拉姆检测:请问有没有合成过配体为FMN的亲和胶?

1,氨基酸(amino acid):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在α-碳上。

2,必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。

3,非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成不需要从食物中获得的氨基酸。

4,等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值。

5,茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。

6,肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。

7,肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。

8,蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。

9,层析(chromatography):按照在移动相和固定相 (可以是气体或液体)之间的分配比例将混合成分分开的技术。

10,离子交换层析(ion-exchange column)使用带有固定的带电基团的聚合树脂或凝胶层析柱

11,透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。

12,凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。

13,亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。

14,高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。

15,凝胶电泳(gel electrophoresis):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。

16,SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE只是按照分子的大小,而不是根据分子所带的电荷大小分离的。

17,等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。

18,双向电泳(two-dimensional electrophorese):等电聚胶电泳和SDS-PAGE的组合,即先进行等电聚胶电泳(按照pI)分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。

19,Edman降解(Edman degradation):从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。

20,同源蛋白质(homologous protein):来自不同种类生物的序列和功能类似的蛋白质,例如血红蛋白。

1,构形(configuration):有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂和重新形成是不会改变的。构形的改变往往使分子的光学活性发生变化。

2,构象(conformation):指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。构象改变不会改变分子的光学活性。

3,肽单位(peptide unit):又称为肽基(peptide group),是肽键主链上的重复结构。是由参于肽链形成的氮原子,碳原子和它们的4个取代成分:羰基氧原子,酰氨氢原子和两个相邻α-碳原子组成的一个平面单位。

4,蛋白质二级结构(protein)在蛋白质分子中的局布区域内氨基酸残基的有规则的排列。常见的有二级结构有α-螺旋和β-折叠。二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的。

5,蛋白质三级结构(protein tertiary structure):蛋白质分子处于它的天然折叠状态的三维构象。三级结构是在二级结构的基础上进一步盘绕,折叠形成的。三级结构主要是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力和盐键维持的。

6,蛋白质四级结构(protein quaternary structure):多亚基蛋白质的三维结构。实际上是具有三级结构多肽(亚基)以适当方式聚合所呈现的三维结构。

7,α-螺旋(α-heliv):蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键。在古典的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm.

8, β-折叠(β-sheet): 蛋白质中常见的二级结构,是由伸展的多肽链组成的。折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链的另一个酰氨氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(由N到C方向)或者是反平行排列(肽链反向排列)。

9,β-转角(β-turn):也是多肽链中常见的二级结构,是连接蛋白质分子中的二级结构(α-螺旋和β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个以上的氨基酸残基的转角又常称为环(loop)。常见的转角含有4个氨基酸残基有两种类型:转角I的特点是:第一个氨基酸残基羰基氧与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往是甘氨酸。这两种转角中的第二个残侉大都是脯氨酸。

10,超二级结构(super-secondary structure):也称为基元(motif).在蛋白质中,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体。

11,结构域(domain):在蛋白质的三级结构内的独立折叠单元。结构域通常都是几个超二级结构单元的组合。

12,纤维蛋白(fibrous protein):一类主要的不溶于水的蛋白质,通常都含有呈现相同二级结构的多肽链许多纤维蛋白结合紧密,并为 单个细胞或整个生物体提供机械强度,起着保护或结构上的作用。

13,球蛋白(globular protein):紧凑的,近似球形的,含有折叠紧密的多肽链的一类蛋白质,许多都溶于水。典形的球蛋白含有能特异的识别其它化合物的凹陷或裂隙部位。

14,角蛋白(keratin):由处于α-螺旋或β-折叠构象的平行的多肽链组成不溶于水的起着保护或结构作用蛋白质。

15,胶原(蛋白)(collagen):是动物结缔组织最丰富的一种蛋白质,它是由原胶原蛋白分子组成。原胶原蛋白是一种具有右手超螺旋结构的蛋白。每个原胶原分子都是由3条特殊的左手螺旋(螺距0.95nm,每一圈含有3.3个残基)的多肽链右手旋转形成的。

16,疏水相互作用(hydrophobic interaction):非极性分子之间的一种弱的非共价的相互作用。这些非极性的分子在水相环境中具有避开水而相互聚集的倾向。

17,伴娘蛋白(chaperone):与一种新合成的多肽链形成复合物并协助它正确折叠成具有生物功能构向的蛋白质。伴娘蛋白可以防止不正确折叠中间体的形成和没有组装的蛋白亚基的不正确聚集,协助多肽链跨膜转运以及大的多亚基蛋白质的组装和解体。

18,二硫键(disulfide bond):通过两个(半胱氨酸)巯基的氧化形成的共价键。二硫键在稳定某些蛋白的三维结构上起着重要的作用。

19,范德华力(van der Waals force):中性原子之间通过瞬间静电相互作用产生的一弱的分子之间的力。当两个原子之间的距离为它们范德华力半径之和时,范德华力最强。强的范德华力的排斥作用可防止原子相互靠近。

20,蛋白质变性(denaturation):生物大分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照,热,有机溶济以及一些变性济的作用时,次级键受到破坏,导致天然构象的破坏,使蛋白质的生物活性丧失。

21,肌红蛋白(myoglobin):是由一条肽链和一个血红素辅基组成的结合蛋白,是肌肉内储存氧的蛋白质,它的氧饱和曲线为双曲线型。

22,复性(renaturation):在一定的条件下,变性的生物大分子恢复成具有生物活性的天然构象的现象。

23,波尔效应(Bohr effect):CO2浓度的增加降低细胞内的pH,引起红细胞内血红蛋白氧亲和力下降的现象。

24,血红蛋白(hemoglobin): 是由含有血红素辅基的4个亚基组成的结合蛋白。血红蛋白负责将氧由肺运输到外周组织,它的氧饱和曲线为S型。

25,别构效应(allosteric effect):又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性丧失的现象。

26,镰刀型细胞贫血病(sickle-cell anemia): 血红蛋白分子遗传缺陷造成的一种疾病,病人的大部分红细胞呈镰刀状。其特点是病人的血红蛋白β—亚基N端的第六个氨基酸残缺是缬氨酸(vol),而不是下正常的谷氨酸残基(Ghe)。

1,酶(enzyme):生物催化剂,除少数RNA外几乎都是蛋白质。酶不改变反应的平衡,只是通过降低活化能加快反应的速度。

2,脱脯基酶蛋白(apoenzyme):酶中除去催化活性可能需要的有机或无机辅助因子或辅基后的蛋白质部分。

3,全酶(holoenzyme):具有催化活性的酶,包括所有必需的亚基,辅基和其它辅助因子。

4,酶活力单位(U,active unit):酶活力单位的量度。1961年国际酶学会议规定:1个酶活力单位是指在特定条件(25篊,其它为最适条件)下,在1min内能转化1μmol底物的酶量,或是转化底物中1μmol的有关基团的酶量。

5,比活(specific activity):每分钟每毫克酶蛋白在25篊下转化的底物的微摩尔数。比活是酶纯度的测量。

6,活化能(activation energy):将1mol反应底物中所有分子由其态转化为过度态所需要的能量。

7,活性部位(active energy):酶中含有底物结合部位和参与催化底物转化为产物的氨基酸残基部分。活性部位通常位于蛋白质的结构域或亚基之间的裂隙或是蛋白质表面的凹陷部位,通常都是由在三维空间上靠得很进的一些氨基酸残基组成。

9,共价催化(covalent catalysis):一个底物或底物的一部分与催化剂形成共价键,然后被转移给第二个底物。许多酶催化的基团转移反应都是通过共价方式进行的。

10,靠近效应(proximity effect):非酶促催化反应或酶促反应速度的增加是由于底物靠近活性部位,使得活性部位处反应剂有效浓度增大的结果,这将导致更频繁地形成过度态。

11,初速度(initial velocity):酶促反应最初阶段底物转化为产物的速度,这一阶段产物的浓度非常低,其逆反应可以忽略不计。

13,米氏常数(Michaelis constant):对于一个给定的反应,异至酶促反应的起始速度(υ0)达到最大反应速度(υmax)一半时的底物浓度。

14,催化常数(catalytic number)(Kcat):也称为转换数。是一个动力学常数,是在底物处于饱和状态下一个酶(或一个酶活性部位)催化一个反应有多快的测量。催化常数等于最大反应速度除以总的酶浓度(υmax/[E]total)。或是每摩酶活性部位每秒钟转化为产物的底物的量(摩[尔])。

15,双倒数作图(double-reciprocal plot):那称为Lineweaver_Burk作图。一个酶促反应的速度的倒数(1/V)对底物度的倒数(1/LSF)的作图。x和y轴上的截距分别代表米氏常数和最大反应速度的倒数。

16,竞争性抑制作用(competitive inhibition):通过增加底物浓度可以逆转的一种酶抑制类型。竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。这种抑制使Km增大而υmax不变。

17,非竞争性抑制作用(noncompetitive inhibition): 抑制剂不仅与游离酶结合,也可以与酶-底物复合物结合的一种酶促反应抑制作用。这种抑制使Km不变而υmax变小。

18,反竞争性抑制作用(uncompetitive inhibition): 抑制剂只与酶-底物复合物结合而不与游离的酶结合的一种酶促反应抑制作用。这种抑制使Km和υmax都变小但υmax/Km不变。

19,丝氨酸蛋白酶(serine protease): 活性部位含有在催化期间起亲核作用的丝氨残基的蛋白质。

20,酶原(zymogen):通过有限蛋白水解,能够由无活性变成具有催化活性的酶前体。

21,调节酶(regulatory enzyme):位于一个或多个代谢途径内的一个关键部位的酶,它的活性根据代谢的需要而增加或降低。

22,别构酶(allosteric enzyme):活性受结合在活性部位以外的部位的其它分子调节的酶。

23,别构调节剂(allosteric modulator):结合在别构调节酶的调节部位调节该酶催化活性的生物分子,别构调节剂可以是激活剂,也可以是抑制剂。

24,齐变模式(concerted model):相同配体与寡聚蛋白协同结合的一种模式,按照最简单的齐变模式,由于一个底物或别构调节剂的结合,蛋白质的构相在T(对底物亲和性低的构象)和R(对底物亲和性高的构象)之间变换。这一模式提出所有蛋白质的亚基都具有相同的构象,或是T构象,或是R构象。

25,序变模式(sequential model):相同配体与寡聚蛋白协同结合的另外一种模式。按照最简单的序变模式,一个配体的结合会诱导它结合的亚基的三级结构的变化,并使相邻亚基的构象发生很大的变化。按照序变模式,只有一个亚基对配体具有高的亲和力。

26,同功酶(isoenzyme isozyme):催化同一化学反应而化学组成不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。

27,别构调节酶(allosteric modulator):那称为别构效应物。结合在别构酶的调节部位,调节酶催化活性的生物分子。别构调节物可以是是激活剂,也可以是抑制剂。

1,维生素(vitamin):是一类动物本身不能合成,但对动物生长和健康又是必需的有机物,所以必需从食物中获得。许多辅酶都是由维生素衍生的。

2,水溶性维生素(water-soluble vitamin):一类能溶于水的有机营养分子。其中包括在酶的催化中起着重要作用的B族维生素以及抗坏血酸(维生素C)等。

3,脂溶性维生素(lipid vitamin):由长的碳氢链或稠环组成的聚戊二烯化合物。脂溶性维生素包括A,D,E,和K,这类维生素能被动物贮存。

4,辅酶(conzyme):某些酶在发挥催化作用时所需的一类辅助因子,其成分中往往含有维生素。辅酶与酶结合松散,可以通过透析除去。

5,辅基(prosthetic group):是与酶蛋白质共价结合的金属离子或一类有机化合物,用透析法不能除去。辅基在整个酶促反应过程中始终与酶的特定部位结合。

6,尼克酰胺腺嘌呤二核苷酸(NAD+)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+):含有尼克酰胺的辅酶,在某些氧化还原中起着氢原子和电子载体的作用,常常作为脱氢酶的辅。

7,黄素单核苷酸(FMN)一种核黄素磷酸,是某些氧化还原反应的辅酶。

8,硫胺素焦磷酸(thiamine phosphate):是维生素B1的辅形式,参与转醛基反应。

9,黄素腺嘌呤二核苷酸(FAD):是某些氧化还原反应的辅酶,含有核黄素。

10,磷酸吡哆醛(pyidoxal phosphate):是维生素B6(吡哆醇)的衍生物,是转氨酶,脱羧酶和消旋酶的酶。

11,生物素(biotin):参与脱羧反应的一种酶的辅助因子。

12,辅酶A(coenzyme A):一种含有泛酸的辅酶,在某些酶促反应中作为酰基的载体。

13,类胡萝卜素(carotenoid):由异戊二烯组成的脂溶性光合色素。

14,转氨酶(transaminase):那称为氨基转移酶,在该酶的催化下,一个α-氨基酸的氨基可转移给别一个α-酮酸。

1,醛糖(aldose):一类单糖,该单糖中氧化数最高的C原子(指定为C-1)是一个醛基。

2,酮糖(ketose):一类单糖,该单糖中氧化数最高的C原子(指定为C-2)是一个酮基。

3,异头物(anomer):仅在氧化数最高的C原子(异头碳)上具有不同构形的糖分子的两种异构体。

4,异头碳(anomer carbon):环化单糖的氧化数最高的C原子,异头碳具有羰基的化学反应性。

5,变旋(mutarotation):吡喃糖,呋喃糖或糖苷伴随它们的α-和β-异构形式的平衡而发生的比旋度变化。

6,单糖(monosaccharide):由3个或更多碳原子组成的具有经验公式(CH2O)n的简糖。

7,糖苷(dlycoside):单糖半缩醛羟基与别一个分子的羟基,胺基或巯基缩合形成的含糖衍生物。

8,糖苷键(glycosidic bond):一个糖半缩醛羟基与另一个分子(例如醇、糖、嘌呤或嘧啶)的羟基、胺基或巯基之间缩合形成的缩醛或缩酮键,常见的糖醛键有O—糖苷键和N—糖苷键。

9,寡糖(oligoccharide):由2~20个单糖残基通过糖苷键连接形成的聚合物。

10,多糖(polysaccharide):20个以上的单糖通过糖苷键连接形成的聚合物。多糖链可以是线形的或带有分支的。

11,还原糖(reducing sugar):羰基碳(异头碳)没有参与形成糖苷键,因此可被氧化充当还原剂的糖。

12,淀粉(starch):一类多糖,是葡萄糖残基的同聚物。有两种形式的淀粉:一种是直链淀粉,是没有分支的,只是通过α-(1→4)糖苷键的葡萄糖残基的聚合物;另一类是支链淀粉,是含有分支的,α-(1→4)糖苷键连接的葡萄糖残基的聚合物,支链在分支处通过α-(1→6)糖苷键与主链相连。

13,糖原(glycogen): 是含有分支的α-(1→4)糖苷键的葡萄糖残基的同聚物,支链在分支点处通过α-(1→6)糖苷键与主链相连。

14,极限糊精(limit dexitrin):是指支链淀粉中带有支链的核心部位,该部分经支链淀粉酶水解作用,糖原磷酸化酶或淀粉磷酸化酶作用后仍然存在。糊精的进一步降解需要α-(1→6)糖苷键的水解。

15,肽聚糖(peptidoglycan):N-乙酰葡萄糖胺和N-乙酰唾液酸交替连接的杂多糖与不同的肽交叉连接形成的大分子。肽聚糖是许多细菌细胞壁的主要成分。

16,糖蛋白(glycoprotein):含有共价连接的葡萄糖残基的蛋白质。

17,蛋白聚糖(proteoglycan):由杂多糖与一个多肽连组成的杂化的在分子,多糖是分子的主要成分。

1,脂肪酸(fatty acid):是指一端含有一个羧基的长的脂肪族碳氢链。脂肪酸是最简单的一种脂,它是许多更复杂的脂的成分。

4,必需脂肪酸(occential fatty acid):维持哺乳动物正常生长所必需的,而动物又不能合成的脂肪酸,Eg亚油酸,亚麻酸。

5,三脂酰苷油(triacylglycerol):那称为甘油三酯。一种含有与甘油脂化的三个脂酰基的酯。脂肪和油是三脂酰甘油的混合物。

6,磷脂(phospholipid):含有磷酸成分的脂。Eg卵磷脂,脑磷脂。

7,鞘脂(sphingolipid):一类含有鞘氨醇骨架的两性脂,一端连接着一个长连的脂肪酸,另一端为一个极性和醇。鞘脂包括鞘磷脂,脑磷脂以及神经节苷脂,一般存在于植物和动物细胞膜内,尤其是在中枢神经系统的组织内含量丰富。

8,鞘磷脂(sphingomyelin):一种由神经酰胺的C-1羟基上连接了磷酸毛里求胆碱(或磷酸乙酰胺)构成的鞘脂。鞘磷脂存在于在多数哺乳动物动物细胞的质膜内,是髓鞘的主要成分。

9,卵磷脂(lecithin):即磷脂酰胆碱(PC),是磷脂酰与胆碱形成的复合物。

10,脑磷脂(cephalin):即磷脂酰乙醇胺(PE),是磷脂酰与乙醇胺形成的复合物。

11,脂质体(liposome):是由包围水相空间的磷脂双层形成的囊泡(小泡)。

12,生物膜(bioligical membrane):镶嵌有蛋白质的脂双层,起着画分和分隔细胞和细胞器作用生物膜也是与许多能量转化和细胞内通讯有关的重要部位。

13,内在膜蛋白(integral membrane protein):插入脂双层的疏水核和完全跨越脂双层的膜蛋白。

14,外周膜蛋白(peripheral membrane protein):通过与膜脂的极性头部或内在的膜蛋白的离子相互作用和形成氢键与膜的内或外表面弱结合的膜蛋白。

15,流体镶嵌模型(fluid mosaic model):针对生物膜的结构提出的一种模型。在这个模型中,生物膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性。有的蛋白质“镶“在脂双层表面,有的则部分或全部嵌入其内部,有的则横跨整个膜。另外脂和膜蛋白可以进行横向扩散。

16,通透系数(permeability coefficient):是离子或小分子扩散过脂双层膜能力的一种量度。通透系数大小与这些离子或分子在非极性溶液中的溶解度成比例。

17,通道蛋白(channel protein):是带有中央水相通道的内在膜蛋白,它可以使大小适合的离子或分子从膜的任一方向穿过膜。

18,(膜)孔蛋白(pore protein):其含意与膜通道蛋白类似,只是该术语常用于细菌。

19,被动转运(passive transport):那称为易化扩散。是一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上,然后被转运过膜,但转运是沿着浓度梯度下降方向进行的,所以被动转达不需要能量的支持。

20,主动转运(active transport):一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上然后被转运过膜,与被动转运运输方式相反,主动转运是逆着浓度梯度下降方向进行的,所以主动转运需要能量的驱动。在原发主动转运过程中能源可以是光,ATP或电子传递;而第二级主动转运是在离子浓度梯度下进行的。

21,协同运输(contransport):两种不同溶质的跨膜的耦联转运。可以通过一个转运蛋白进行同一方向(同向转运)或反方向(反向转运)转运。

22,胞吞(信用)(endocytosis):物质被质膜吞入并以膜衍生出的脂囊泡形成(物质在囊泡内)被带入到细胞内的过程。

1,核苷(nucleoside):是嘌呤或嘧啶碱通过共价键与戊糖连接组成的化合物。核糖与碱基一般都是由糖的异头碳与嘧啶的N-1或嘌呤的N-9之间形成的β-N-糖键连接。

2,核苷酸(uncleoside):核苷的戊糖成分中的羟基磷酸化形成的化合物。

3,cAMP(cycle AMP):3ˊ,5ˊ-环腺苷酸,是细胞内的第二信使,由于某部些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的。

4,磷酸二脂键(phosphodiester linkage):一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。该酯键成了两个醇之间的桥梁。例如一个核苷的3ˊ羟基与别一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二脂键。

5,脱氧核糖核酸(DNA):含有特殊脱氧核糖核苷酸序列的聚脱氧核苷酸,脱氧核苷酸之间是是通过3ˊ,5ˊ-磷酸二脂键连接的。DNA是遗传信息的载体。

6,核糖核酸(RNA):通过3ˊ,5ˊ-磷酸二脂键连接形成的特殊核糖核苷酸序列的聚核糖核苷酸。

9,转移核糖核酸(Trna,transfer ribonucleic acid):一类携带激活氨基酸,将它带到蛋白质合成部位并将氨基酸整合到生长着的肽链上RNA。TRNA含有能识别模板mRNA上互补密码的反密码。

10,转化(作用)(transformation):一个外源DNA 通过某种途径导入一个宿主菌,引起该菌的遗传特性改变的作用。

11,转导(作用)(transduction):借助于病毒载体,遗传信息从一个细胞转移到另一个细胞。

12,碱基对(base pair):通过碱基之间氢键配对的核酸链中的两个核苷酸,例如A与T或U , 以及G与C配对 。

13,夏格夫法则(Chargaff’s rules):所有DNA中腺嘌呤与胸腺嘧啶的摩尔含量相等(A=T),鸟嘌呤和胞嘧啶的摩尔含量相等(G=C),既嘌呤的总含量相等(A+G=T+C)。DNA的碱基组成具有种的特异性,但没有组织和器官的特异性。另外,生长和发育阶段`营养状态和环境的改变都不影响DNA的碱基组成。

14,DNA的双螺旋(DNAdouble helix):一种核酸的构象,在该构象中,两条反向平行的多核甘酸链相互缠绕形成一个右手的双螺旋结构。碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二脂键相连,形成核酸的骨架。碱基平面与假象的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋。双螺旋的直径为2nm,碱基堆积距离为0.34nm, 两核甘酸之间的夹角是36゜,每对螺旋由10对碱基组成,碱基按A-T,G-C配对互补,彼此以氢键相联系。维持DNA双螺旋结构的稳定的力主要是碱基堆积力。双螺旋表面有两条宽窄`深浅不一的一个大沟和一个小沟。

15.大沟(major groove)和小沟(minor groove):绕B-DNA双螺旋表面上出现的螺旋槽(沟),宽的沟称为大沟,窄沟称为小沟。大沟,小沟都、是由于碱基对堆积和糖-磷酸骨架扭转造成的。

16.DNA超螺旋(DNAsupercoiling):DNA本身的卷曲一般是DNA双`螺旋的弯曲欠旋(负超螺旋)或过旋(正超螺旋)的结果。

17.拓扑异构酶(topoisomerse):通过切断DNA的一条或两条链中的磷酸二酯键,然后重新缠绕和封口来改变DNA连环数的酶。拓扑异构酶Ⅰ、通过切断DNA中的一条链减少负超螺旋,增加一个连环数。某些拓扑异构酶Ⅱ也称为DNA促旋酶。

18.核小体(nucleosome):用于包装染色质的结构单位,是由DNA链缠绕一个组蛋白核构成的。

19.染色质(chromatin): 是存在与真核生物间期细胞核内,易被碱性染料着色的一种无定形物质。染色质中含有作为骨架的完整的双链DNA,以及组蛋白`非组蛋白和少量的DNA。

20.染色体(chromosome):是染色质在细胞分裂过程中经过紧密缠绕`折叠`凝缩和精细包装形成的具有固定形态的遗传物质存在形式。简而言之,染色体是一个大的单一的双链DNA分子与相关蛋白质组成的复合物,DNA中含有许多贮存和传递遗传信息的基因。

22.退火(annealing):既DNA由单链复性、变成双链结构的过程。来源相同的DNA单链经退火后完全恢复双链结构的过程,同源DNA之间`DNA和RNA之间,退火后形成杂交分子。

25.减色效应(hypochromic effect):随着核酸复性,紫外吸收降低的现象。

26.核酸内切酶(exonuclease): 核糖核酸酶和脱氧核糖核酸酶中能够水解核酸分子内磷酸二酯键的酶。

27.核酸外切酶(exonuclease):从核酸链的一端逐个水解核甘酸的酶。

28.限制性内切酶(restriction endonuclease):一种在特殊核甘酸序列处水解双链DNA的内切酶。Ⅰ型限制性内切酶既能催化宿主DNA的甲基化,又催化非甲基化的DNA的水解;而Ⅱ型限制性内切酶只催化非甲基化的DNA的水解。

29.限制酶图谱(restriction map):同一DNA用不同的限制酶进行切割,从而获得各种限制酶的切割位点,由此建立的位点图谱有助于对DNA的结构进行分析。

30.反向重复序列(inverted repeat sequence):在同一多核甘酸内的相反方向上存在的重复的核甘酸序列。在双链DNA中反向重复可能引起十字形结构的形成。

31.重组DNA技术(recombination DNA technology):也称之为基因工程(genomic engineering).利用限制性内切酶和载体,按照预先设计的要求,将一种生物的某种目的基因和载体DNA重组后转入另一生物细胞中进行复制`转录和表达的技术。

32.基因(gene):也称为顺反子(cistron).泛指被转录的一个DNA片段。在某些情况下,基因常用来指编码一个功能蛋白或DNA分子的DNA片段。

1,分解代谢反应(catabolic reaction):降解复杂分子为生物体提供小的构件分子和能量的代谢反应。

2,合成代谢反应(anablic reaction):合成用于细胞维持和生长所需分子的代谢反应。

3,反馈抑制(feedback inbition):催化一个代谢途径中前面反应的酶受到同一途径终产物抑制的现象

4,前馈激活(feed-forward activition):代谢途径中一个酶被该途径中前面产生的代谢物激活的现象。

5,标准自由能变化(△GO):相应于在一系列标准条件(温度298K,压力1atm(=101.325KPa),所有溶质的浓度都是不是mol/L)下发生的反应自由能变化。△GO′表示pH7.0条件下的标准自由能变化。

6,标准还原电动势(EO′):25℃和pH7.0条件下,还原剂和它的氧化形式在1mol/L浓度下表现出的电动势

1,酵解(glycolysis):由10步酶促反应组成的糖分解代谢途径。通过该途径,一分子葡萄糖转化为两分子丙酮酸,同时净生成两分子ATP和两分子NADH。

2,发酵(fermentation):营养分子(Eg葡萄糖)产能的厌氧降解。在乙醇发酵中,丙酮酸转化为乙醇和CO2。

3,巴斯德效应(Pasteur effect):氧存在下,酵解速度放慢的现象。

4,底物水平磷酸化(substrate phosphorlation):ADP或某些其它的核苷-5′—二磷酸的磷酸化是通过来自一个非核苷酸底物的磷酰基的转移实现的。这种磷酸化与电子的转递链无关。

5,柠檬酸循环(citric acid cycle):也称为三羧酸循环(TAC),Krebs循环。是用于乙酰CoA中的乙酰基氧化成CO2的酶促反应的循环系统,该循环的第一步是由乙酰CoA经草酰乙酸缩合形成柠檬酸。

6,回补反应(anaplerotic reaction):酶催化的,补充柠檬酸循环中间代谢物供给的反应,例如由丙酮酸羧化酶生成草酰乙酸的反应。

7,乙醛酸循环(glyoxylate cycle):是某些植物,细菌和酵母中柠檬酸循环的修改形式,通过该循环可以收乙乙酰CoA经草酰乙酸净生成葡萄糖。乙醛酸循环绕过了柠檬酸循环中生成两个CO2的步骤

parhway):那称为磷酸已糖支路。是一个葡萄糖-6-磷酸经代谢产生NADPH和核糖-5-磷酸的途径。该途径包括氧化和非氧化两个阶段,在氧化阶段,葡萄糖-6-磷酸转化为核酮糖-5-磷酸和CO2,并生成两分子NADPH;在非氧化阶段,核酮糖-5-磷酸异构化生成核糖-5-磷酸或转化为酵解的两用人才个中间代谢物果糖-6-磷酸和甘油醛-3-磷酸。

2,糖醛酸途径(glucuronate pathway):从葡萄糖-6-磷酸或葡萄糖-1-磷酸开始,经UDP-葡萄糖醛酸生成葡萄糖醛酸和抗坏血酸的途径。但只有在植物和那些可以合成抗坏血酸的动物体内,才可以通过该途径合成维生素C。

3,无效循环(futile cycle):也称为底物循环。一对酶催化的循环反应,该循环通过ATP的水解导致热能的释放。Eg葡萄糖+ATP=葡萄糖6-磷酸+ADP与葡萄糖6-磷酸+H2O=葡萄糖+P i反应组成的循环反应,其净反应实际上是ATP+H2O=ADP+Pi。

4,磷酸解(phosphorolysis)作用:通过在分子内引入一个无机磷酸,形成磷酸脂键而使原来键断裂的方式。实际上引入了一个磷酰基。

5,半乳糖血症(galactosemia):人类的一种基因型遗传代谢缺陷,是由于缺乏1-磷酸半乳糖尿苷酰转移酶,导致婴儿不能代谢奶汁中乳糖分解生成的半乳糖。

6,尾部生长(tailward growth):一种聚合反应机理经过私有化的单体的头部结合到聚合的尾部,连接到聚合物尾部的单体的尾部又生成了接下一个单体的受体。

7,糖异生作用(gluconenogenesis):由简单的非糖前体转变为糖的过程。糖异生不是糖酵解的简单逆转。虽然由丙酮酸开始的糖异生利用了糖酵解中的七步进似平衡反应的逆反应,但还必需利用另外四步酵解中不曾出现的酶促反应,绕过酵解过程中不可逆的三个反应。

1,呼吸电子传递链(respiratory electron-transport chain):由一系列可作为电子载体的酶复合体和辅助因子构成,可将来自还原型辅酶或底物的电子传递给有氧代谢的最终的电子受体分子氧(O2)

2,氧化磷酸化(oxidative phosphorylation):电子从一个底物传递给分子氧的氧化与酶催化的由ADP和Pi生成ATP与磷酸化相偶联的过程。

3,化学渗透理论(chemiosnotic theory):一种学说,主要论点是底物氧化期间建立的质子浓度梯度提供了驱动ADP和ATP和Pi形成ATP的能量。

4,解偶联剂(uncoupling agent):一种使电子传递与ADP磷酸化之间的的紧密偶联关系解除的化合物,Eg2,4-二硝基苯酚。

5,P/O比(P/O ratio):在氧化磷酸化中,每1/2O2被还原成ADP的摩尔数。电子从NADH

传递给O2时,P/O=3,而电子从FADH2传递给O2时,P/O=2。

6,高能化合物(high energy compound):在标准条件下水解时,自由能大幅度减少和化合物。一般是指水解释放的能量能驱动ADP磷酸化合成ATP的化合物。

1,叶绿体(chloroplast):藻类和植物体中含有叶绿素进行光合作用的器官。

2,叶绿素(chlorophyll):光合作用膜中的绿色色素,它是光合作用中捕获光的主要成分。

3,辅助色素(accessory pigment):在植物和光合细菌,像类胡萝卜素叶黄素和藻胆色素中,吸收可见光的色素,这类色素是对叶绿素捕获光能的补充。

4,光合作用(photosynthesis):绿色植物或光合细菌利用光能将CO2转化为的机化合物的过程。

6,光反应(light reaction):光合色素将光能转变成化学能并形成ATP 和NADPH的过程。

7,暗反应(dark reaction):利用光反应生成的ATP和NADPH的化学能使CO2还原糖或其它有机物的一系列酶促过程。

8,卡尔文循环(Calvin cycle):也称为还原戊 糖磷酸循环和C3途径。它是在光合作用期间将CO2还原转化为糖的反应循环,是植物用于固定CO2生成磷酸催糖的途径。

9,C4途径(C4pathway):一些植物中固定C的途径,其特点是通过使CO2浓缩减少光呼吸。在该途径中在叶肉细胞CO2被整合到C4酸中,然后C4酸在维管束鞘细胞被脱羧,释放出的CO2被卡尔文循环利用。

10,光呼吸(photorespiration):植物依赖光摄起光进行磷酸乙醇酸代谢的过程。光呼吸之所以发生是由于O2可以与CO2竞争核酮糖-1,5-二磷酸羧化酶的活性部位。

1,脂肪酸的β氧化:碳氧化降解生成乙酰CoA,同时生成NADH 和FADH2,因此可产生大量的ATP。该途径因脱氢和裂解均发生在β位碳原子而得名。每一轮脂肪酸β氧化都由四步反应组成:氧化,水化,再氧化和硫解。

2,肉毒碱穿梭系统(carnitine shuttle system):脂酰CoA通过形成脂酰肉毒碱从细胞质转运到线粒体的一个穿梭循环途径。

3,酮体(acetone body):在肝脏中由乙酰CoA合成的燃料分子(β羟基丁酸,乙酰乙酸和丙酮)。在饥饿期间酮体是包括脑在内的许多组织的燃料,酮体过多会导致中毒。

4,柠檬酸转运系统(citrate transport system):将乙酰CoA从线粒体转运到细胞质的穿梭循环途径。在转运乙酰CoA的同时,细胞质中NADH氧化成NAD﹢,NADP+还原为NADPH。每循环一次消耗两分子ATP.

5,酰基载体蛋白(ACP):通过硫脂键结合脂肪酸合成的中间代谢物的蛋白质(原核生物)或蛋白质的结构域(真核生物)。

1,生物固氮作用(biological nitrogen fixatio):大气中的氮被原还为氨的过程。生物固氮只发生在少数的细菌和藻类中。

2,尿素循环(urea cycle):是一个由4步酶促反应组成的,可以将来自氨和天冬氨酸的氮转化为尿素的循环。讠循环是发生在脊椎动物的肝脏中的一个代谢循环。

3,脱氨(deamination):在酶的催化下从生物分子(氨基酸或核苷酸)中除去氨基的过程。

4,氧化脱氨(oxidative deamination):α-氨基酸在酶的催化下脱氨生成相应的α-酮酸的过程。氧化脱氨实际上包括氧化和脱氨两个步骤。(脱氨和水解)

5,转氨(transamination):一个α-氨基酸的α-氨基借助转氨酶的催化作用转移到一个α-酮酸的过程。

6,乒乓反应(ping-pong reaction):在该反应中,酶结合一个底物并释放一个产物,留下一个取代酶,然后该取代酶再结合第二个底物和释放出第二个产物,最后酶恢复到它的起始状态。

7,生糖氨基酸(glucongenic amino acid):降解可生成能作为糖异生前体的分子,例如丙酮酸或柠檬酸循环中间代谢物的氨基酸。

9,苯酮尿症(phenylketonuria):是由于苯丙氨酸羟化酶缺乏引起苯丙酸堆积的代谢遗传病。缺乏丙酮酸羟化酶,苯丙氨酸只能靠转氨生成苯丙酮酸,病人尿中排出大量苯丙酮酸。苯丙酮酸堆积对神经有毒害,使智力发肓出现障碍。

10,尿黑酸症(alcaptonuria):是酪氨酸代谢中缺乏尿黑酸酶引起的代谢遗传病。这种病人的尿中含有尿黑酸,在碱性条件下暴露于氧气中,氧化并聚合为类似于黑色素的物质,从而使尿成黑色。

1,核苷酸磷酸化酶(nucloside phosphoryalse):能分解核苷生成含氮碱和戊糖的磷酸酯的酶。

2,核苷水解酶(nucloside hydrolase):能分解核苷生成含氮碱和戊糖的酶。

3,从头合成(de novo synthesis):生物体内用简单的前体物质合成生物分子的途径,例如核苷酸的从头合成。

4,补救途径(salvage pathway):与从头合成途径不同,生物分子,例如核苷酸,可以由该类分子降解形成的中间代谢物,如碱基等来合成,该途径是一个再循环途径。

5,痛风(gout):是尿酸过量生产或尿酸排泻不充分引起的尿酸堆积造成的,尿酸结晶堆积在软骨,软组织,肾脏以及关节处。在关节处的沉积会造成剧烈的疼痛。

6,别嘌呤醇(allopurinol):是结构上烦恼于黄嘌呤的化合物(在嘌呤环上第七位是C,第八位是N),对黄嘌呤氧化酶有很强的抑制作用,常用来治疗痛风。

7,自杀抑制作用(suicide substrate):底物烦恼物经酶催化生成的产物变成了该酶的抑制剂,例如别嘌呤醇对黄嘌呤氧化酶的抑制就属于这种类型。

8,Lesch-Nyhan综合症(Lesch-Nyhan syndrome):也称为自毁容貌症,是由于次黄嘌呤-鸟嘌呤磷酸核糖转移酶的遗传缺陷引起的。缺乏该酶使得次黄嘌呤和鸟嘌呤不能转换为IMP和GMP,而是降解为尿酸,过量尿酸将导致Lesch-Nyhan综合症。

1,激素(hormone):一类由内分泌器官合成的微量的化学物质,它由血液运输到靶组织起着信使的作用,调节靶组织(或器官)的功能。

2,激素受体(hormone receptor):位于细胞表面或细胞内,结合特异激素并引发细胞响应的蛋白质。

3,第二信使(second messenger):响应外部信号(第一信使),例如激素,而在细胞内合成的效应分子,例如cAMP,肌醇三磷酸或二酰基甘油等。第二信使再去调节靶酶,引起细胞内各种效应。

4,级联放大(cascade amplification):在体内的不同部位,通过一系列酶的酶促反应来传递一个信息,并且初始信息在传递到系列反应的最后时,信号得到放大,这样的一个系列叫作级联系统。

5,G蛋白(G protein):地细胞内信号传导途径中起着重要作用的GTP结合蛋白,由α,β,γ三个不同亚基组成。激素与激素受体结合诱导GTP跟G蛋白结合的GDP进行交换结果激活位于信号传导途径中下游的腺苷酸环化酶。G蛋白将细胞外的第一信使肾上腺素等激素和细胞内的腺苷酸环化酶催化的腺苷酸环化生成的第二信使cAMP联系起来。G蛋白具有内源GTP酶活性。

6,激素效应元件(HER):指内固醇甲状腺素等激素受体结合的一段短的DNA序列(12~20bp),这类受体结合DNA后可改变相邻基因的表达。

1,半保留复制(semiconservative replication):DNA复制的一种方式。每条链都可用作合成互补链的模板,合成出两分子的双链DNA,每个分子都是由一条亲代链和一条新合成的链组成。

2,复制叉(replication fork):Y字型结构,在复制叉处作为模板的双链DNA解旋,同是合成新的DNA链。

3,DNA聚合酶(DNA polymerase):以DNA为模板,催化核苷酸残基加到已存在的聚核苷酸3ˊ末端反应的酶。某些DNA聚全酶具有外切核酸酶的活性,可用来校正新合成的核苷酸的序列。

4,Klenow片段(Klenow fragment):E.coli DNA聚合酶I经部分水解生成的C末端605个氨基酸残基片段。该片段保留了DNA聚合酶I的5ˊ-3ˊ聚合酶和3ˊ-5ˊ外切酶活性,但缺少完整酶的5ˊ-3ˊ外切酶活性。

5,前导链(leading strand):与复制叉移动的方向一致,通过连续的5ˊ-3ˊ聚合合成的新的DNA链。

6,滞后链(lagging strand):与复制叉移动的方向相反,通过不连续的5ˊ-3ˊ聚合合成的新的DNA链。

7,冈崎片段(Okazaki fragment):相对比较短的DNA链(大约1000核苷酸残基),是在DNA的滞后链的不连续合成期间生成的片段,这是Reiji Okazaki在DNA合成实验中添加放射性的脱氧核苷酸前体观察到的。

8,引发体(primosome):一种多蛋白复合体,E.coli中的引发体包括催化DNA滞后链不连续DNA合成所必需的,短的RNA引物合成的引发酶,解旋酶。

9,复制体(replisome):一种多蛋白复合体,包含DNA聚合酶,引发酶,解旋酶,单链结合蛋白和其它辅助因子。复制体位于每个复制叉处进行细菌染色体DNA复制的聚合反应。

10,单链结合蛋白(SSB):一种与单链DNA结合紧密的蛋白,它的结构可以防止复制叉处单链DNA本身重新折叠回双链区。

11,滚环复制(rolling-circle replication):复制环状DNA的一种模式,在该模式中,DNA聚合酶结合在一个缺口链的3ˊ端绕环合成与模板链互补的DNA,每一轮都是新合成的DNA取代前一轮合成的DNA。

13,互补NDA(cDNA):通过逆转录酶由mRNA模板合成的双链DNA。

14,聚合酶链式反应(PCR):扩增样品中的DNA量和富集众多DNA分子中的一个特定的DNA序列的一种技术。在该反应中,使用与目的DNA序列互补的寡核苷酸作为引物,进行多轮的DNA合成。其中包括DNA变性,引物退火和在Tap DNA聚合酶催化下的DNA合成。

15,直接修复(direct repair):是通过一种可连续扫描DNA,识别出损伤部位的蛋白质,将损伤部位直接修复的方法。该修复方法不用切断DNA或切除碱基。

16切除修复(excision repair):通过切除-修复内切酶使DNA损伤消除的修复方法。一般是切除损伤区,然后在DNA聚合酶的作用下,以露出的单链为模板合成新的互补链,最后用连接酶将缺口连接起来。

17,错配修复(mismatch repair):在含有错配碱基的DNA分子中,使正常核苷酸序列恢复的修复方式。这种修复方式的过程是:识别出下正确地链,切除掉不正确链的部分,然后通过DNA聚合酶和DNA连接酶的作用,合成正确配对的双链DNA。

1,遗传学中心法则(genetic central dogma):描述从一个基因到相应蛋白质的信息流的途径。遗传信息贮存在DNA中,DNA被复制传给子代细胞,信息被拷贝或由DNA转录成RNA,然后RNA翻译成多肽。不过,由于逆转录酶的反应,也可以以RNA为模板合成DNA。

2,转录(transcription):在由RNA聚合酶和辅助因子组成的转录复合物的催化下,从双链DNA分子中拷贝生物信息生成一条RNA链的过程。

3,模板链(template strand):可作为模板转录为RNA的那条链该链与转录的RNA碱基互补(A-U,G-C)。

肝功类检查项目临床意义23项)

是监测胎盘功能状况的指标。

碱性磷酸酶几乎存在于人体的各个组织中,以骨骼、肾脏和肝脏中含量较多。其病理性变化表现在:升高:阻塞性黄疸、急慢性黄疸性肝炎、肝癌、纤维性骨炎、佝偻病、骨转移癌等。降低:呆小症、维生素C缺乏症等。

GGT升高是乙醇中毒的敏感指标。

γ-谷氨酰氨基转移酶(γ-GT)存在于肾、胰、肝脏和前列腺、盲肠、脑中,血清中γ-谷氨酰转肽酶主要来源于肝、胆系统,因此,当肝胆发生疾病或损伤时,如:阻塞性黄疸、胆汁性肝硬变、胆管炎、胆囊炎时,其活性显著增高;胰腺癌、乏特壶腹癌时,其活性亦显著增高,同时饮酒、服药等亦可引起γ-谷氨酰转肽酶活性升高。因此,γ-谷氨酰转肽酶的测定对于肝胆疾病的检测具有重要的临床意义。

临床测定AST主要用于诊断急性心肌梗塞,肝细胞及骨骼肌疾病。

天门冬氨酸氨基转移酶(AST)又称谷草转氨酶(GOT),主要存在于各组织细胞中,肝、骨胳肌和肾脏含有相似的AST量。AST在心肌细胞中较多,当心肌梗塞时,血清中AST活力增高,在发病后6-12h之内显著增高,增高的程度可反映损害的程度,并在发作后48h达到最高值。约3-5d后恢复正常。各种肝病时AST可增高,肝病早期和慢肝增高不明显,AST/ALT比值小于1;严重肝病和肝病后期(活动性慢肝)增高,此时AST/ALT比值大于1。其它如心肌炎、肾炎及肺炎等也可使AST轻度增高。天门冬氨酸氨基转移酶主要用于诊断心肌梗塞、中毒性肝炎、肝癌、骨骼肌疾病等。因此,天门冬氨酸氨基转移酶的测定对心脏、肝脏疾病的检测具有重要意义。

ALT活性增高见于急性病毒性肝炎,骨骼肌等组织坏死等。

丙氨酸氨基转移酶(ALT)又称谷丙转氨酶(GPT),在肝脏中有较高的浓度,而在肾、心、骨胳肌、胰、脾、肺脏中则含量较少。通常ALT的升高由某些与肝脏有关的疾病引起,包括: 肝硬化、肝癌、病毒性或中毒性肝炎和阻塞性黄疸;ALT升高也见于广泛损伤和肌肉疾病,伴有休克、氧不足的循环衰竭,心肌梗塞和溶血性疾病。丙氨酸氨基转移酶活性的测定对以上疾病的诊断具有重要的价值。

浓度升高:各种原因失水所致血液浓缩;多发性骨髓瘤等单克隆性免疫球蛋白病;系统性红斑狼疮等。

浓度降低:体内水分过多,各种渠道的蛋白丢失,如肾病综合症;营养不良消耗增加,如肿瘤;蛋白合成障碍,如肝功能受损等

总蛋白降低,常伴随着白蛋白降低,常见于肝功能严重受损、烧伤、大出血、肾病综合症、溃疡性结肠炎、营养不良等。合成缺陷、营养不良、蛋白质吸收障碍、蛋白质丢失综合症。总蛋白增高常见于多发性骨髓瘤、急性脱水、外伤性休克、慢性肾上腺皮质功能减退等。

高白蛋白血症偶见于脱水所致的血液浓缩;急性降低见于严重烧伤与大量出血;慢性降低见于肝功能受损,结核慢性失血等。

白蛋白降低,常伴随着总蛋白降低,常见于营养不良、慢性胃肠道疾病等,糖尿病、甲状腺功能亢进、高烧、外伤等可造成蛋白消耗过多,高白蛋白血症则常见于脱水或血液浓缩。

降低常见于严重肝衰竭病人。

总胆红素增高临床上表现有黄疸,超过20.1μmol/L时有临床意义;增高到34.2μmol/L表现出黄疸体征。红细胞大量破坏、胆道阻塞、肝脏疾病,均可导致血中胆红素增高而引起黄疸。因此,总胆红素的测定对有无黄疸及黄疸深度的鉴别、肝细胞损害程度和预后的判断等具有重要的临床意义。血清总胆红素降低见于:再生障碍性贫血、慢性肾炎等。

直接胆红素测定是常用肝功能试验之一,直接胆红素增高临床上多见于肝细胞受损、肝内外胆道阻塞、代偿性肝硬化、急性黄疸肝萎缩等疾病。因此,直接胆红素的测定对于对溶血性黄疸、新生儿黄疸、肝脏疾病的的诊断具有重要的临床意义。

酶的活力降低常见于肝脏病及恶病质,是肝实质细胞损害及癌症病程发展的有力指针。

胆碱酯酶的临床测定可用于有机磷杀虫剂或战争毒剂急慢性中毒的诊断。在病情严重的肝病患者中,约有五分之四的病人胆碱酯酶降低至正常的60%,危重病人可降至正常的10%,甚至完全缺乏。另外,慢性活动性肝病等均可导致胆碱酯酶活力下降,故它的测定对肝脏功能的估计和肝病的预测有一定的参考价值

胆汁酸的代谢紊乱可诱致许多消化系统的疾病。

急性肝炎时血清TBA显著增高,可达正常人水平10~100倍,甚至更高。在慢性肝炎患者中,若TBA水平超过20μmol/L,可考虑慢性活动性肝炎。当酒精性肝病发生严重肝损伤时,血清TBA明显增高,而轻、中度损伤增高不明显。血清TBA测定对中毒性肝病的诊断优于常规肝功能试验。肝外胆管阻塞及肝内胆汁淤积包括急性肝炎、初期胆管性肝硬化、新生儿胆汁淤积、妊娠性胆汁淤积等均可引起TBA增高。

增高常见于肝癌,妊娠及卵巢肿瘤等

血清中AFU的活性是肝癌诊断的重要指标。AFU的偏高可用于肝癌的早期诊断。

ADA活性是反映肝损伤的敏感指标,可作为肝功能常规检查项目之一;慢性溶血患者红细胞ADA活性显著升高;肿瘤患者血清及组织中ADA活性均升高;结核性脑膜炎患者CSF-ADA明显升高;

腺苷脱氨酶(ADA)是人体嘌吟核苷酸代谢中的重要酶类,广泛存在于多种组织中。血清中的ADA主要来自肝脏,所以肝细胞损伤或膜通透性增强,均可使血中酶活性增高,故可依据该酶活性增高或降低反映肝细胞损伤和恢复程度。

5'-核糖核苷酸水解酶

升高:见于肝内外胆管阻塞、肝癌和伴随循环转移的乳房切除术后的病人。

5'-NT 是一种特殊的磷酸单酯水解酶,能特异性地将次黄嘌呤核苷酸水解为次黄苷和磷酸。此酶广泛地分布在人体和动物的组织中,5’-NT经肝细胞膜进入胆汁,随之进入血清中,是检测肝胆疾病的指标之一。肝内外胆管阻塞、肝癌和伴随循环转移的乳房切除术后的病人此酶升高明显。诊断肝胆疾病和肝癌5'-NT 较肝内其它酶类更敏感。

升高:见于急、慢性肝炎,肝硬化,严重脂肪肝,慢性右心衰竭伴有肝脏郁血时间较长者,甲亢、糖尿病及各种胶原性疾病等。

MAO广泛存在于肝、肾、胃、小肠及脑组织中,在细胞内位于线粒体膜的外,血液中的MAO是肝纤维化的重要指标之一,血清单氨氧化酶在脏器纤维化,特别是在肝硬变时明显上升,被认为是对肝纤维化诊断很有意义的指标。

升高:常见于原发性肝癌、生殖细胞瘤、胰腺癌、肺癌及肝硬化等疾病。

AFP是人体在胚胎时期血液中含有的特殊蛋白,系肝细胞内粗面内网核糖颗粒所合成,胎儿出生后,血清AFP浓度下降,几月至1年内降至正常,正常成人肝细胞失去合成AFP的能力,因此血清中含量极微。甲胎蛋白在原发性肝癌患者中急剧升高,是原发性肝癌的最重要的诊断指标。甲胎蛋白诊断肝细胞肝癌(HCC),不仅要观察它的绝对值,而且要观察其动态变化,AFP的动态变化有:1)持续高浓度型:诊断的特异性高,中晚期肝癌居多;2)马鞍型:较少见,但容易漏诊,当AFP增高在后峰时,往往已出现明显的肝癌表现;3)急剧上升型:多见于肿瘤发生迅速,恶性程度较高的肝癌,但是偶见AFP急剧升高,又迅速下降伴ALT升高的急性肝坏死;4)稳定上升型,定期检查,稳定上升,最有诊断价值;5)反复波浪型,多见于急慢性良性肝病。并且人血清中的甲胎蛋白浓度的升降对于病情的发展、疗效的观察、肝癌的复发观察有很大的价值。除肝细胞癌可显著升高外,妊娠、胚胎癌如睾丸癌、卵巢癌和极少胃、胰、胆管、结肠直肠癌也可升高,但其绝对值不如肝细胞癌高慢性肝炎、肝硬化可有AFP的分子变异体,亦可有一过性升高。因此血清AFP检测结果必须结合临床症状与超声检查才有诊断意义。

升高:见于(1)肝昏迷、肝性脑病、重症肝炎等;(2)小儿Reye’s综合症:该病严重低血糖、大片肝坏死、急性肝衰竭并伴有大面积肝脂肪样变,在肝脏检测酶谱类升高前就可检到血氨升高。(3)对先天性代谢紊乱——鸟氨酸循环的氨基酸代谢缺陷(高血氨)也有诊断价值。

降低:见于低蛋白饮食、贫血等。

血液中的氨是由人体中氨基酸和谷胱甘肽代谢而来,极少部分是肠道中的细菌产生的经肠道吸收而来,氨对人体来说是有毒物质,除部分被人体重新利用后,大部分经肝脏合成尿素由尿液排出体外,检测血氨可以反映肝脏的病变情况并可辅助诊断肝昏迷。

升高:见于胆管癌、胰腺癌、或者胆结石等引起肝外性阻塞、药物性肝损害、病毒性肝炎、肝内胆汁瘀滞、急性肝炎、恶性淋巴瘤、淋巴肉瘤、妊娠、无黄疸的肝转移癌等。

LAP广泛分布于人体各组织,以肝、胆、肾、小肠以及子宫肌层内含量最多。肝内外胆淤时,LAP活力显著增高,尤其在恶性胆淤时,其活力随病情进展而持续增高。试剂对肝道梗阻及胰腺癌的诊断有价值。肝坏疽、肝肿瘤、肝炎、乳腺癌、 肝癌、胆道癌、胰腺癌、子宫内膜癌、卵巢癌明显增高。肝硬化、传染性肝炎可中度增高,常为参考值的2-4倍。阻塞性黄疸明显增高,常达参考值5倍以上,并出现在胆红素或ALP上升之前。

用于检测人体血清或血浆中的α1-酸性糖蛋白(AAG)的含量。

AAG是一种糖蛋白,属于急性时相反应蛋白。在各种组织损伤或炎症、肿瘤时升高。AAG又是多种药物的主要结合蛋白,其浓度的变化将影响药物的代谢,因此,测定AAG对指导临床用药有重要意义。AAG由肝脏合成,肝脏有实质性损伤时,合成减少,导致血中水平的降低。急性胆囊炎、急性胆管炎、胰腺囊肿等所引起的阻塞性黄疸患者AAG均增高,可用于肝细胞性黄疸的鉴别诊断。

用于检测人体血清或血浆中α1-抗胰蛋白酶(AAT)的含量。

α1-抗胰蛋白酶是由肝脏合成的含糖10%~20%的一种糖蛋白。AAT是血液中最主要的胰蛋白酶抑制剂,对糜蛋白酶、凝血因子XII辅助因子及中性粒细胞的中性蛋白水解酶等其他酶也有抑制作用;也是一种急性时相反应蛋白,在炎症性疾患时,α1-抗胰蛋白酶可透过毛细血管进入组织液,在炎症局部往往浓度很高,对急性炎症疾病有一定限制作用。感染性疾病(细菌性、病毒性)、恶性肿瘤、胶原病、妊娠、外科手术、药物(雌激素、口服避孕药、肾上腺类固醇、前列腺素等),斑疹伤寒等会导致AAT含量升高;AAT缺乏症、新生儿呼吸窘迫综合征、重症肝炎、肾病综合征、蛋白丧失性胃肠症、营养不良、未成熟儿、肾移植早期排斥反应等会导致AAT含量降低。

用于检测人体血清或尿液中乙醇(ALC)的含量。

血液中的乙醇一般是饮酒摄入,被胃肠道吸收后进入血液,由肝脏以恒定速率代谢清除。在代谢过程中产生乙醛,其可与蛋白结合,形成乙醛-蛋白结合物可直接作为细胞毒物质直接引起细胞损伤,也可作为具有抗原性的刺激物,产生抗体。乙醇对身体也有直接毒性作用,长期过量饮酒容易形成脂肪肝、酒精性肝炎、肝硬化、酒精性胰腺炎以及酒依赖性精神障碍等疾病。怀孕妇女饮酒可导致胎儿精神与运动器官发育不良以及胎儿酒精综合症。酒依赖者一次性饮酒过量可引起急性中毒,其中毒症状与血中乙醇浓度有一定相关性,血乙醇浓度越高,中毒症状越深。因此,根据临床症状和血中乙醇浓度可以判断中毒程度。

用于检测人体血清或血浆中谷氨酸脱氢酶(GLDH)的活性。

谷氨酸脱氢酶是一种主要存在于细胞线粒体基质中的酶,以肝脏含量最高,其次为肾脏、胰腺、脑、小肠粘膜及心脏等器官。正常人血液中GLDH活性很低,在肝细胞发生坏死时进入血液,因此肝脏疾病时尤其是涉及肝细胞线粒体损害时其活性升高显著,故常用来检查线粒体的受损程度,是肝实质损害的敏感指标。乙醇中毒伴肝细胞坏死、慢性肝炎、卤烷致肝细胞中毒、缺血性肝炎时血清中GLDH的活性明显升高。GLDH可用于阻塞性黄疸和非阻塞性黄疸鉴别、高血清转氨酶的鉴别诊断、评价肝细胞损害的严重程度等。对于肝脏疾病的诊断,GLDH敏感性优于ALT、AST。

甘氨酰脯氨酸二肽氨基肽酶

用于检测人体血清中甘氨酰脯氨酸二肽氨基肽酶(GPDA)的活性。

原发性肝癌病人血清中GPDA活性显著高于正常人和慢性肝炎、肝硬化、胆石症、阻塞性黄疸的患者,但是重症肝炎、酒精性肝炎患者血清中GPDA活性的升高程度大于肝癌病人。肝血管瘤患者血清中GPDA的活性正常。胃癌患者血清中GPDA的活性降低,其它良性胃肠道疾病时,血清中GPDA的活性也略有降低此。

天门冬氨酸氨基转移酶线粒体同工酶

用于检测人体血清中天门冬氨酸氨基转移酶线粒体同工酶(mAST)的活性。

天冬氨酸氨基转移酶(AST)广泛存在于多种器官中,按含量多少顺序为心脏、肝、骨骼肌和肾等。AST有两种受不同基因控制的同工酶分别存在于细胞质(cAST)和线粒体(mAST)中。mAST是天门冬氨酸氨基转移酶位于线粒体的同工酶,在严重组织损伤时线粒体酶释放较多,可导致血清mAST增高。血清mAST增高可反映亚细胞结构损伤的严重性,是诊断肝细胞损害和心肌梗死的敏感指标。在肝脏疾病中,mAST测定可用于评价肝细胞坏死和判定愈后,诊断患者有无活动性酒精性肝病;在心脏疾病中可判定心肌梗死的治疗效果和愈后情况。

心肌酶谱检查项目临床意义9项)

增高主要见于急性心肌梗塞,病毒性肝炎,肝硬化等;降低无临床意义

乳酸脱氢酶增高:见于心肌梗塞、肝炎、肺梗塞、某些恶性肿瘤、白血病等。其诊断具有重要的临床意义。乳酸脱氢酶的测定常用于心肌梗死、肺梗死、病毒性肝炎、肝硬化、肾疾病、恶性肿瘤的辅助诊断。

α- 羟丁酸脱氢酶增高主要见于心肌梗塞、活动性风湿性心肌炎、急性病毒性心肌炎、溶血性贫血。α-羟丁酸脱氢酶的测定常用于心肌梗死辅助诊断。

活性增高常见于各种类型的进行性肌萎缩,假肥大性肌营养障碍等。

肌酸激酶增高:主要用于心肌梗塞诊断及各种类型进行性肌萎缩、骨胳肌损伤、肌营养不良、急性心肌炎、脑血管意外、脑膜炎、甲状腺功能减退、剧烈运动、使用氯丙嗪、青霉素等药物。肌酸激酶活性的测定对以上疾病的诊断具有重要的价值。

主要见于急性心肌梗塞。

CK-MB是诊断及监测AMI病人病情敏感而特异的指标。肌酸激酶同工酶常用于心肌梗塞的诊断。

升高: 见于急性心肌梗死早期、急性肌损伤、肌营养不良、肌萎缩、多发性肌炎、急性或慢性肾功能衰竭、严重充血性心力衰竭和长期休克等。

MB是人体横纹肌组织所特有的一种蛋白质,在正常人的血清中含量甚微。当心肌和骨骼肌受损时可以从受损的细胞中释放出来。由于MB分子量小,所以容易较早的释放入血循环,AMI患者在发病后2~3小时MB即开始升高,在7-10小时后达到峰值,约24小时恢复至参考值范围,所以MB成为近年来测定AMI的一项重要指标。血清MB的测定有助于心梗、肌肉营养不良、心肌炎及心肌病的诊断,有助于疾病治疗和预后的评估。试剂采用乳胶凝集的方法来测定血清中的MB含量,具有高度的准确性和重复性。

升高:见于结节病、肺结核、肝硬化、急性肝炎、慢性肝炎、甲亢、糖尿病、虹膜炎、免疫母细胞肉瘤等疾病;

降低:见于哮喘、急性心原性肺水肿、慢性阻塞性肺疾患、自发性气胸、肺纤维化、成人呼吸窘迫综合征等。

ACE可催化血管紧张素Ⅰ(十肽)水解成八肽的血管紧张素Ⅱ,使血管进一步收缩,血压升高。也可作用于肾上腺皮质,促进醛固酮的分泌。因此,ACE是肾素-血管紧张素-醛固酮的重要成分。ACE还催化具有降压作用的缓激肽水解而失去活性。ACE存在于多种细胞,如神经细胞和肾小管基底细胞,内皮细胞多见,它附着于内皮细胞表面可被分解释放入血循环。ACE活性升高是心肌梗塞的危险因素,DD基因型与高血清ACE浓度相关,易导致心梗和心肌病。用ACE抑制剂监测抗高血压药治疗时,检测ACE的浓度有利于抑制剂的用药量监控。血清ACE活性明显升高对未治疗的活动期结节病患者是重要的诊断依据。ACE活性明显增高时,又可以排除肉状瘤病,大部分可能是高雪氏病。其他如艾滋病、麻风病、糖尿病II型、卡氏肺孢子虫肺炎以及良性前列腺肿大都可能引起ACE水平升高。

升高:见于急性心肌梗塞、心肌损伤性疾病、恶性贫血、溶血性黄疸、颅脑损伤累及脑干、胚胎细胞瘤病及肌营养不良等疾病。

降低:见于肺部疾患如肺结核、慢性肾炎、多发性肾结石、肾功能不全等疾病。

LDH存在于人体各组织中,其中以心脏、肾脏、红细胞中含 LDH的活性最高。通过测定总LDH、LDH1 活性和分析LDH 与LDH1  活性的比率,对急性心肌梗塞的鉴别诊断会有帮助。LDH1/LDH的参考范围为 0.13-0.27。

用于检测人体血清中缺血修饰白蛋白(IMA)的含量。

缺血修饰白蛋白是在缺血时由于自由基等破坏了血清白蛋白的氨基酸序列,而导致与过渡金属的结合能力改变的白蛋白。缺血修饰白蛋白主要用于急性心肌缺血的辅助诊断、对于排除急性心肌梗塞、不稳定心绞痛等急性冠状动脉综合症(ACS)具有重要意义,是一种理想的急性心肌缺血的生化标志物。

用于检测人体血清或血浆中肌钙蛋白I(TnI)含量。

肌钙蛋白复合物由三个亚单位组成,TnT、TnI、TnC。TnI 是心肌细胞中的特有蛋白质。当心肌细胞受损时,TnI释放入血,在胸痛发生4-6小时后,血液中TnI含量超过正常上限,12-24小时达到高峰,可持续14天之久。因此,TnI目前已成为诊断心肌损伤的前提条件。由于TnI释放入血液中是心肌损伤的结果。临床上其它非AMI也可由TnI释放,如不稳定心绞痛、充血性心衰,冠状动脉分流术造成的缺血性损伤。

肾功检查项目临床意义10项)



浓度升高可引起三类氮质血症:肾前性氮质血症,肾性氮质血症,肾后性氮质血症.浓度降低一般见于婴儿,孕妇等,无意义.

尿素氮增高可见下列三种情况:(1)肾性增高见于急性肾炎、慢性肾炎、中毒性肾炎、严重肾盂肾炎、肾结核、肾血管硬化症、先天性多囊肾和肾肿瘤等引起的肾功能障碍。尤其是对尿毒症的诊断有特殊价值,其增高程度与病情严重性成正比,如氮质血症期UREA超过9mmol/L,至尿毒症期UREA可超过20mmol/L,有助于病情的估计。(2)肾前性增高见于充血性心力衰竭、重度烧伤、休克、消化道大出血、脱水、严重感染、糖尿病酸中毒、肾上腺皮质功能减退、肝肾综合征等。(3)肾后性增高见于因尿路梗阻增加肾组织压力,使肾小球滤过压降低时,如前列腺肥大、肿瘤压迫所致的尿道梗阻或两侧输尿管结石等。减少:临床意义较小,偶见于急性肝萎缩、中毒性肝炎、类脂质肾病等。尿素浓度降低常见于:严重的肝坏死。


浓度升高多见于痛风,白血病等,肾功能受损也会增高,但不作为指标;降低见于剥脱性皮炎等.

尿酸增高:血尿酸测定对痛风诊断最有帮助,痛风患者血清中尿酸常增高。核酸代谢增加:如白血病、多发性骨髓瘤、真性红细胞增多症。肾脏疾病:急性或慢性肾炎时,血中尿酸显著增高,其增高程度较非蛋白氮、尿素氮、肌酐更显著,出现更早。由于肾外因素对尿酸的影响较大,故血尿酸升高程度往往与肾功能损害程度不平行。其他:氯仿中毒、四氯化碳中毒、铅中毒、子痫、妊娠反应、饮食中脂肪过多、肥胖、糖尿病等。尿酸减少:遗传性黄嘌呤尿症和剥脱性皮炎等。


肌酐浓度反应肾脏损害、尿路通畅性等肾功能,是一项比尿素尿酸更特异的肾功能指标,受饮食等因素的影响较少,与疾病严重性平行.

血浆肌酐浓度反映肾脏损害、肾小球滤过率、尿路通畅性等肾功能,是一项比尿素、尿酸更特异的肾功能指标。因为肌酐浓度受饮食、运动、激素、蛋白质分解代谢等因素的影响较少。肾脏代偿与储备能力强,只有肾功能明显受损才使肌酐浓度升高。肌酐增高:肾病初期肌酐值常不高,直至肾实质性损害,血肌酐值才升高。其值升高3~5倍提示有尿毒症的可能,升高10倍,常见于尿毒症。如果肌酐和尿素氮同时升高,提示肾严重损害,如果尿素氮升高而肌酐不高常为肾外因素所致。肌酐降低:肾衰晚期、肌萎缩、贫血、白血病、尿崩症等。肌酐含量的测定常用于肾功能的评价。


是预测糖尿病、高血压、心血管疾病血管损伤的敏感指标。

尿微量白蛋白是检测血管损伤的重要指标,是糖尿病、高血压、心血管疾病、肾病血管损伤的指标,对判断疾病发生、发展、预后有重要的参考价值。


升高:见于肾病综合症、肾小球滤过功能疾病、高血压病肾损害、肾移植术后功能损害、糖尿病肾病等疾病。

肾小球滤过率(GFR)是检测肾功能的最直接的指标,在肾病早期就出现GFR的降低。准确的肾小球滤过率的检测能够反映肾病的进程,指导用药从而避免肾脏功能的损伤。目前,常用肌酐清除率的方法来评价肾小球滤过率。血清中的肌酐中度特异,但是灵敏度低,只有当GFR下降到50%或更低时才有显著升高。并且肌酐的升高受肌肉重量,体表面积,饮食摄入影响很大,也就是说和年龄,性别,身高都会影响肌酐量。胱抑素C(Cys-C)是一种小分子量的胱氨酸蛋白酶抑制剂。所有的有核细胞都能稳定地产生Cys-C。Cys-C几乎完全被肾小球滤过,然后由肾小管重吸收,并且肾小管不分泌,也不通过肾小管排泄。Cys-C不受炎症反应、性别、肌肉以及年龄变化的影响。所以Cys-C是一个非常稳定的反映肾小球滤过率的指标。


升高:见于肾小球滤过功能受损或滤过负荷增加等。

降低:临床偶见于镰状细胞贫血性肾病,是由于近端肾小管重吸收增多。

尿中的BMG的浓度主要与肾小管的发育和功能有关。当肾小管重吸收功能障碍时,尿中的BMG浓度明显增加,称为肾小管性蛋白尿,主要见于以下疾病:肾盂肾炎、抗生素中毒性肾病、重金属中毒引起的肾小管损伤等。    


N-乙酰-β-D-氨基葡萄糖苷酶

升高:见于急慢性肾炎,休克引起的肾功能衰竭、肾病综合症、中毒性肾病等。

NAG是一种溶酶体酶,又称尿酶,广泛分布于人体各组织中。在前列腺和肾近端小管中含量最高。正常情况下,血清中NAG不能通过肾小球滤过从尿中排泄。尿中NAG的升高是肾脏疾病的早期表现,是肾小管损伤的敏感指标。肾移植患者,尿NAG测定可早期发现排斥反应,一般在临床指征前1-3 天即有尿NAG增高。目前把mALb和肾小管标记蛋白(NAG等)作为早期发现和监控糖尿病合并症的常规指标。另外,尿NAG的监测在多种肾实质疾患中有不同程度的升高,是肾脏损害的较敏感指标,增高见于急慢性肾炎,休克引起的肾功能衰竭、肾病综合症、中毒性肾病等。


用于检测人体血清或尿液中视黄醇结合蛋白(RBP)的含量。

RBP是血液中特异结合维生素A的结合蛋白,在维生素A的代谢中起重要作用,由肝脏合成,广泛分布于血液、脑脊液、尿液及其他体液中。测定RBP能早期发现肾小管的功能损害,并能灵敏反映肾近曲小管的损害程度,还可作为肝功能早期损害和监护治疗的指标。

血清RBP浓度降低常见于维生素A缺乏,患有肝、胆管疾患,此外,吸收不良综合症、阻塞性黄疸、肝硬化及重症感染、甲亢等时,血清RBP浓度可降低;血清RBP浓度升高常见于引起肾小球滤过率降低的肾脏疾病,除此之外,引起血清RBP浓度升高的疾病较少见。


用于检测人体尿液或脑脊液中总蛋白(UTP)的含量。

检测尿液和脑脊液的总蛋白分别对于诊断肾脏疾病和中枢神经系统紊乱有极其重要的临床意义。尿液蛋白的明显升高主要见于紧张或剧烈的运动、发烧或体温降低、肾病、糖尿病肾病和尿路感染等。脑脊液总蛋白的检测对于诊断脑膜炎、中枢神经系统肿瘤和脑溢血等有较大的帮助。


用于检测人体血清或尿液中α1-微球蛋白(α1-MG)的含量。

α1-微球蛋白是由肝脏产生的相对分子量较小的一种糖蛋白,在血液中以游离型和结合型两种形式存在。游离型α1-MG可以被肾小球滤过,然后大部分被肾小管重吸收降解。α1-MG的产生量恒定,尿中的排出量较少受肾外因素的影响。临床上检测α1-MG主要是用于肾功能评价及用作非特异性肿瘤标志物。尿液中含量增高而血清中含量正常是由于肾小管重吸收减少,见于肾小管疾病及慢性肾盂肾炎,而膀胱正常;血清中含量增高而尿液含量正常是由于肾小球病变,滤过率降低,见于急性或慢性肾炎;血清中含量和尿液中含量均升高是由于生成增多并超过肾小管重吸收能力,见于恶性肿瘤等疾病。α1-MG的稳定性和诊断特异性优于β2-微球蛋白,是肾功能损伤早期诊断的特异性指标。当肝功能重度损伤时,血清α1-MG含量降低;患肝癌时,血清α1-MG含量也会升高,因此α1-MG还可用作肝功能疾病的辅助诊断。


血气电解质检查项目临床意义10项)

氯离子降低在临床上较为多见,如失盐性肾炎、代谢性酸中毒等,血清氯增高见于脱水,囊性纤维化(又称先天性粘液稠厚症)。

氯增高常见于脱水,持续腹泻及碳酸氢盐丢失引起的代谢性酸中毒、肾功能不全、肾上腺功能下降或升高导致的内分泌失调等。氯降低常见于酸中毒、失盐性肾炎和过度出汗等。

浓度升高见于甲状旁腺机能亢进,阿狄森氏病;低血钙症:佝偻病,慢性肾炎等。

钙增高常见于甲状旁腺机能亢进、代谢性酸中毒、肿瘤、维生素A过多症等。钙降低常见于原发性和继发性的甲状旁腺机能减退、慢性肾衰维生素A缺乏症、代谢性碱中毒等。

增高见于肾功能不全,肾衰竭等磷酸盐排泄障碍;减低见于肾进曲小管变性等。

无机磷增高常见于慢性肾炎、甲状腺机能减退、多发性骨髓瘤、骨折愈合期等。无机磷降低常见于甲状腺机能亢进、佝偻病等。

镁浓度降低主要与消化道失镁,尿路失镁及摄取不足有关,常见于肝硬化,胰腺炎等;低镁则出现抽搐,强直,反射亢进等症状.脑脊液镁降低见于病毒性脑炎及局部缺铁性脑病。

镁离子增高常见于急性或慢性肾功能衰竭、甲状腺机能减退、多发性骨髓瘤等。镁离子降低常见于慢性腹泻、慢性肾炎、甲状腺机能亢进、酸中毒等。

可刺激呼吸中枢,当分压较大时, 有抑制呼吸中枢形成呼吸衰竭的危险。

二氧化碳增高:代谢性碱中毒;呼吸性酸中毒:如肺心病、呼吸中枢抑制、呼吸肌麻痹、肺气肿、支气管扩张和气胸等。二氧化碳减低:代谢性酸中毒:如严重腹泻、肾功能衰竭、糖尿病酮症、感染性休克、服酸性药物过多等。慢性呼吸性碱中毒,由于长时间呼吸增速,肺泡中PC02减低,肾小管代偿性HC03-排出增多。

升高:见于脑外伤、脑血管意外、垂体瘤、严重脱水,肾上腺皮质机能亢进等。

降低:见于呕吐、腹泻等胃肠道失钠、肾炎、肾病综合症、肾上腺皮质功能不全、尿崩症、糖尿病等尿路失钠、烧伤、大汗时皮肤失钠。

血清钠降低见于呕吐、腹泻等胃肠道失钠;肾炎、肾病综合症、肾上腺皮质功能不全、尿崩症、糖尿病等尿路失钠;烧伤、大汗时皮肤失钠。高血钠见于脑外伤、脑血管意外,垂体瘤、严重脱水,肾上腺皮质机能亢进等。

(2)血钾降低,见于:①如严重感染、慢性消耗疾病等长期食欲不振以及手术后禁食时间过长而又未注意补钾者;②肾上腺皮质功能亢进或长期大量使用肾上腺皮质激素;许多利尿剂的长期使用;急性肾功能衰竭由尿闭期转入多尿期③碱中毒;糖尿病患者使用胰岛素治疗时或以胰岛素加葡萄糖作为能量合剂使用④大量输入无钾液体致血浆稀释,使血清钾降低。  

升高:见于红细胞破坏增多、红细胞再生或成熟障碍性疾病、铁的利用率降低、贮存铁释放增加、铁的吸收率增加。

降低:见于机体摄取不足、机体失铁增加、泌尿生殖道和胃肠道的出血、体内铁的需要增加又未及时补充、体内贮存铁释放减少、某些药物治疗等。

在临床上,血清铁降低见于缺铁饮食、吸收不良、慢性失血、妊娠,或婴幼儿生长发育需铁量增高所致缺铁性贫血;慢性感染、肝硬化、尿毒症、肾病综合症、恶性肿瘤。血清铁升高见于铁剂治疗过量、溶血性贫血、再生障碍性贫血、巨幼细胞贫血、血红蛋白生成障碍性贫血(地中海贫血);急性肝炎、肝细胞坏死等。

升高:见于甲状腺功能亢进、垂体及肾上腺皮质功能减退、真性红细胞增多症、嗜酸粒细胞增多症,高血压患者。

降低:见于急性心肌梗死、急性组织烧伤、肝脏病、肾脏病、恶性肿瘤、糖尿病等。

锌是重要的营养素,青少年、婴儿、孕妇、癌症及烧伤病人是缺锌的高发人群。血清锌降低见于急性心肌梗死、急性组织烧伤、肝脏病、肾脏病、恶性肿瘤、糖尿病等。血清锌升高见于甲状腺功能亢进、垂体及肾上腺皮质功能减退、真性红细胞增多症、嗜酸粒细胞增多症,高血压患者。

(1) 胆汁郁滞,不论肝内或肝外胆汁郁滞都可有血清铜和血浆铜蓝白增高,因为肝内铜随胆汁排入肠道,当胆汁郁滞反流必有血清铜的升高。利用铁/铜的比值可鉴别黄疸,若血清Fe++/Ca++比值>l多见于病毒性肝炎,若Fe++/Ca++比值<l,应考虑为阻塞性黄疸。

(2) 恶性肿瘤,如肝癌、淋巴肉芽肿、恶性淋巴瘤等血清铜亦可增高;铜蓝蛋白亦增高。

(3) 某些血液病,如再生障碍性贫血、缺铁性贫血、白血病等亦有血清铜含量增加。

(4) 其他,如风湿病、感染、心肌梗塞、糖尿病、充血性心力衰竭等亦可有血清铜增加。

(1) 肝豆状核变性,因大量铜沉着在脑及肝组织内,血清铜含量降低,铜蓝蛋白明显降低。

(2) 营养不良、低蛋白血征、肾病综合征,可出现血清铜降低。

铜是广泛分布于体内的微量元素。血清中的铜主要以铜蓝蛋白-铜及清蛋白-Cu2+形式存在。铜是含铜酶的重要成份,对细胞、呼吸、神经和内分泌的功能有重要作用。

风湿类检查项目临床意义1项)

对类风湿性关节炎的诊断很有意义。

类风湿因子是一种自身抗体,包括所有类型的免疫球蛋白,它们是抗变性或聚合lgG分子FC片段的抗体,检测RF为鉴别诊断风湿疾病提供了重要的信息。

特种蛋白类检查项目临床意义16项)

升高:见于见于风湿热病、溶血性链球菌感染、急性肾小球肾炎等疾病,也见于少数肝炎、肾病综合征、结核病、结缔组织疾病、亚急性感染性心内膜炎以及有些过敏性紫癜、高胆固醇血症、巨球蛋白血症、多发性骨髓瘤等疾病。

机体被链球菌感染后可产生抗链球菌溶血素O抗体,此抗体是链球菌的外毒素。检测ASO有助于诊断由溶血性链球菌引起的疾病如类风湿、急性肾小球疾病、猩红热和扁桃体炎等疾病。A组链球菌感染后1周,ASO即开始升高,4-6周可达高峰,并能持续数月,当感染减退时,ASO值下降并在6个月内回到正常值,如果ASO滴度不下降,提示可能存在复发性感染或慢性感染。多次测定,抗体效价逐渐升高对诊断有重要意义,抗体效价逐渐下降,说明病情缓解。风湿热、急性肾小球肾炎、结节性红斑、猩红热、急性扁桃体炎等ASO明显升高。少数肝炎、结缔组织病、结核病及多发性骨髓瘤病患者亦可使ASO增高。除了急性阶段外,类风湿关节炎患者的血清中通常检测不到ASO值的升高。在肾病综合征和抗体缺乏综合征患者的血清中仅有极低含量的ASO。

升高:见于机体发炎,尤其以肺炎球菌感染、组织感染等多种疾病升高明显。

CRP是一种急性时相反应蛋白。在机体发炎时,患者血清中的CRP升高。尤其以肺炎球菌感染、组织感染等多种疾病升高明显。在1930年,CRP由Tillet在急性感染患者血清中发现,现在CRP已成为检测感染和发炎的敏感指标。并对手术后患者的监视和对婴儿感染的早期诊断有一定的帮助。研究还发现,正常值范围内的高水平CRP与心肌疾病的死亡率有关,是心血管疾病的一个独立危险因素。

升高:见于见于皮质醇、帕金森氏病、饮酒和口服避孕药等。

降低:见于蛋白质营养不良(PCM)、肝功能损伤、肝硬化、恶性肿瘤、外伤及感染等。

前白蛋白(甲状腺转运蛋白)是一类富含色氨酸55KDa 的蛋白,由肝细胞合成,主要作用是结合与转运。前白蛋白是反映体内蛋白状态的优良指标。前白蛋白降低见于蛋白质营养不良(PCM)、肝功能损伤、肝硬化、外伤及感染。皮质醇、帕金森氏病、饮酒和口服避孕药可导致前白蛋白升高。

升高:见于铁缺乏症、雌性激素的控制以及类脂肪的肾病。

降低:见于遗传性的缺陷、急性炎症、肿瘤、血色素缺失、急性的疟疾等。

TRF在急性时相反应中往往降低。因此在炎症、恶性病变时常随着白蛋白、前白蛋白同时下降。在慢性肝疾病及营养不良时亦下降,因此可以作为营养状态的一项指标。TRF连接上铁离子之后可以防止铁中毒以及通过肾的流失。其水平的升高常见于铁缺乏症、怀孕、雌性激素的控制以及类脂肪的肾病。其水平的降低常见于遗传性的缺陷、睾丸激素的控制、感染、急性炎症、某些类型的肾炎、肿瘤、血色素缺失、急性的疟疾以及营养不良。

葡萄糖-6-磷酸脱氢酶

参考值:>1300U/L(采用EDTA抗凝血)。

降低:见于药物性溶血、蚕豆病、新生儿病理性黄疸等。

G6PD是一种存在於人体红血球内,协助葡萄糖进行新陈代谢之酵素,代谢过程中的NADPH能保护红血球免受氧化物质的威胁。G6PD缺乏时,若身体接触到具氧化性的特定物质或服用了这类药物,红血球就容易被破坏而发生急性溶血反应。葡萄糖6磷酸脱氢酶缺乏症是由基因突变引起的遗传性疾病,由于该基因为X连锁不完全显性遗传,男性发病率高于女性,常见于我国长江流域及其以南各省。G6PD缺乏是诱发伯氨奎啉类药物性溶血、蚕豆病、新生儿病理性黄疸、某些感染性贫血的主要原因。对高发病区人群进行该项指标的筛查,可以有效预防溶血症的发生。进行婚前体检和产前检查对优生优育和有效预防新生儿黄疸有重要意义。

升高:见于体内各种原因引起的血栓性疾病。

D-二聚体(D-dimer,DD)是交联纤维蛋白的降解产物,纤维蛋白(原)降解产物和D-二聚体最大的区别之一是,纤维蛋白(原)降解产物可以以纤维蛋白原为底物,而D-二聚体是以纤维蛋白为作用底物,因此,在原发性纤溶时D-二聚体水平并不增高,而FDP水平增高。DD反映了凝血和纤溶系统的激活。D-二聚体的检测对于快速血栓性疾病及时诊断以及溶栓治疗的疗效监测具有重要意义。D-二聚体水平的升高与体内各种原因引起的血栓性疾病相关。

升高:见于急性炎症、传染病早期、肝癌、组织损伤等。

降低:见于免疫复合物引起的肾炎、系统性红斑狼疮、反复性感染、皮疹、肝炎、肝硬化、关节疼痛等;还可见于自身免疫性疾病、新生儿呼吸窘迫综合症、菌血症、组织损害和慢性肝炎等。

C3是一种急性时相蛋白,炎症反映时其值升高。低值见于肾小球肾炎和免疫复合物疾病。补体主要是在肝脏中被合成的,其中补体C3和C4是最经常被检测的。C3是补体系统中含量最多、最重要的一个组分,它是补体两条主要激活系统的中心环节。C3含量减低主要见于免疫复合物引起的肾炎、系统性红斑狼疮、反复性感染、皮疹、肝炎、肝硬化、关节疼痛等。狼疮性肾炎患者血清C3含量减少,病情缓解后可恢复正常,故C3的测定不仅有助于诊断,还可以观察疗效和监测预后。

升高:见于各种传染病、急性炎症、组织损伤、多发性骨髓瘤等。

降低:见于免疫复合物引起肾炎、系统性红斑狼疮、病毒性感染、狼疮性症候群、肝硬化、肝炎等。

C4比C3敏感,炎症时C4增高,低值表明补体激活发生抗原-抗体反应。C4是补体经典激活途径的一个重要组分,它的测定有助于SLE等自身免疫性疾病诊断,治疗。C4含量降低见于自身免疫性慢性活动性肝炎、SLE、多发性硬化症、类风湿性关节炎、LgA肾病。在SLE,C4的降低常早于其它的补体成份,且缓解时较其它成份回升迟。狼疮性肾炎较非狼疮性肾炎C4值显著低下。C4含量增高常见于风湿热的急性期、结节性动脉周围炎、皮肌炎、心肌梗塞、Rditer’s综合症和各种类型的多关节炎。

升高:见于严重感染和自身免疫疾病,特别是肝的炎症过程会使血清IgA水平升高。多种骨髓瘤能产生大量单克隆或多克隆的IgA。

下降:见于原发性及继发性免疫缺陷综合症,蛋白质从肠内流失及通过被烫伤的皮肤而流失也可引起IgA浓度降低。

IgA在可溶性免疫球蛋白中占15%。约有90%的血清IgA以单体形式存在,其余以二聚体和多聚体形式存在。大多数IgA不在血清中,而是以另一种重要形式  分泌性IgA存在于泪液、唾液、消化液和呼吸道分泌液中。IgA浓度的下降发生在原发性及继发性免疫缺陷综合症中,蛋白质从肠内流失及通过被烫伤的皮肤而流失也可引起IgA浓度降低。IgA水平的升高与严重感染和自身免疫疾病有关,特别是肝的炎症过程会使血清IgA水平升高。多种骨髓瘤能产生大量单克隆或多克隆的IgA。

升高:见于严重感染和自身免疫性疾病,如红斑狼疮,慢性肝癌,传染性疾病和胆囊纤维症等。

降低:见于原发性及继发性免疫缺陷综合症。

IgG是由血浆细胞产生的一种数量最多的免疫球蛋白,占总免疫球蛋白的75%。它的主要功能是与抗原结合,进一步触发抗原的分解。IgG浓度的下降发生在原发性及继发性免疫缺陷综合症。降低也可能由于蛋白质从肠内流失或通过被烫伤的皮肤而流失所引起的。严重感染和自身免疫性疾病可引起IgG浓度上升,如红斑狼疮,慢性肝癌,传染性疾病和胆囊纤维症等疾病。

升高:严重感染和自身免疫性疾病,多种骨髓瘤、巨球蛋白血症、细菌和寄生虫传染病、肝脏疾病、类风湿性关节炎及胆囊纤维症。

降低:见于原发性及继发性免疫缺陷综合症,蛋白质流失性肠道疾病及烧伤。

IgM是一种最早期的免疫球蛋白,是初次接触抗原后首先合成的免疫球蛋白。在成年人的血清中,占总免疫球蛋白的5%。IgM浓度下降发生在原发性及继发性免疫缺陷综合症中。IgM值的减少常见于蛋白质流失性肠道疾病及烧伤。严重感染和自身免疫性疾病可导致IgM浓度上升。多种骨髓瘤、巨球蛋白血症、细菌和寄生虫传染病、肝脏疾病、类风湿性关节炎及胆囊纤维症可使IgM浓度增加。

用于检测人体血清中B因子(BF)的活性。

B因子是仅有一条多肽链的富含甘氨酸且对热不稳定的一种β2球蛋白,又称C3激活剂前体,是补体旁路活化途径中的一个重要成分。B因子以及其它补体成分的代谢率很高。正常人血浆内的补体每天约有1/2更新。合成率与血浆中补体水平明显相关,血浆补体值反映了合成和分解之间的平衡。系统性红斑狼疮、肾病综合征、急或慢性肾炎、混合结缔组织病、急或慢性肝炎、肝硬化、荨麻疹、风湿性心脏病等会导致B因子被消耗而降低。各种肿瘤疾病、反复呼吸道感染的急性阶段,B因子明显升高。

用于检测人体血清铜蓝蛋白(CP)的含量。

CP是具有酶活性的含铜的α2-糖蛋白。分子为单一多肽链,含许多糖侧链,每分子含6个铜原子,因其能催化亚铁离子氧化成高铁离子,又称为亚铁氧化酶。它是生物源胺类氧化酶及铜的载体。从食物中摄入的铜大部分在肝内与CP结合,30%~80%经由胆汁排出。血清中的铜95%与CP结合,仅5%与白蛋白呈疏松结合,后者可与铜试剂反应。每日摄入铜自尿中排出不到1%。常染色体隐性遗传的肝豆状核变性患者,由于体内铜代谢障碍所致,血清CP含量降低。CP是一种急性反应期蛋白,感染炎症时增高。在炎症或感染受控制后,此种增高可导致一过性的低水平。血清中CP含量降低见于肾病综合症,严重肝病;增高亦见于半数以上的肝癌、胆石症、肿瘤引起的胆道阻塞、妊娠后3个月及口服避孕药者。

用于检测血清中的铁蛋白的含量。

在临床上,血液Fet含量测定是检查人体内铁储存的含量的一个很好的指标,可以指示人体内铁离子的缺乏状态和使用铁治疗的状况。碱性铁蛋白与铁的长期铁储藏量有关,存在于肝脏、脾脏、骨髓中;酸性的铁蛋白主要存在于心肌和胎盘,与恶性肿瘤和心肌疾病相关。铁蛋白测定以300ng/mL为正常上限,某些肿瘤常常升高且大于此值,常见于:急性白血病、何杰金氏病、肺癌、结肠癌、肝癌和前列腺癌。检测铁蛋白对肝脏转移性肿瘤有诊断价值,76%的肝转移病人的铁蛋白含量高于300ng/mL,与AFP联合检测,尤其是AFP正常的肝癌患者,可提高诊断率。铁蛋白升高的原因可能是由于细胞坏死、红细胞生成受阻断或肿瘤组织中合成增多所致。

用于检测人体血清中免疫球蛋白E(IgE)的含量。

是由两条轻链和两条重链组成的对热极不稳定的一种分泌型免疫球蛋白,它是由鼻咽、扁桃体、支气管、胃肠粘膜等处固有层的浆细胞产生,是介导I型变态反应的主要抗体,最明显的基本生物学特性是亲同种细胞性。在5种免疫球蛋白中,IgE半衰期最短,并且具有最高的分解率和最低的合成率,因此血清中含量最低,通常男性略高于女性,过敏体质或超敏患者,血清中IgE明显高于正常人,外源性哮喘患者较正常人高数倍,故IgE在血清中含量过高,常提示遗传过敏体质,或I型变态反应的存在。血清中IgE含量的升高分为单纯性升高和多种型升高。单纯性升高,一般是由于IgE型多发性骨髓瘤所致。多种型升高是由于特异反应性疾病(特异反应性支气管哮喘、过敏性鼻炎、特异反应性皮炎、过敏性支气管肺曲霉菌病)、寄生虫感染、T细胞功能不全症(高IgE综合征、湿疹血小板减少多次感染综合征、胸腺发育不全综合征、选择性IgA缺乏症、重症复合免疫功能缺陷)、软组织嗜酸性肉芽肿(木村病),Hodgkig病(霍奇金病),急性肝炎,肝硬化,原发性肝癌,风湿性关节炎,川崎病,小儿腹泻等疾病所致。血清中IgE含量减少一般由多发性骨髓瘤(IgE型除外、低或无γ-球蛋白症(原发性或继发性),共济失调-毛细血管扩张症,重症复合性免疫功能缺陷、慢性副鼻窦肿瘤,类肉瘤样病,慢性淋巴细胞性白血病、矽肺,石棉肺引起的。

用于检测人体血清中不饱和铁结合力(UIBC)的含量。

UIBC 是血清中没有与铁结合的转铁蛋白结合铁的能力,与血清铁之和称为总铁结合力。血清总铁结合力增高:转铁蛋白合成增加,如缺铁性贫血;转铁蛋白释放增加,如肝细胞坏死。血清总铁结合力降低:转铁蛋白丢失,如肾病、尿毒症等;转铁蛋白合成不足,如遗传性运铁蛋白缺乏症。

适配体技术及其在医学检验研究中的作用_兰小鹏,医学检验研究生,适配体,适配体筛选的那些事,医学检验招聘,艾迪康医学检验中心,医学检验技术,医学检验,医学检验技术专业,医学检验专业,医学检验论文

0

我要回帖

更多关于 拉姆什么水平 的文章

 

随机推荐