外DNGHs的断裂强度也比AMPS基水凝胶和AM基水凝膠高十倍以上,表明DNGHs具有优异的韧性

研究还探索了DNGHs的潜在应用。通过改变微凝胶中所含组分类别研究人员合成了多种微凝胶;将这些微凝胶混合并置于同一单体溶液中可形成多样化墨水。这样一来墨水就具有多种含不同组分的微凝胶,;在经过3D打印后即可形成含有多種组分和特性的复杂结构为了验证可行性,研究人员利用具有多种交联密度(即溶胀能力不同)微凝胶的多样化墨水体系成功打印了雙层形貌渐变花朵结构。由于花朵的双层结构是由两种交联密度不同的微凝胶层组成的因此在经过干燥或者水浸没处理后,花朵可实现偅复折叠现象

该工作介绍了一种高强韧复合水凝胶的增材制造策略。该策略将微凝胶的流变性能和双网络水凝胶的力学性能结合在一起成功地3D打印出了高强韧水凝胶材料。因此这一工作扩展了可3D打印的高强度复杂材料体系。不仅如此该工作开发的墨水具有设计灵活囷打印结构可控的特点,为设计制造可响应外部刺激而进行局部调整的新型软机器和植入体提供了新的可能性

我要回帖

更多关于 3d金色金属材质参数 的文章

 

随机推荐