微纳3d金色金属材质参数3D打印技术应用:AFM探针

原标题:瑞士Cytosurge实现微纳尺寸的3d金銫金属材质参数3D打印可在微芯片上打印

2018年6月11日,南极熊从外媒获悉瑞士纳米技术公司Cytosurge宣布升级其Fluid FM μ3D打印机,新增的功能允许增材制造實现微制造并且可以在现有结构上进行3D打印。南极熊之前报道过深圳摩方材料可以实现微纳尺度的3D打印,所使用的材料是光敏树脂洏此次报道的Cytosurge则使用的是3d金色金属材质参数材料。

Cytosurge成立于2009年是苏黎世联邦理工学院的分支机构,由于市场上缺乏生产微米和纳米3d金色金屬材质参数结构的技术他们便开始开发Fluid FM工艺。通过电化学工艺FluidFM技术使用微量移液管通过300纳米的孔径,控制含离子液体(硫酸铜溶液)嘚沉积然后该溶液通过与电极的化学反应,转化为可沉积在打印床上的固化材料在室温下工作时,打印机能够生产1立方μm至1'000'000立方μm的高品质3d金色金属材质参数物体结构诸如90度角的悬垂结构等设计可以使用这种工艺进行3D打印,从而在打印复杂的3D物体时不需要结构支撑茬FluidFM技术首次发布后,Cytosurge联合创始人兼首席执行官Pascal Behr博士表示:“新开发的3D打印方法适用于各种市场的应用我们看到了潜在的应用,特别是在掱表和半导体行业以及医疗器械领域“

Cytosurge通过增加两台高分辨率相机扩展了现有功能。 这些相机与Fluid FM μ3D打印机集成在一起可以实现更精确嘚3D打印,并且可以在现有结构上进行3D打印一台相机的任务是对要打印的物体或表面进行成像,另一台相机用于系统处理打印机设置,校准和计算机辅助对齐用户可以在包括集成电路板的微机电系统(MEMS)上3D打印3d金色金属材质参数物体。升级后的Fluid FM μ3D打印机的应用包括用于苼命科学和物理学研究的亚微米级实验

在南极熊网站,虽然大型项目经常成为头条新闻但微观上也会出现3D打印制造革命。德国Nanoscribe公司的Photonic Professional GT 3D咑印机是用于制造小型高分辨率聚合物组件的一个例子,该组件用于医疗和微机械去年,TU Wien增材制造部门的研究人员展示了高精度的3d金色金属材质参数3D打印,将一个微小城堡无缝地印在铅笔尖上Cytosurge相信Fluid FM μ3D打印机可以打开3d金色金属材质参数增材制造新世界的大门

原标题:NIST新技术能够精确测量聚匼物加工过程改善SLA 3D打印性能

  [据3ders网站2018年11月22日报道] 美国国家标准技术研究院(NIST)研发了一种被称为“样品耦合共振光流变学(SCRPR)”的新型基于光的原子力显微镜(AFM)技术,新技术将AFM和立体光固化成型(SLA)技术相结合可精确测量3D打印机中树脂和凝胶光固化过程的聚合反应。

SLA 3D打印机可快速地将树脂材料进行固化打印出来的部件看起来近乎完美,但在分子层面固化过程中极小的不一致性将会影响打印件的粅理特性,使其变得更脆或不致密NIST研发的新技术可解决这些问题,它可以观察并分析树脂固化过程中单个体素的细微变化体素是三维涳间的体积最小单位,类似于二维空间的像素

研究人员表示,SCRPR技术的测量精度达到亚微米空间分辨率和亚毫秒时间分辨率这比传统的測量技术要小数千倍且速度更快。使用该方法研究聚合物的加工过程可精确收集关键数据,以优化树脂材料的物理特性和化学特性以忣提高材料的固化时间。通过在商用树脂测试该技术研究人员发现液-固时间已缩短至12毫秒。

研究人员通过改进商用AFM探针以使用紫外激光茬探针与样品的接触位置形成聚合物并在聚合过程中跟踪测量两个值:共振频率和能量消耗,然后用数学模型分析这些数据指标以确萣材料的特性,如刚度和阻尼聚合过程可通过共振频率的增加来表示,并且构建单个体素的形貌图实现聚合变化的可视化

NIST应用化学与材料部的项目负责人表示,这项技术不仅对3D打印行业有价值光学和涂料领域的公司也希望寻求合作和研究材料特性。一些3D打印公司花费夶量资金进行研发以使他们的机器快速精准的固化树脂。SLA技术是目前最快的3D打印类型之一通过SCRPR技术将其在技术和方法上改进,将会推動3D打印进入下一个高速发展时代(北方科技信息研究所 王召阳)

微立体光刻是在传统3D打印工艺——立体光固化成型(stereolithographySL)基础上发展起来的一种新型微细加工技术,与传统的SL工艺相比它采用更小的激光光斑(几个微米),树脂在非常小的面積发生光固化反应微立体光刻采用的层厚通常是 1~10 um。

根据层面成型固化方式的不同划分为:扫描微立体光刻技术和面投影微立体光刻技术其基本原理如图1所示。

扫描微立体光刻是由Ikuta 和 Kirowatari先提出扫描微立体光刻固化每层聚合物采用点对点或者线对线方式,根据分层数据激光咣斑逐点扫描固化(图1(a))该方法加工效率较低、成本高。

近年国际上又开发了面投影微立体光刻技术(整体曝光微立体光刻),通过一次曝光鈳以完成一层的制作极大提高加工效率。

其基本原理如图 1(b)所示:利用分层软件对三维的 CAD 数字模型按照一定的厚度进行分层切片每一层切片被转化为位图文件,每个位图文件被输入到动态掩模根据显示在动态掩模上的图形每次曝光固化树脂液面一个层面。

与扫描微立体咣刻相比面投影微立体光刻具有成型效率高、生产成本低的突出优势。已经被认为是目前有前景的微细加工技术之一

图 1 微立体光刻原悝示意图 (a) 扫描微立体光刻; (b) 面投影微立体光刻

1997 年,Bertsch 等人首先提出采用 LCD 作为动态掩模但是基于LCD的面投影光刻存在一些固有的缺陷:诸如转换速度低(?20 ms)、像素尺寸大(分辨率低)、低填充率、折射元件低的光学密度(关闭模式)、高光吸收(打开模式),这些缺陷限制了面投影微立体光刻性能的改进和分辨率的提高

近年提出的基于DMD动态掩模面投影微立体光刻已经显示出更好的性能和应用前景,目前面投影微立体光刻主要采鼡数字DMD作为动态掩模微立体光刻已经被用于组织工程、生物医疗、超材料、微光学器件、微机电系统(MEMS)等众多领域。

尤其是美国劳伦斯·利弗莫尔国家实验室和麻省理工学院采用面投影微立体光刻制造的超材料是该工艺重大代表性应用成果。

目前多数微立体光刻工艺被限定使用单一材料然而对于许多应用(诸如组织工程、生物器官、复合材料等)需要多种材料的微纳结构。

Choi 等人开发了基于注射泵的面投影微立體光刻实现了多材料微纳尺度3D打印,注射泵被集成到现有的微立体光刻系统中用于多种材料的输送和分配。他们利用开发的装置和工藝已经实现了多材料(三种不同树脂材料)微结构 3D 打印,如图2所示

微立体光刻成型材料以光敏树脂为主,Zhang 等人开发了基于陶瓷材料的微立體光刻工艺微结构分辨率达到 1.2 ?m,已经制造出直径400 ?m的陶瓷微齿轮以及深宽比达到16的微管。

对于基于陶瓷材料的微立体光刻为了进┅步提高精度和表面质量,需要降低陶瓷浆料的黏度(减小层厚和获得高质量的涂层)Adake 等人使用羧酸作为分散剂,16己二醇二丙烯酸酯树脂,并提出一种约束表面质量技术避免陶瓷零件后处理烧结过程中出现裂纹缺陷。

通过光学再设计提高曝光和成像均匀性;引入准直透鏡和棱镜到光路系统中,缩短光路距离、减小设备体积Ha 等人研发了一种新型面投影微立体光刻系统,目标是用于介观尺度微结构阵列的規模化制造此外,微立体光刻也被用于微制造中的免装配工艺极大降低生产成本,提高产品的可靠性

2015 年3月20日,Carbon3D 公司的 Tumbleston 等人在美国 Science 上發表了一项颠覆性3D打印新技术:CLIP 技术CLIP 技术不仅可以稳定地提高3D打印速度,同时还可以大幅提高打印精度

打破了3D打印技术精度与速度不能同时提高的悖论,将3D打印速度提高100倍并且可以相对轻松地得到无层面(layerless)的打印制品。困扰 3D 打印技术已久的高速连续化打印问题在CLIP技术中被完全克服

图3(a) 是CLIP技术的基本原理,以及在 Science 上的封面 (图 3(b))CLIP 的基本原理:底面的透光板采用了透氧、透紫外光的特氟龙材料(聚四氟乙烯),而透过的氧气进入到树脂液体中可以起到阻聚剂的作用阻止固化反应的发生。

氧气和紫外光照的作用在这个区域内会产生一种相互制衡的效果:一方面光照会活化固化剂,而另一方面氧气又会抑制反应,使得靠近底面部分的固化速度变慢(也就是所谓的“Dead Zone”)

当制件离开這个区域后,脱离氧气制约的材料可以迅速地发生反应将树脂固化成型。除了打印速度快CLIP 系统也提高了 3D 打印的精度,而这一点的关键吔还在“死区”上

传统的 SLA 技术在打印换层的时候需要拉动尚未完全固化的树脂层,为了不破坏树脂层的结构每个单层切片都必须保证┅定的厚度来维持强度。而 CLIP 的固化层下面接触的是液态的“死区”不需要担心它与透光板粘连,因此自然也更不容易被破坏

于是,树脂层就可以被切得更薄更高精度的打印也就能够实现了。CLIP实现了高速连续打印

最近,澳洲Gizmo 3D公司展示了另一个速度超快的光固化(SLA)3D打印机号称超过了CLIP。Gizmo 3D 采用的是自上而下打印模式而非自下而上的打印(Carbon3D公司)。

此外来自美国 University of Buffalo的Pang也开发了一种类似 CLIP 工艺,但不使用可透氧气的窗口而是通过一种特殊的膜来创建未固化树脂薄层。这种特殊的膜有2个优势

首先,它比可透氧窗口便宜得多其价格仅为后者的 1/100;第②,该膜是非常容易成型这意味着我们可 以用这种膜制成我们的几乎任何形状。

尽管微立体光刻已经取得重大进展但是当前也面临一些挑战性和亟待突破的难题:

1) 提高分辨率和成型件的尺寸;

2) 由于微立体光刻无法使用支撑结构,难以制造必须使用支撑结构的微零件或微結构;

3) 扩大可利用的材料(当前一个大的不足就是仅仅有限的聚合物材料能够使用主要是丙烯酸酯、环氧树脂等光敏树脂材料),开发新型複合材料;

4) 进一步提高生产效率降低生产成本。

感谢你的反馈我们会做得更好!

我要回帖

更多关于 3d金色金属材质参数 的文章

 

随机推荐