酶能加速化学反应的进行是由于哪一种效应

人体和体内含有5000种酶。它们或是溶解于中,或是与各种结合在一起,或是位于细胞内其他结构的特定位置上(是细胞的一种产物),只有在被需要时才被激活,这些酶统称胞内酶;另外,还有一些在细胞内合成后再分泌至细胞外的酶──胞外酶。酶催化化学反应的能力叫酶活力(或称酶活性)。酶活力可受多种因素的调节控制,从而使能适应外界条件的变化,维持生命活动。没有酶的参与,新陈代谢几乎不能完成,生命活动就根本无法维持。

所有的酶都含有C、H、O、N四种元素。

酶(又称酵素)是一类生物催化剂,。生物体内含有数千种酶,它们支配着生物的新陈代谢、营养和能量转换等许多催化过程,与生命过程关系密切的反应大多是酶催化反应。但是酶不一定只在细胞内起催化作用。

酶催化作用实质:降低化学反应活化能

1.相同点:1)改变化学反应速率,本身几乎不被消耗;2)只催化已存在的化学反应;3)加快化学反应速率,缩短达到平衡时间,但不改变;4)降低活化能,使化学反应速率加快。5)都会出现中毒现象。

2.不同点:即酶的特性,包括高效性,专一性,温和性(需要一定的pH和温度)等。

生物体由细胞构成,每个细胞由于酶的存在才表现出种种生命活动,体内的新陈代谢才能进行。酶是人体内新陈代谢的催化剂,只有酶存在,人体内才能进行各项生化反应。人体内酶越多,越完整,其生命就越健康。当人体内没有了活性酶,生命也就结束。人类的疾病,大多数均与酶缺乏或合成障碍有关。

1.高效性:酶的催化效率比无机催化剂更高,

2.专一性:一种酶只能催化一种或一类底物,如只能催化蛋白质水解成多肽;因此在食用酵素当今在功能上,主要有四种:高浓缩SOD酵素如,复方天然酵素主要用于乳腺瘤、子宫肌瘤、卵巢等肿瘤方面;长生酵素直接补脾补肾补,全面调理;酵素专门转化脂肪减肥;肠毒清酵素则专门清理肠的。

3.多样性:酶的种类很多,大约有5000多种,其中可以通过食用补充的酵素达2000多种;形态上主要有三种:专业级酵素为酵素胶囊,其次为酵素粉,而液体酵素含量低、低、易腐败而安全性较差一些,食用风险较高。

4.温和性:是指酶所催化的化学反应一般是在较温和的条件下进行的,因此,纯正酵素是中性的,温和的,不存在副作用,或“好转反应”。对于有刺激性而必然存的“好转反应”,除了本身腐败以外,也有可能有药品的添加。

5.活性可调节性:包括和激活剂调节、反馈抑制调节、共价修饰调节和变构调节等。

6.易变性:大多数酶是蛋白质,

7.有些酶的催化性与辅助因子有关。

一般来说,动物体内的酶最适温度在35到40℃之间,植物体内的酶最适温度在40-50℃之间;细菌和真菌体内的酶最适温度差别较大,有的酶最适温度可高达70℃。动物体内的酶最适PH大多在6.5-8.0之间,但也有例外,如的最适PH为1.8,植物体内的酶最适PH大多在4.5-6.5之间。

酶的这些性质使细胞内错综复杂的物质代谢过程能有条不紊地进行,使物质代谢与正常的生理机能互相适应。若因遗传缺陷造成某个酶缺损,或其它原因造成酶的活性减弱,均可导致该酶催化的反应异常,使物质代谢紊乱,甚至发生疾病,因此酶与医学的关系十分密切。

所谓酶(Enzyme),在希腊语里,就是存在于酵母(zyme)中的意思。也就是,在酵母中各种各样进行着生命活动的物质被发现,然后被这样命名。此时,“酵母”始终是活着的生命体=微生物、“酶”是活着的物质 = 制造出生命活动的不可思议的物质(按影象来说叫存活物质可能更好)。

但是酶不等于酵母:只可以说酵母是自然界所有重单位体积内含酶种类及酶最丰富的!尤其是啤酒酵母!

酵母是单细胞微生物,内含有许多酶,酵母具备细胞组织,而酶则是蛋白质,通常一个里有数千种蛋白质,所以说酵母含有酶,但酶不等于酵母。

1783年,意大利科学家斯帕兰扎尼(L.Spallanzani,1729—1799)设计了一个巧妙的实验:将肉块放入小巧的金属笼中,然后让鹰吞下去。过一段时间他将小笼取出,发现肉块消失了。于是,他推断中一定含有消化肉块的物质。但是什么,他不清楚。

1836年,德国生物研究所科学家(T.Schwann,1810—1882)从胃液中提取出了消化蛋白质的物质。解开消化之谜。马普生物研究所从此一直致力于酵素的深度研究与提取技术,并成为全球酵素权威机构。

1926年,美国科学家萨姆纳(J.B.Sumner,1887—1955)从种子中提取出的结晶,并通过化学实验证实脲酶是一种蛋白质。

20世纪30年代,科学家们相继提取出多种酶的蛋白质结晶,并指出酶是一类具有作用的蛋白质。

20世纪80年代,美国科学家切赫(T.R.Cech,1947—)和奥尔特曼(S.Altman,1939—)发现少数RNA也具有生物催化作用。

也有根据上述两项原则综合命名或加上酶的其它特点,如、碱性磷酸酶等等。

习惯命名较简单,习用较久,但缺乏系统性又不甚合理,以致造成某些酶的名称混乱。如:和肌,从字面看,很似来源不同而作用相似的两种酶,实际上它们的作用方式截然不同。又比如:铜硫解酶和乙酰A转酶实际上是同一种酶,但名称却完全不同。

鉴于上述情况和新发现的酶不断增加,为适应发展的新情况,国际生化协会酶委员会推荐了一套系统的酶命名方案和分类方法,决定每一种酶应有系统名称和习惯名称。同时每一种酶有一个固定编号。

酶的系统命名是以酶所催化的整体反应为基础的。例如一种编号为“3.4.21.4”的,第一个数字“3”表示水解酶;第二个数字“4”表示它是水解;第三个数字“21”表示它是蛋白酶,活性位上有一重要的丝氨酸残基;第四个数字“4”表示它是这一类型中被指认的第四个酶。规定,每种酶的名称应明确写出底物名称及其催化性质。若酶反应中有两种底物起反应,则这两种底物均需列出,当中用“:”分隔开。

例如:谷丙(习惯名称)写成系统名时,应将它的两个底物“L-”“α-酮戊二酸”同时列出,它所催化的反应性质为转氨基,也需指明,故其名称为“L-丙氨酸:α-酮戊二酸转氨酶”。

由于系统命名一般都很长,使用时不方便,因此叙述时可采用习惯名。

根据酶所催化的反应性质的不同,

(oxidoreductase)促进底物进行氧化还原反应的酶类,以SOD酵素为代表,包括转移电子、氢的反应和分子氧参加的反应。常见的例子有脱氢酶、、还原酶、过氧化物酶等,其中,SOD酵素越浓,抗氧化抗衰老能力越强。

(transferases)催化底物之间进行某些基团(如乙酰基、甲基、氨基、磷酸基等)的转移或交换的酶类。例如,甲基转移酶、氨基转移酶、乙酰转移酶、转硫酶、激酶和多聚酶等。

(hydrolases )催化底物发生水解反应的酶类。例如,、蛋白酶、、磷酸酶、糖苷酶等。

(lyases)催化从底物(非水解)移去一个基团并留下双键的反应或其逆反应的酶类。例如,脱水酶、脱羧酶、、、柠檬酸合酶等。许多裂合酶催化逆反应,使两底物间形成新化学键并消除一个底物的双键。合酶便属于此类。

(isomerases)催化各种同分异构体、几何异构体或光学异构体之间相互转化的酶类。例如,异构酶、表构酶、酶等。

(ligase)催化两分子底物合成为一分子化合物,同时偶联有ATP的磷酸键断裂释能的酶类。例如,谷氨酰胺合成酶、DNA、氨基酸:tRNA连接酶以及依赖的羧化酶等。复合酵素对健康可起到综合性作用,较好的酵素复合种类多达上千种。

按照国际生化协会公布的酶的统一分类原则,在上述六大类基础上,在每一大类酶中又根据底物中被作用的基团或键的特点,分为若干亚类;为了更精确地表明底物或反应物的性质,每一个亚类再分为几个组(类);每个组中直接包含若干个酶。

例如:脱氢酶(EC1.1.1.27)催化下列反应:

酶之所以能够加速化学反应的进行,是因为它能降低反应的。因为任何一种酶,对于它所能催化的反应都有极强的选择性,这种选择性决定着每一个细胞在特定的时候发生特定的化学反应。酶分子是蛋白质,每种蛋白质都有特定的三维形状,而这种形状就决定了酶的选择性。酶所催化的反应中的反应物称为底物,酶只能识别一种或一类专一的底物并催化专一的化学反应,这种性质称为酶的底物专一性。

在内,酶发挥着非常广泛的功能。信号转导和细胞活动的调控都离不开酶, 特别是和磷酸酶的参与。酶也能产生运动,通过催化肌上ATP的水解产生肌肉收缩,并且能够作为细胞骨架的一部分参与运送胞内物质。一些位于细胞膜上的ATP酶作为离子泵参与主动运输。一些生物体中比较奇特的功能也有酶的参与,例如可以为萤火虫发光。病毒中也含有酶,或参与侵染细胞(如HIV整合酶和逆转录酶),或参与病毒颗粒从宿主细胞的释放(如流感病毒的神经氨酸酶)。

复合酵素的一个非常重要的功能是参与的工作。以富含为代表酵素为例,可以将进入消化道的大分子(淀粉和蛋白质)降解为小于15微米的小分子,以便于充分吸收。淀粉不能被肠道直接吸收,而酶可以将淀粉水解为或更进一步水解为葡萄糖等肠道可以吸收的小分子。不同的酶分解不同的食物底物。在草食性的消化系统中存在一些可以产生的细菌,纤维素酶可以分解植物中的纤维素,从而提供可被吸收的养料。

在代谢途径中,多个酶以特定的顺序发挥功能:前一个酶的产物是后一个酶的底物;每个酶后,产物被传递到另一个酶。有些情况下,不同的酶可以平行地催化同一个反应,从而允许进行更为复杂的调控:比如一个酶可以以较低的活性持续地催化该反应,而另一个酶在被诱导后可以较高的活性进行催化。酶的存在确定了整个代谢按正确的途径进行;而一旦没有酶的存在,代谢既不能按所需步骤进行,也无法以足够的速度完成合成以满足细胞的需要。实际上如果没有酶,代谢途径,如,无法独立进行。例如,葡萄糖可以直接与ATP反应使得其一个或多个被磷酸化;在没有酶的催化时,这个反应进行得非常缓慢以致可以忽略;而一旦加入己糖激酶,在6位上的碳原子的磷酸化反应获得极大加速,虽然其他碳原子的磷酸化反应也在缓慢进行,但在一段时间后检测可以发现,绝大多数产物为葡萄糖-6-磷酸。于是每个细胞就可以通过这样一套功能性酶来完成代谢途径的整个反应网络。

酶动力学是研究酶结合底物能力和催化反应速率的科学。研究者通过酶反应分析法(enzyme assay)来获得用于酶动力学分析的反应速率数据。

1902年,维克多·提出了酶动力学的定量理论; 随后该理论得到他人证实并扩展为米氏方程。 亨利最大贡献在于其首次提出酶催化反应由两步组成:首先,底物可逆地结合到酶上,形成酶-底物;然后,酶完成对对应化学反应的催化,并释放生成的产物。

酶初始反应速率(表示为“V”)与底物浓度(表示为“[S]”)的关系曲线。随着底物浓度不断提高,酶的反应速率也趋向于最大反应速率(表示为“Vmax”)。酶可以在一秒钟内催化数百万个反应。例如,酸5'-磷酸脱羧酶所催化的反应在无酶情况下,需要七千八百万年才能将一半的底物转化为产物;而同样的反应过程,如果加入这种脱羧酶,则需要的时间只有25毫秒。 酶催化速率依赖于反应条件和底物浓度。如果反应条件中存在能够将蛋白解链的因素,如高温、极端的pH和高的盐浓度,都会破坏酶的活性;而提高反应体系中的底物浓度则会增加酶的活性。在酶浓度固定的情况下,随着底物浓度的不断升高,酶催化的反应速率也不断加快并趋向于最大反应速率(Vmax)。出现这种现象的原因是,当反应体系中底物的浓度升高,越来越多自由状态下的酶分子结合底物形成酶-底物复合物;当所有酶分子的活性位点都被底物饱和结合,即所有酶分子形成酶-底物复合物时,催化的反应速率达到最大。当然,Vmax并不是酶唯一的动力学常数,要达到一定反应速率所需的底物浓度也是一个重要的动力学指标。这一动力学指标即米氏常数(Km),指的是达到Vmax值一半的反应速率所需的底物浓度。对于特定的底物,每一种酶都有其特征Km值,表示底物与酶之间的结合强度(Km值越低,结合越牢固,亲和力越高)。另一个重要的动力学指标是kcat(催化常数),定义为一个酶活性位点在一秒钟内催化底物的数量,用于表示酶催化特定底物的能力。

酶的催化效率可以用kcat/Km来衡量。这一表示式又被称为常数,其包含了催化反应中所有步骤的反应常数。由于特异性常数同时反映了酶对底物的亲和力和催化能力,因此可以用于比较不同酶对于特定底物的 催化效率或同一种酶对于不同底物的催化效率。特异性常数的理论最大值,又称为扩散极限,约为108至109 M?1s?1;此时,酶与底物的每一次碰撞都会导致底物被催化,因此产物的生成速率不再为反应速率所主导,而分子的扩散速率起到了决定性作用。酶的这种特性被称为“催化完美性”或“动力学完美性”。相关的酶的例子有磷酸丙糖异构酶、、、酶、酸酶、β-和超氧化物。

米氏方程是基于质量作用定律而确立的,而该定律则基于自由扩散和热动力学驱动的碰撞这些假定。然而,由于酶/底物/产物的高浓度和相分离或者一维/二维分子运动,许多生化或细胞进程明显偏离质量作用定律的假定。 在这些情况下,可以应用分形米氏方程。

存在一些酶,它们的催化产物动力学速率甚至高于分子扩散速率,这种现象无法用当今公认的理论来解释。有多种理论模型被提出来解释这类现象。其中,部分情况可以用酶对底物的附加效应来解释,即一些酶被认为可以通过双偶极电场来捕捉底物以及将底物以正确方位摆放到催化活性位点。另一种理论模型引入了基于量子理论的穿隧效应,即质子或电子可以穿过激活能垒(就如同穿过隧道一般),但关于穿隧效应还有较多争议。 有报道发现色胺中质子存在量子穿隧效应。 因此,有研究者相信在酶催化中也存在着穿隧效应,可以直接穿过反应能垒,而不是像传统理论模型的方式通过降低能垒达到催化效果。有相关的实验报道提出在一种醇的催化反应中存在穿隧效应,但穿隧效应是否在酶催化反应中普遍存在并未有定论。

与其他催化剂一样,酶并不改变反应的平衡常数,而是通过降低反应的来加快反应速率。通常情况下,反应在酶存在或不存在的两种条件下,其反应方向是相同的,只是前者的反应速度更快一些。但必须指出的是,在酶不存在的情况下,底物可以通过其他不受催化的“自由”反应生成不同的产物,原因是这些不同产物的形成速度更快。

酶可以连接两个或多个反应,因此可以用一个热力学上更容易发生的反应去“驱动”另一个热力学上不容易发生的反应。例如,细胞常常通过ATP被酶水解所产生的能量来驱动其他化学反应。

酶可以同等地催化正向反应和逆向反应,而并不改变反应自身的。例如,碳酸酐酶可以催化如下两个互逆反应,催化哪一种反应则是依赖于反应物浓度。

当然,如果反应平衡极大地趋向于某一方向,比如释放高能量的反应,而逆反应不可能有效的发生,则此时酶实际上只催化热力学上允许的方向,而不催化其逆反应。

酶活力单位的量度。1961年国际会议规定:1个酶活力单位是指在特定条件(25℃,其它为最适条件)下,在1min内能转化1μmol底物的酶量,或是转化底物中1μmol的有关基团的酶量。

比活(specific activity):每分钟每毫克酶蛋白在25℃下转化的底物的微摩尔数。比活是酶纯度的测量。

活化能(activation energy):将1mol反应底物中所有分子由转化为过度态所需要的能量。

活性部位(active site):酶中含有底物结合部位和参与催化底物转化为产物的氨基酸残基部分。活性部位通常位于蛋白质的结构域或亚基之间的或是蛋白质表面的凹陷部位,通常都是由在三维空间上靠得很紧的一些氨基酸残基组成。

初速度(initial velocity):酶促反应最初阶段底物转化为产物的速度,这一阶段产物的浓度非常低,其逆反应可以忽略不计。

米氏常数(Michaelis constant):对于一个给定的反应,使酶促反应的起始速度(υ0)达到最大反应速度(υmax)一半时的底物浓度。

催化常数(catalytic number)(Kcat):也称为转换数。是一个动力学常数,是在底物处于饱和状态下一个酶(或一个酶活性部位)催化一个反应有多快的测量。

催化常数等于最大反应速度除以总的酶浓度(υmax/[E]total)。或是每摩酶活性部位每秒钟转化为产物的底物的量(摩[尔])。

双倒数作图(double-reciprocal plot):那称为Lineweaver_Burk作图。一个酶促反应的速度的倒数(1/V)对底物度的倒数(1/LSF)的作图。x和y轴上的截距分别代表米氏常数和最大反应速度的倒数。

竞争性抑制作用(competitive inhibition):通过增加底物浓度可以逆转的一种酶抑制类型。竞争性通常与正常的底物或配体竞争同一个蛋白质的结合部位。这种抑制使Km增大而υmax不变。

非竞争性抑制作用(noncompetitive inhibition): 抑制剂不仅与游离酶结合,也可以与酶-底物结合的一种酶促反应抑制作用。这种抑制使Km不变而υmax变小。

反竞争性抑制作用(uncompetitive inhibition): 抑制剂只与酶-底物复合物结合而不与游离的酶结合的一种酶促反应抑制作用。这种抑制使Km和υmax都变小但υmax/Km不变。

很大一类复杂的蛋白质物质 [enzyme;ferment],在促进可逆反应(如水解和氧化)方面起着像催化剂一样的作用。

酶是一种有机的胶状物质,由蛋白质组成,对于生物的化学变化起催化作用,发酵就是靠它的作用:~原。

米契(Michaelis)和门坦(Menten)根据中间产物学说推导出酶促反应速度方程式,即米-门公式(具体参考第四章微生物的生理)。由米门公式可知:酶促反应速度受酶浓度和底物浓度的影响,也受温度、pH、激活剂和抑制剂的影响。

(1)酶浓度对酶促反应速度的影响

从米门公式和酶浓度与酶促反应速度的关系图解可以看出:酶促反应速度与酶分子的浓度成正比。当底物分子浓度足够时,酶分子越多,底物转化的速度越快。但事实上,当酶浓度很高时,并不保持这种关系,曲线逐渐趋向平缓。根据分析,这可能是高浓度的底物夹带有许多的抑制剂所致。

(2)底物浓度对酶促反应速度的影响

在生化反应中,若酶的浓度为定值,底物的起始浓度较低时,酶促反应速度与底物浓度成正比,即随底物浓度的增加而增加。当所有的酶与底物结合生成中间产物后,即使在增加底物浓度,中间产物浓度也不会增加,酶促反应速度也不增加。

还可以得出,在底物浓度相同条件下,酶促反应速度与酶的初始浓度成正比。酶的初始浓度大,其酶促反应速度就大。

在实际测定中,即使酶浓度足够高,随底物浓度的升高,酶促反应速度并没有因此增加,甚至受到抑制。其原因是:高浓度底物降低了水的有效浓度,降低了分子扩散性,从而降低了酶促反应速度。过量的底物聚集在酶分子上,生成无活性的中间产物,不能释放出酶分子,从而也会降低反应速度。

(3)温度对酶促反应速度的影响

各种酶在最适温度范围内,酶活性最强,酶促反应速度最大。在适宜的温度范围内,温度每升高10℃,酶促反应速度可以相应提高1~2倍。不同内酶的最适温度不同。如,动物组织中各种酶的最适温度为37~40℃;微生物体内各种酶的最适温度为25~60℃,但也有例外,如黑曲的最适温度为62~64℃;巨大、短杆菌、产气杆菌等体内的葡萄糖异构酶的最适温度为80℃;枯草杆菌的液化型的最适温度为85~94℃。可见,一些芽孢杆菌的酶的热稳定性较高。过高或过低的温度都会降低酶的催化效率,即降低酶促反应速度。

最适温度在60℃以下的酶,当温度达到60~80℃时,大部分酶被破坏,发生不可逆变性;当温度接近100℃时,酶的催化作用完全丧失。

所以,人在发烧时,不想吃东西。

(4)pH对酶促反应速度的影响

酶在最适pH范围内表现出活性,大于或小于最适pH,都会降低酶活性。主要表现在两个方面:①改变底物分子和酶分子的带电状态,从而影响酶和底物的结合;②过高或过低的pH都会影响酶的稳定性,进而使酶遭受不可逆破坏。人体中的大部分酶所处环境的pH值越接近7,催化效果越好。但人体中的却适宜在pH值为1~2的环境中,的最适pH在8左右。

(5)激活剂对酶促反应速度的影响

能激活酶的物质称为酶的激活剂。激活剂种类很多,有①无机阳离子,如钠离子、钾离子、铜离子、钙离子等;②无机阴离子,如氯离子、溴离子、碘离子、硫酸盐离子磷酸盐离子等;③有机化合物,如维生素C、、还原性谷胱甘肽等。许多酶只有当某一种适当的激活剂存在时,才表现出催化活性或强化其催化活性,这称为对酶的激活作用。而有些酶被合成后呈现无活性状态,这种酶称为酶原。它必须经过适当的激活剂激活后才具活性。

(6)抑制剂对酶促反应速度的影响

能减弱、抑制甚至破坏酶活性的物质称为酶的抑制剂。它可降低酶促反应速度。酶的抑制剂有重金属离子、一氧化碳、硫化氢、氢氰酸、氟化物、碘化乙酸、、染料、对-氯汞、二氟磷酸、四乙酸、表面活性剂等。

对酶促反应的抑制可分为竞争性抑制和非竞争性抑制。与底物结构类似的物质争先与酶的活性中心结合,从而降低酶促反应速度,这种作用称为竞争性抑制。竞争性抑制是可逆性抑制,通过增加底物浓度最终可解除抑制,恢复酶的活性。与底物结构类似的物质称为竞争性抑制剂。抑制剂与酶活性中心以外的位点结合后,底物仍可与酶活性中心结合,但酶不显示活性,这种作用称为非竞争性抑制。非竞争性抑制是不可逆的,增加底物浓度并不能解除对酶活性的抑制。与酶活性中心以外的位点结合的抑制剂,称为非竞争性抑制剂。

有的物质既可作为一种酶的抑制剂,又可作为另一种酶的激活剂。

酸-碱催化(acid-base catalysis):质子转移加速反应的催化作用。

共价催化(covalent catalysis):一个底物或底物的一部分与催化剂形成,然后被转移给第二个底物。许多酶催化的基团转移反应都是通过共价方式进行的。

酶的催化机理和一般化学催化剂基本相同,也是先和反应物(酶的底物)结合成络合物,通过降低反应的能来提高化学反应的速度,在恒定温度下,化学反应体系中每个反应物分子所含的能量虽然差别较大,但其平均值较低,这是反应的初态。

S(底物)→P(产物)这个反应之所以能够进行,是因为有相当部分的S分子已被激活成为活化(过渡态)分子,活化分子越多,反应速度越快。在特定温度时,化学反应的是使1摩尔物质的全部分子成为活化分子所需的能量(千卡)。

酶(E)的作用是:与S暂时结合形成一个新化合物ES,ES的活化状态(过渡态)比无催化剂的该化学反应中反应物活化分子含有的能量低得多。ES再反应产生P,同时释放E。E可与另外的S分子结合,再重复这个循环。降低整个反应所需的活化能,使在单位时间内有更多的分子进行反应,反应速度得以加快。如没有催化剂存在时,分解为水和氧的反应(2H2O2→2H2O+O2)需要的活化能为每摩尔18千卡(1千卡=4.187焦耳),用过氧化氢酶催化此反应时,只需要活化能每摩尔2千卡,反应速度约增加10^11倍。

按照酶的化学组成可将酶分为单纯酶和复合酶两类。功效较单一,如肠毒清酵素排毒,酵素减肥等,配方就相对简单,只需集合同类酵素就可以达到理想单方面效果。复合酶如复方天然酵素等,具备较全面的功效,配方复杂,复合种类较多。单纯酶分子中只有氨基酸残基组成的,结合酶分子中则除了组成的蛋白质,还有非蛋白成分,如金属离子、铁卟啉或含B族维生素的小分子有机物。结合酶的蛋白质部分称为酶蛋白(apoenzyme),非蛋白质部分统称为辅助因子 (cofactor),两者一起组成(holoenzyme);只有全酶才有催化活性,如果两者分开则酶活力消失。非蛋白质部分如铁卟啉或含B族维生素的化合物若与酶蛋白以共价键相连的称为(prosthetic group),用透析或超滤等方法不能使它们与酶蛋白分开;反之两者以非共价键相连的称为(coenzyme),可用上述方法把两者分开。

结合酶中的金属离子有多方面功能,它们可能是酶活性中心的组成成分;有的可能在稳定酶分子的上起作用;有的可能作为桥梁使酶与底物相连接。辅酶与辅基在中作为氢(H+和e)或某些化学基团的载体,起传递氢或化学基团的作用。体内酶的种类很多,但酶的辅助因子种类并不多,从表4—1中已见到几种酶均用某种相同的金属离子作为辅助因子的例子,同样的情况亦见于辅酶与辅基,如3-磷酸甘油醛和脱氢酶均以NAD+作为辅酶。酶催化反应的决定于酶蛋白部分,而辅酶与辅基的作用是参与具体的反应过程中氢(H+和e)及一些特殊化学基团的运载。

酶属生物大分子,分子质量至少在1万以上,大的可达百万。酶的催化作用有赖于酶分子的一级结构及的完整。若酶分子变性或亚基解聚均可导致酶活性丧失。一个值得注意的问题是酶所催化的反应物即底物(substrate),却大多为小分物质它们的分子质量比酶要小几个数量级。

酶的活性中心(active center)只是酶分子中的很小部分,酶蛋白的大部分氨基酸残基并不与底物接触。组成酶活性中心的氨基酸残基的侧链存在不同的功能基团,如-NH2.-COOH、-SH、-OH和基等,它们来自酶分子多肽链的不同部位。有的基团在与底物结合时起结合基团(binding group)的作用,有的在催化反应中起催化基团(catalytic group)的作用。但有的基团既在结合中起作用,又在催化中起作用,所以常将活性部位的功能基团统称为必需基团(essential group)。它们通过多肽链的盘曲折叠,组成一个在酶分子表面、具有三维空间结构的或,以容纳进入的底物与之结合(图4-1)并催化底物转变为产物,这个区域即称为酶的活性中心。

而酶活性中心以外的功能集团则在形成并维持酶的空间构象上也是必需的,故称为活性中心以外的必需基团。对需要辅助因子的酶来说,辅助因子也是活性中心的组成部分。酶催化反应的特异性实际上决定于酶活性中心的结合基团、催化基团及其空间结构。

酶的分子结构与催化活性的关系

酶的分子结构的基础是其氨基酸的序列,它决定着酶的空间结构和活性中心的形成以及酶催化的专一性。如中的磷酸甘油醛脱氢酶的氨基酸残基序列几乎完全相同,说明相同的一级结构是酶催化同一反应的基础。又如消化道的,和弹性都能水解食物蛋白质的,但三者水解的肽键有各自的特异性,糜蛋白酶水解含芳香族氨基酸残基提供的肽键,胰蛋白酶水解等碱性氨基酸残基提供羧基的肽键,而弹性蛋白酶水解侧链较小且不带电荷氨基酸残基提供羧基的肽键.这三种酶的氨基酸序列分析显示40%左右的氨基酸序列相同,都以残基作为酶的活性中心基团,三种酶在丝氨酸残基周围都有G1y-Asp-Ser-Gly-Pro序列,X线衍射研究提示这三种酶有相似的空间结构,这是它们都能水解肽键的基础。而它们水解肽键时的特异性则来自酶的底物结合部位上氨基酸组成上有微小的差别所致。

图说明这三个酶的底物结合部位均有一个袋形结构,糜蛋白酶该处能容纳芳香基或非极性基;胰蛋白酶袋子底部稍有不同其中一个氨基酸残基为天冬氨酸取代,使该处增强,故该处对带正电荷的赖氨酸或精酸残基结合有利;弹性蛋白酶口袋二侧为和残基所取代,因此该处只能结合较小侧链和不带电荷的基团.说明酶的催化特异性与酶分子结构的紧密关系。

有些酶如中的各种蛋白酶以无活性的前体形式合成和分泌,然后,输送到特定的部位,当体内需要时,经特异性蛋白水解酶的作用转变为有活性的酶而发挥作用。这些不具催化活性的酶的前体称为酶原(zymogen)。如原(pepsinogen)、胰蛋白酶原(trypsinogen)和胰凝乳蛋白酶原(chymotrypsinogen)等。某种物质作用于酶原使之转变成有活性的酶的过程称为酶原的激活(zymogen andactivation of zymogen)。使无活性的酶原转变为有活性的酶的物质称为活化素。活化素对于酶原的激活作用具有一定的特异性。

例如细胞合成的糜蛋白酶原为245个氨基酸残基组成的单一肽链,分子内部有5对二硫键相连,该酶原的激活过程如图4-3所示.首先由胰蛋白酶水解15位和16位残基间的肽键,激活成有完全催化活性的p-糜蛋白酶,但此时酶分子尚未稳定,经p-糜蛋白酶自身催化,去除二分子成为有催化活性井具稳定结构的α—糜蛋白酶。

在正常情况下,血浆中大多数凝血因子基本上是以无活性的酶原形式存在,只有当组织或血管受损后,无活性的酶原才能转变为有活性的酶,从而触发一系列的级联式酶促反应,最终导致可溶性的原转变为稳定的纤维蛋白多聚体,网罗血小板等形成血凝块。

酶原激活的本质是切断酶原分子中特异肽键或去除部分肽段后有利于酶活性中心的形成酶原激活有重要的生理意义,一方面它保证合成酶的细胞本身不受蛋白酶的消化破坏,另一方面使它们在特定的生理条件和规定的部位受到激活并发挥其生理作用。如组织或血管内膜受损后激活凝血因子;胃主细胞分泌的胃蛋白酶原和胰腺细胞分泌的糜蛋白酶原、胰蛋白酶原、弹性蛋白酶原等分别在胃和激活成相应的活性酶,促进食物蛋白质的消化就是明显的例证。特定肽键的断裂所导致的酶原激活在内广泛存在,是生物体的一种重要的调控酶活性的方式。如果酶原的激活过程发生异常,将导致一系列疾病的发生。出血性的发生就是由于蛋白酶原在未进小肠时就被激活,激活的蛋白酶水解自身的胰腺细胞,导致胰腺出血、肿胀。

同工酶(isoenzyme)的概念:即同工酶是一类催化相同的化学反应,但酶蛋白的分子结构、理化性质和免疫原性各不相同的一类酶。它们存在于生物的同一种族或同一个体的不同组织,甚至在同一组织、同一细胞的不同中。至今已知的同工酶已不下几十种,如己糖,乳酸脱氢酶等,其中以乳酸脱氢酶(Lactic acid dehydrogenase,LDH)研究得最为清楚。人和脊柱动物组织中,有五种分子形式,

五种同工酶均由四个亚基组成。LDH的亚基有骨骼肌型(M型)和型(H型)之分,两型亚基的氨基酸组成不同,由两种亚基以不同比例组成的四聚体,存在五种LDH形式.即H4(LDHl)、H3M1(LDH2)、H2M2

M、H亚基的氨基酸组成不同,这是由基因不同所决定。五种LDH中的M、H亚基比例各异,决定了它们理化性质的差别.通常用电冰法可把五种LDH分开,LDH1向正极泳动速度最快,而LDH5泳动最慢,其它几种介于两者之间,依次为LDH2.LDH3和LDH4(图4-5) 图4-5还说明了不同组织中各种LDH所含的量不同,心肌中以LDHl及LDH2的量较多,而骨骼肌及肝中LDH5和LDH4为主.不同组织中LDH同工酶谱的差异与组织利用乳酸的生理过程有关.LDH1和LDH2对乳酸的亲和力大,使乳酸脱氢氧化成丙酮酸,有利于心肌从乳酸氧化中取得能量。LDH5和LDH4对丙酮酸的亲和力大,有使丙酮酸还原为乳酸的作用,这与肌肉在无氧酵解中取得能量的生理过程相适应(详见糖代谢章).在组织病变时这些同工酶释放入血,由于同工酶在组织器官中分布差异,因此同工酶谱就有了变化。故临床常用血清同工酶谱分析来诊断疾病(图4-5)。

effector)的位置,当它与别构剂结合时,酶的分子构象就会发生轻微变化,影响到催化位点对底物的亲和力和催化效率。若别构剂结合使酶与底物亲和力或催化效率增高的称为别构激活剂(allostericactivator),反之使酶底物的r亲和力或催化效率降低的称为别构(allostericinhibitor)。酶活性受别构剂调节的作用称为别构调节(allosteric regulation)作用.别构酶的催化位点与别构位点可共处一个亚基的不同部位,但更多的是分别处于不同亚基上.在后一种情况下具催化位点的亚基称催化亚基,而具别构位点的称调节亚基。多数别构酶处于代谢途径的开端,而别构酶的别构剂往往是一些小分子及该酶作用的底物或该代谢途径的中间产物或终产物。故别构酶的催化活性受细胞内底物浓度、代谢中间物或终产物浓度的调节。终产物抑制该途径中的别构酶称反馈抑制(feedback inhibition).说明一旦细胞内终产物增多,它作为别构抑制剂抑制处于代谢途径起始的酶,及时调整该代谢途径的速度,以适应细胞生理机能的需要。别构酶在细胞物质代谢上的调节中发挥重要作用。故别构酶又称调节酶。

体内有些酶需在其它酶作用下,对酶分子结构进行修饰后才具催化活性,这类酶称为修饰酶(modification enzyme)。其中以共价修饰为多见,如酶蛋白的丝氨酸,苏氨酸残基的功能基团-OH可被磷酸化,这时伴有的修饰变化生成,故称共价修饰(covalent modification)。由于这种修饰导致酶活力改变称为酶的共价修饰调节(covalent modification regulation)。体内最常见的共价修饰是酶的磷酸化与去磷酸化,此外还有酶的与去乙酰化、尿苷酸化与去尿苷酸化、甲基化与去甲基化。由于共价修饰反应迅速,具有级联式放大效应所以亦是体内调节物质代谢的重要方式。如催化糖原分解第一步反应的糖原磷酸化酶存在有活性和无活性两种形式,有活性的称为磷酸化酶a,无活性的称为磷酸化酶b,

体内有些酶彼此聚合在一起,组成一个物理的结合体,此结合体称为多酶复合体(multienzyme complex)。若把多酶复合体解体,则各酶的催化活性消失。参与组成多酶复合体的酶有多有少,如催化丙酮酸氧化脱羧反应的丙酮酸脱氢酶多酶复合体由三种酶组成,而在中催化β-氧化的多酶复合体由四种酶组成。多酶复合体第一个酶催化反应的产物成为第二个酶作用的底物,如此连续进行,

多酶复合体由于有物理结合,在空间构象上有利于这种流水作业的快速进行,是生物体提高酶催化效率的一种有效措施。

体内物质代谢的各条途径往往有许多酶共同参与,依次完成反应过程,这些酶不同于多酶复合体,在结构上无彼此关联。故称为多酶体系(multienzyme system)。如参与的11个酶均存在于胞液,组成一个多酶体系。

21世纪发现有些酶分子存在多种催化活性,例如DNAI是一条分子质量为109kDa的多肽链,具有催化DNA链的合成、3’-5’和5’-3’核酸外切酶的活性,用蛋白水解酶轻度水解得两个肽段,一个含5’-3’核酸外切酶活性,另一个含另两种酶的活性,表明大肠杆菌DNA聚合酶分子中含多个活性中心。哺乳动物的脂肪酸合成酶由两条多肽链组成,每一条多肽链均含脂肪酸合成所需的七种酶的催化活性。这种酶分子中存在多种催化活性部位的酶称为多功能酶(multifunctional enzyme)或串联酶(tandem enzyme)。多功能酶在分子结构上比多酶复合体更具有优越性,因为相关的化学反应在一个酶分子上进行,比多酶复合体更有效,这也是生物进化的结果。

酶是高效剂,比一般催化剂的效率高107-1013倍。酶能加快化学反应的速度,但酶不能改变化学反应的,也就是说酶在促进正向反应的同时也以相同的比例促进逆向的反应,所以酶的作用是缩短了到达平衡所需的时间,但平衡常数不变,在无酶的情况下达到平衡点需几个小时,在有酶时可能只要几秒钟就可达到平衡。

酶和一般催化剂都是通过降低反应的机制来加快化学反应速度的。

酶的催化表现在它对底物的选择性和的特异性两方面。体内的化学反应除了个别自发进行外,绝大多数都由专一的酶催化,一种酶能从成千上万种反应物中找出自己作用的底物,这就是酶的特异性。根据酶催化特异性程度上的差别,分为绝对特异性(absolute specificity)、相对特异性(relative specificity)和立体异构特异性(stereospecificity)三类。一种酶只催化一种底物进行反应的称绝对特异性,如只能水解尿素使其分解为二氧化碳和氨;若一种酶能催化一类化合物或一类化学键进行反应的称为相对特异性,如既能催化甘油三脂水解,又能水解其他酯键。具有立体异构特异性的酶对底物分子立体有严格要求,如L只催化L-乳酸脱氢,对D-乳酸无作用。

有些酶的催化活性可受许多因素的影响,如别构酶受别构剂的调节,有的酶受共价修饰的调节,激素和神经通过第二信使对酶活力进行调节,以及诱导剂或阻抑剂对细胞内酶含量(改变酶合成与分解速度)的调节等。

酶的活性中心与底物定向结合生成ES复合物是酶催化作用的第一步。定向结合的能量来自酶活性中心功能基团与底物相互作用时形成的多种非,如离子键、氢键、疏水键,也包括范德瓦力。它们结合时产生的能量称为结合能(binding energy)。这就不难理解各个酶对自己的底物的结合有选择性。

若酶只与底物互补生成ES复合物,不能进一步促使底物进入过渡状态,那么酶的催化作用不能发生。这是因为酶与底物生成ES复合物后尚需通过酶与底物分子间形成更多的非共价键,生成酶与底物的过渡状态互补的复合物(图4-8),才能完成酶的催化作用。实际上在上述更多的非共价键生成的过程中底物分子由原来的转变成过渡状态。即底物分子成为活化分子,为底物分子进行化学反应所需的基团的组合排布、瞬间的不稳定的电荷的生成以及其他的转化等提供了条件。所以过渡状态不是一种稳定的化学物质,不同于反应过程中的中间产物。就分子的过渡状态而言,它转变为产物(P)或转变为底物(S)的概率是相等的。

当酶与底物生成ES复合物并进一步形成过渡状态,这过程已释放较多的结合能,现知这部分结合能可以抵消部分反应物分子活化所需的活化能,从而使原先低于活化能阈的分子也成为活化分子,

1.邻近效应与定向排列

应该指出的是,一种酶的催化反应常常是多种催化机制的综合作用,这是酶促进反应高效率的重要原因。

在内的酶是具有生物活性的蛋白质,存在于生物体内的细胞和组织中,作为生物体内化学反应的催化剂,不断地进行自我更新,

酶的催化效率特别高(即高效性),比一般的化学催化剂的效率高10^7~10^18倍,

酶的催化具有高度的化学选择性和专一性.一种酶往往只能对某一种或某一类反应起催化作用,

一般在37℃左右,接近中性的环境下,酶的催化效率就非常高,虽然它与一般催化剂一样,随着温度升高,活性也提高,但由于酶是蛋白质,因此温度过高,会失去活性(变性),因此酶的催化温度一般不能高于60℃,否则,酶的催化效率就会降低,甚至会失去催化作用.强酸、强碱、重金属离子、紫外线等的存在,

人体内存在大量酶,结构复杂,种类繁多,到目前为止,已发现3000种以上(即多样性).如在口腔内咀嚼时,咀嚼时间越长,甜味越明显,是由于米饭中的淀粉在口腔分泌出的的作用下,水解成的缘故.因此,吃饭时多咀嚼可以让食物与唾液充分混合,有利于消化.此外人体内还有,等多种水解酶.人体从食物中摄取的蛋白质,必须在胃蛋白酶等作用下,水解成氨基酸,然后再在其它酶的作用下,选择人体所需的20多种氨基酸,按照一定的顺序重新结合成人体所需的各种蛋白质,这其中发生了许多复杂的化学反应.可以这样说,没有酶就没有生物的新陈代谢,

当今的问题是现代人体内缺酶的现象普遍严重,人群中十有六七的体中酶量不足。根本原因主要在两方面:一是自身器官的衰老,如脾的衰老,全面减少了酵素的分泌量,而影响全身八大系统60兆亿细胞整体早衰,也就是不足百病生;另一方面,肠,对的堵塞,长期减少了营养吸收的通道,更全面加剧了整体的早衰,甚至产生各种疾病。因此肠毒是万病之原,经常肠毒清酵素清理毒素是健康的基本保证,还有就是化脂酵素对脂肪的作用也是一样。此外,

生食物中含有必需的消化酶,但酶在高温烹调下或加工储运过程中容易丧失活性,由于人们大都以为主,使得食物中原有的酶遭受破坏,而不得不消耗体内天然的酶储备。另外,有些水果中酶含量最高的部位却是在人们所不吃的和果茎中,以及在未成熟的苦涩的果汁中,这也是造成人体酶量缺乏的因素所在。

随着工业的快速发展和汽车的大量增加,导致废气大量排放,环境受到污染;农药的残留和食品中合成的化学添加剂的滥用;生活方式的快节奏、工作压力的增大以及看电视多运动少等文明社会的弊端增多……上述种种都会增加身体中酶的大量消耗,以致体内的天然酶无法保存。

酶在医疗上 随着对酶研究的发展,酶在医学上的重要性越来越引起了人们的注意,

1.酶与某些疾病的关系

酶缺乏所致之疾病多为先天性或遗传性,如白化症是因羟化酶缺乏,病或对啉敏感患者是因6-磷酸葡萄糖缺乏.许多中毒性疾病几乎都是由于某些酶被抑制所引起的.如常用的农药(如、、1059以及等)中毒时,就是因它们与活性中心必需基团上的一个-OH结合而使酶失去活性.胆碱酯酶能催化水解成胆碱和乙酸,当胆碱酯酶被抑制失活后,乙酰胆碱水解作用受抑,造成乙酰胆碱推积,出现一系列中毒症状,如肌肉震颤、瞳孔缩小、多汗、心跳减慢等.某些金属离子引起人体中毒,

2.酶在疾病诊断上的应用

正常人体内酶活性较稳定,当人体某些器官和组织受损或发生疾病后,某些酶被释放入血、尿或内.如急性时,和尿中淀粉酶活性显著升高;肝炎和其它原因肝脏受损,肝细胞坏死或通透性增强,大量释放入血,使血清转氨酶升高;时,血清脱氢酶和磷酸肌酸明显升高;当有机磷农药中毒时,胆碱酯酶活性受抑制,血清胆碱酯酶活性下降;某些疾病,特别是梗阻时,血清r-谷氨酰移换酶增高等等.因此,借助血、尿或体液内酶的活性测定,

3.酶在临床治疗上的应用

酶疗法已逐渐被人们所认识,广泛受到重视,各种在临床上的应用越来越普遍.如胰蛋白酶、等,能催化蛋白质分解,此原理已用于外科扩创,化脓伤口净化及胸、腹腔粘连的治疗等.在血栓性、心肌梗塞、肺梗塞以及弥漫性血管内凝血等病的治疗中,可应用纤溶酶、链激酶、尿激酶等,以溶解血块,

一些酶,特别是SOD酵素,不仅可用于脑、心、肝、肾等重要脏器的辅助治疗,在肿瘤方面的使用也取得了显著的成效.另外,还利用酶的竞争性抑制的原理,合成一些化学药物,进行抑菌、杀菌和抗肿瘤等的治疗.如酵素补脾补肾在不孕不育等问题上,也有较好的调理。而类药和许多抗菌素能抑制某些细菌生长所必需的酶类,故有抑菌和杀菌作用;许多抗肿瘤药物能抑制细胞内与或蛋白质合成有关的酶类,从而抑制瘤细胞的分化和增殖,以对抗肿瘤的生长;硫氧嘧啶可抑制碘化酶,从而影响的合成,

如酿酒工业中使用的,就是通过有关的微生物产生的,酶的作用将淀粉等通过水解、氧化等过程,最后转化为酒精;酱油、食醋的生产也是在酶的作用下完成的;用淀粉酶和处理过的饲料,营养价值提高;中加入酶,可以使洗衣粉效率提高,

由于酶的应用广泛,酶的提取和合成就成了重要的研究课题.此时酶可以从生物体内提取,如从皮中可提取菠萝.但由于酶在生物体内的含量很低,因此,它不能适应生产上的需要.工业上大量的酶是采用微生物的发酵来制取的.一般需要在适宜的条件下,选育出所需的菌种,让其进行繁殖,获得大量的酶制剂.另外,人们正在研究酶的人工合成.总之随着科学水平的提高,

当今科学界对酵素与健康的密切关系,形成了统一的认识,基本上,身体酵素越多,越健康,越年轻,酵素就是生命。在工程上,酶的影响因素有温度、酸碱度、浓度、电荷、机械作用等,人体相当于一个巨大的发酵系统,相关于三千个以上酿酒酿醋装置的大组合。并且要实现全自动控制,保持温度(体温37度)、酸碱度()、含水量(70%)、电压(心正常)、机械作用(肌肉活动与心跳正常)的相对稳定,任何人无法对如此庞大的系统进行控制。

第一是酶的生产。人体内三千种以上的酶,它们由人体内不同的器官合成。其核心部分是“核酶”,带有遗传信息,其发现者获取96年诺贝尔生理学奖,人体内酶的生产由身体自动合成。当人体内由于器官功能异常或营养不良时,某些酶的合成受阻,相应的生化反应不能顺利进行,就会引起新陈代谢异常。

第二是底物。酶的具有一性,每种酶只对一种物质起作用。

第三是温度。酶在45度以下,温度越高,酶的活性越高。

第四是酸碱度。人体内为弱碱性环境。人体在运动时,供氧相对不足,体内产生过多的乳酸,使人的肌肉酸痛,经过多次锻炼,提高供氧能力后,体质增强。当今空气中二氧化碳过多,体内氧相对不足,造成体内PH下降,减少酶的活性,使新陈代谢异常。肉类食品中含有较多的磷、硫、氯等营养素,摄入过多,也会引起体内PH下降。

第五是浓度。也就是体内的含水量。在酶的数量一定时,反应物浓度越大,酶的活性就越小。婴儿的含水量80%以上,它们新陈代谢旺盛。营养过剩时,浓度增大,新陈代谢会减慢,引起肥胖和一些疾病。

第六是电荷。所有的生化反应都会偏离蛋白质的,有电子的转移。人体蛋白质平均等电点为5.5,体内环境为7.3,人体带,并有一定的电压,可以产生一定的电流,如心电图、脑电图。“自由基”带正电,对健康不利,清新的空气中有大量的“负离子”,对健康有利。负电荷使人的红细胞相互排斥,阻止血栓的形成,可以促进心脑血管的健康。

第七是机械作用。把反应物和酶搅拌均匀,把生成物及时运走,可以增加酶的反应活性,提高生命活力。通过运动,促进人体血液循环,使酶与反应物混合无效,并运走代谢产物,降低浓度,可以促进新陈代谢。生命在于运动就是这个道理。

第八是酶的和激活剂。酶的激活剂能使酶的活性大大增加,抑制剂能降低或消除酶的活性。各种就是抑制大多数酶的活性,达到长久保持的目的。有毒物质可以破坏酶的结构,使之失去活性。人体通过食物链,摄入了大量的酶的抑制剂,如防腐剂,农药残留物,肯定会影响新陈代谢。有些物质能增加一些酶的活性,工业上叫激活剂,医学上叫激素,一种酶的激活剂,往往是另一种酶的抑制剂。这就是药物使用的风险。如抑制了细菌中的一种酶,使它不能合成,人体细胞没有细胞壁,应该不受大的影响,可是青霉素使用时出现的副作用已经受到了人们的重视。人体的系统,产生各种激素,对体内的生化反应进行调节,保持体内环境的稳定。各种人工物质的干扰,可能是造成人体内分泌紊乱的重要原因。

我要回帖

更多关于 ii型限制性核酸内切酶的作用特点 的文章

 

随机推荐