求单个音阶的钢琴音阶音效效,(包括低、中、高音段)每个文件都是单个音阶,最好是MP3,谢谢!

发表时间: 00:05
[基础知识]与唱歌有关的一些音乐基础知识(老兵编辑整理) &&
老兵30 发表在
华声论坛 http://bbs.voc.com.cn/forum-112-1.html
无声不成世界,然而杂乱无章的声音不是音乐,构成音乐形象的声音,是一种有组织有规律的和谐的声音,包括旋律、调式、和声、曲式、等等,总称为音乐语言。
音乐是声音的艺术,它只能诉诸于人们的耳朵,所以音乐又是一种听觉艺术;听觉不同于视觉,它必须在时间中展开,因此作为听觉艺术的音乐又是一种时间艺术;在所有艺术形式中,音乐是最不能描绘具体生活图象,最擅长于抒发情感的艺术形式,这样我们又可以把音乐称为表情艺术;音乐社会作用的发挥需要通过作曲、演唱(奏)、并且要求听众参与与它的创作活动,它的任务才能完成,所以音乐也是一种表演艺术。
唱出动听的歌需了解音乐的构成要素:旋律、节奏、和声、音响等......
一、我们先来就音乐的这几个常见词汇的概念说明一下:
旋律是最有表现力的要素,它是音乐的灵魂。旋律可以独立地表达情感,构成音乐形象,例如旋律上行时,通常表现情绪的高涨;旋律下行时,通常表现情绪的低落。旋律以某一个音为中心,其他音围绕其上下距离进行,不断回到这个中心音,常给人以某种循环的感觉。旋律的类型很多,有舞蹈性的旋律,有抒情性的旋律,有说唱性的旋律,有戏剧性的旋律,等等。旋律往往具有一定的民族特征或时代特征,形成风格上的差异。同样的旋律,如果节奏、速度、力度、调式、音色等发生变化,就可能引起音乐情绪或性格的变化。
节奏是音乐的原动力,音乐的脉搏,它以时间持续的方式,体现音响运动的轻重、急缓,包含着时值、重音、速度、拍子等成分,不同的节奏有不同的表现作用。例如:速度的逐渐加快,强调周期的逐渐缩短,总是与情绪的逐渐紧张或、和激动相联系。音乐的体裁不同,节奏的形态也有所差别,进行曲多用二拍子或四拍子,节奏规整,多带附点;圆舞曲用的是三拍子,突出第一拍重音,多带律动感;民歌中的山歌音调高亢,节奏自由,气息宽广,等等,都与节奏有关。
和声是指音乐进行中的多音有规律地同时发响的方式,它可使音乐形象更为丰满多彩。和声的功能与调式、调性的功能密切相关,同时对多层次音乐的线条以不同的方式出现的复调音乐有重大影响,演唱这样的音乐歌曲作品,不仅要了解旋律,而且要培养多声部的听觉,有些钢琴的伴奏曲、合唱曲、重奏曲、交响曲等都不是单线条进行,而是多声部、立体化地发展乐思,要善于感受和声效果。
音响主要是去展示音乐艺术的内容和形式美,尽可能地达到动听。所谓“建筑是凝固的音乐,音乐是流动的建筑”之说,不仅表明音乐的纵、横结构应讲究建筑艺术似的和谐,而且作为时间艺术必须在流动中充分的调动音色、力度、织体等多种因素的能动的作用,让人们欣赏到你的声音具有音响建筑的宏伟、秀丽、精致。
二,音乐中常用名词解释
音――是由于物体的振动而产生的,如用弓擦琴弦,使琴弦振动,因而发声;人声是由于气息冲击声带,使声带产生振动的缘故。
乐声――物体作有规律的、周期性的振动所发出的音,如演奏弦乐、管乐、钢琴等乐器所发出的声音便是。
噪音――物体作没有规律的、非周期性的振动时所发出的音、如鼓、锣、钹的敲击声等。
音的高低――物体在每秒钟内振动次数的多少、单位时间内振动次数的多少与音的高低成正比,国际标准音为a'=440 赫。
音的长短――物体振动时间的长短、是由音的延续时间不同而决定的,称为时值。
音的强弱――物体在振动时振幅的大小、音的强弱和物体的振幅是成正比的。振幅大音则强,反之亦然。
音的色彩――是人声或乐器在音响上的色彩特性。它是因发音体的性质、形状及其泛音的多少而不同。
音乐体系――是人们在长期社会音乐实践中特意挑选出来的,并形成系列固定高音的总和。
音列――音乐体系中的音,按照上行或下行次序排列起来的。在钢琴上能很明显地看出乐音体系和音列。
音阶――按照音的高低次序,上行或下行排列起来的一组音。
音级――音乐体系中的各音。音级分基本音级和变化音级,具有七个独立名称的音级叫基本音级,升高或降低基本音级叫变化音级。
音名――七个基本音级分别用英文字母C、D、E、F、G、A、B来标记,它表示一定的音高,在键盘上的位置是不变的,成为乐音的固定名称。
唱名――七个音名在歌唱时,依次用do,re,mi,fa,sol,la,xi来发音。
音组――七个音级在音列中是循环重复的、为了区别名称相同而音高不同的各音,将示音体系中的音级分为若干组。
半音――将八度分成十二个均等的部分,即在基本音阶中,凡相邻的 二音距离称半音。
全音――二音间的音高距离等于二个半音的叫全音。
变音――它是以升高或降低基本音级而变化出来的。比如钢琴上的黑键就是按这种规则有序的排列。
变音记号――表示音级升高或降低的记号。常用的有“#”表示升高一个半音,“b”表示降低一个半音,“G“表示把已升高或降低的音还原,
还有重升记号,“X”表示升高一个全音,重降记号“bb”表示降低一个全音。
今天有点累了,以后有时间再分别介绍一些相关基础知识和朋友们共同学习。
[本帖最后由 老兵30 于
10:31 编辑]
回复时间: 11:42
老兵哥哥辛苦 写的真好 感谢你
----------------------------------------------  舞 尽 最后的灿烂 落 尘
回复时间: 12:22
向老兵道一声辛苦啦,向你学习!但不学你当夜猫子
----------------------------------------------喜欢音乐--拥有快乐
回复时间: 14:57
我是明鸣.现在在学习中.也在熟悉环境.
----------------------------------------------干和自己想干的事,开心每一天.
回复时间: 15:36
补充一些关于音频的知识,转帖!!!
★比特率是什么?
比特率这个词有多种翻译,比如码率等,表示经过编码(压缩)后的音频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最少的单位,要么是0,要么是1。比特率与音频压缩的关系简单的说就是比特率越高音质就越好,但编码后的文件就越大;如果比特率越少则情况刚好翻转。
VBR(Variable Bitrate)动态比特率 也就是没有固定的比特率,压缩软件在压缩时根据音频数据即时确定使用什么比特率,这是以质量为前提兼顾文件大小的方式,推荐编码模式;
ABR(Average Bitrate)平均比特率 是VBR的一种插值参数。LAME针对CBR不佳的文件体积比和VBR生成文件大小不定的特点独创了这种编码模式。ABR在指定的文件大小内,以每50帧(30帧约1秒)为一段,低频和不敏感频率使用相对低的流量,高频和大动态表现时使用高流量,可以做为VBR和CBR的一种折衷选择。
CBR(Constant Bitrate),常数比特率 指文件从头到尾都是一种位速率。相对于VBR和ABR来讲,它压缩出来的文件体积很大,而且音质相对于VBR和ABR不会有明显的提高
★什么是采样率:
数码音频系统是通过将声波波形转换成一连串的二进制数据来再现原始声音的,实现这个步骤使用的设备是模/数转换器(A/D)它以每秒上万次的速率对声波进行采样,每一次采样都记录下了原始模拟声波在某一时刻的状态,称之为样本。
将一串的样本连接起来,就可以描述一段声波了,把每一秒钟所采样的数目称为采样频率或采率,单位为HZ(赫兹)。采样频率越高所能描述的声波频率就越高。 对于每个采样系统均会分配一定存储位(bit数)来表达声波的声波振幅状态,称之为采样分辩率或采样精度,每增加一个bit,表达声波振幅的状态数就翻一翻,并且增加6db的动态范围态,即6db的动态范围,一个2bit的数码音频系统表达千种状态,即12db的动态范围,以此类推。如果继续增加bit数则采样精度就将以非常快的速度提高,可以计算出16bit能够表达65536种状态,对应,96db 而20bit可以表达1048576种状态,对应120db。24bit可以表达多达种状态。对应144db的动态范围,采样精度越高,声波的还原就越细腻。(注:动态范围是指声音从最弱到最强的变化范围)人耳的听觉范围通常是20HZ~20KHZ。
根据奈魁斯特(NYQUIST)采样定理,用两倍于一个正弦波的频繁率进行采样就能完全真实地还原该波形,因此一个数码录音波的休样频率直接关系到它的最高还原频率指标例如,用44.1KHZ的采样频率进行采样,则可还原最高为22.05KHZ的频率-----这个值略高于人耳的听觉极限,(注: 可录MD,例R900的取样频率为44.1KHZ并且有取样频率转换器,可将输入的32KHz/44.1KHZ/48KHZ转换为该机的标准取样频率44.1KHZ的还原频率足已记示和真实再现世界上所有人再能辩的声音了,所以CD音频的采样规格定义为16bit。44KHZ, 即使在最理想的环境下用现实生活中几乎不可能制造的高精密电子元器件真实地实现了16bit的录音,仍然会受到滤波和声特定位等问题的困扰,人们还是能察觉出一些微小的失真所以很多专业数码音频系统已经使用18bit甚至24bit 进行录音和回放了。
★采样率和比特率的区别:
简单来讲,采样率和比特率就像是坐标轴上的横纵坐标。
横坐标的采样率表示了每秒钟的采样次数。
纵坐标的比特率表示了用数字量来量化模拟量的时候的精度。
采样率类似于动态影像的帧数,比如电影的采样率是24赫兹,PAL制式的采样率是25赫兹,NTSC制式的采样率是30赫兹。当我们把采样到的一个个静止画面再以采样率同样的速度回放时,看到的就是连续的画面。同样的道理,把以44.1kHZ采样率记录的CD以同样的速率播放时,就能听到连续的声音。显然,这个采样率越高,听到的声音和看到的图像就越连贯。当然,人的听觉和视觉器官能分辨的采样率是有限的,基本上高于44.1kHZ采样的声音,绝大部分人已经觉察不到其中的分别了。
而声音的位数就相当于画面的颜色数,表示每个取样的数据量,当然数据量越大,回放的声音越准确,不至于把开水壶的叫声和火车的鸣笛混淆。同样的道理,对于画面来说就是更清晰和准确,不至于把血和西红柿酱混淆。不过受人的器官的机能限制,16位的声音和24位的画面基本已经是普通人类的极限了,更高位数就只能靠仪器才能分辨出来了。比如电话就是3kHZ取样的7位声音,而CD是44.1kHZ取样的16位声音,所以CD就比电话更清楚。
当你理解了以上这两个概念,比特率就很容易理解了。以电话为例,每秒3000次取样,每个取样是7比特,那么电话的比特率是21000。而CD是每秒44100次取样,两个声道,每个取样是13位PCM编码,所以CD的比特率是=1146600,也就是说CD每秒的数据量大约是144KB,而一张CD的容量是74分等于4440秒,就是639360KB=640MB。
话放,即放筒放大器。
传声器是声电转换的换能器,通过声波作用到电声元件上产生电压,再转为电能。所以说任何一种拾音设备都可称为传声器。但平时我们主要说的还是话筒。
1.话筒的分类
话筒通常按它转换能量的方式分类。这里我们还是按录音室对话筒最通用的分类法,把话筒分为动圈话筒和电容话筒。
动圈话筒,:由磁场中运动的导体产生电信号的话筒。是由振膜带动线圈振动,从而使在磁场中的线圈感应出电压。
电容话筒:这类话筒的振膜就是电容器的一个电极,当振膜振动,振膜和固定的后极板间的距离跟着变化,就产生了可变电容量,这个可变电容量和话筒本身所带的前置放大器一起产生了信号电压。
电容话筒中有前置放大器,当然就得有一个电源,由于体积关系,这个电源一般是放在话筒之外的。除了供给电容器振膜的极化电压外,也为前置放大器的电子管或晶体管供给必要的电压。我们称它为幻象电源。
由于有了这个前置放大器,所以电容话筒相对要灵敏一些,在使用时不可少的一些附属设备有:防震架(一般会随话筒赠送)、防风罩、防喷罩、优质的话筒架。如果要进行超近距离的录音工作,一个防喷罩是不可少的。
2.话筒的特性
话筒的指向:一般分为心形、超心形、8字形、枪式、全向指向等。
至于这些指向究竟是怎么回事,你可找个话筒试试。如图中所示,箭头所指方向为话筒所指正前方,虚线为可拾音的大致范围,在这个范围之外,拾音将不灵敏。如果有条件,建议还是找个多指向的话筒试用一下,就能明白指向的意义了。
话筒的阻抗:专业录音室应使用低阻抗话玻
平衡线与非平衡线:平衡线由两根导线和一根屏蔽线构成;非平衡线中则只有一根导线,用屏蔽线代替第二根导线。
平衡线的优点在于,该线的两根导线拾取不需要的噪声信号的强度相等,因而二者能互相抵消掉。而非平衡线则把噪声信号传输到线路的下一级。
如果音频信号很强或非平衡线很短,可能不会听到噪声。但话筒线一般都很长,想想看,我们是从录音间拉出线来,经传声盒过墙后再进入控制室的调音、录音系统的。所以,我们要使用平衡线,并相应地使用平衡的插头:XLR,俗称卡农头或公母头;或者是大三芯的TRS。
卡农头的接法上篇已说到:3负、2正、1地。但这只是一般性的接法。最好是先搞清楚一支话筒的插脚的相对极性,并焊好连线,把这支话筒做为标准。有新的话筒时,再把新话筒与之输出混合,听合成声,如果合成声输出电平太小或频率失真(一般情况你听到的是一种压扁的声音),说明存在相位反接现象,必须把接脚重焊。(欧洲的厂家出品的话筒可能以2或3脚为屏蔽,最好的方法还是仔细查看说明书。)
随便说一下,接错线出现声音反相的情况在接音箱时也会出现,所以在接线时一定要细心,不要以为音箱响了就行,而一定要以正接正,负接负来进行连接。
多声道录音
多声道录音就是把若干单声道或双声道立体声的分别同步拾音、记录并最后合成一
个单声道或一个双声道立体声录音的技术。
由此看来,我们的家庭录音室将采用的也是这种多声道录音技术。
其工作流程一般为:前期的声源分组、分类→对分好的声源分别进行拾音→录音→
后期工作(对前期录好的信号进行加工、修改或补录等)→混音输出成一个单声道或立
体声文件→刻盘成AudioCD,或者转录成磁带或DAT。
在家庭录音室中,一般不采用同期录音的形式(但有时要求不高的小样作品也可这
么录),而是采用分期录音的形式。合理的分期录音顺序应是:
(1)信号轨(这里说的信号常称其为“点”,“打点”)
(2)节奏乐器(可与信号轨同期录音)
(3)固定音高的乐器(如钢琴、电子琴等)
(4)弦乐器与管乐器
也就是先录点,或打着点录鼓,再录钢琴等,再录贝司,再录吉它等伴奏乐器,再
录主奏SOLO段,再录唱。
切不可先录弦乐器,因为弦乐器在演奏中易产生音准飘移,而其定弦方法以及标准
音定音都与钢琴类乐器不同,所以如先录固定音高乐器,弦乐器就能以之为准。
3.三种录音方法
1)单点录音法
在单声道录音产生的初期,由于没有任何辅助加强话筒,而只能在一个点上拾
音,所以才有这样的称谓。
录音条件:
(1)话筒摆放应在声源的比例平衡之处。移动话筒位置时,左右移动,解决声源横向的平衡比例,高低或俯仰的移动,解决纵向的平衡比例;
(2)话筒要放在声场中直达声与反射声比例合适之处。由于我们自己的录音室已做了吸声的处理,所以一般不考虑自然混响的问题,而是在后期混音时再人工加上它。
(3)话筒与声源的距离不得超过17米。一旦超过,则会产生50毫秒的延时。(不过,想来谁也没有17米长的房间吧?)
(4)声源的位置也很重要。
我们可以用两支心形指向的话筒摆成XY制,或用一支立体声话筒来进行单点录音法的立体声录音。此时要注意立体声声象的问题。这就要求录音师要考虑到上述几点条件。如:我们录一个四人小合唱,把话筒放置于指挥的后上方,同时最左和最右的两人分别对应两支话筒的主轴线。然后在试音时再对话筒的高低、远近进行一些调整,就可录到不错的立体声效果。
2)主话筒录音法
为得到比单点录音法更大的清晰度或为使自然平衡不佳的声源得到更好的平衡,就要增加若干辅助加强话筒。
录音条件:
(1)主话筒与辅助加强话筒的电平关系以主话筒为主,即它只能大于而不能等于,更不能小于辅助加强话筒的电平。也就是说:主话筒担任主录任务,辅助加强话筒只是用来弥补声源个别部分电平的不足。在立体声中,辅助加强话筒起着清晰和稳定声象的作用。
(2)主话筒要选用较高灵敏度的话筒。
(3)在话筒的摆放上,要注意辅助加强话筒间方向角的过多重叠,避免使声源各别部分的电平不平衡。
(4)在立体声的主话筒录音法中还应注意:主话筒与辅助加强话筒的声象必须吻合。
(5)用两支辅助加强话筒放在主话筒宽度定位的两个端点,可使主话筒录音的声象宽度稳定而准确。
那么什么情况下可能会用到这种录音方法呢?
很简单,比如鼓啊!我们可用一支立体声电容话筒,如RODE的NT4(如果没有立体声话筒,可用两支性能相同的电容话筒采用小AB制或XY制来实现,(如两支AKG的C3000B)并用单点录音法放置好,它就是主话筒。再用两支动圈话筒做辅助加强话筒,分别录军鼓和低音鼓。这是一种最简单的录鼓的方式了。
★关于幻象电源:
电容麦克风是录音师们首选的麦克风。它具有频带宽广、响应曲线平直、输出高、非线性畸变小、瞬态响应好等非常突出的优点。电容麦克风一般由电容极头和预放大器两部分组成,电容极头需要有一个极化电压(驻极体例外),预放大器也需要用电。它们所需的电源都由信号线携带供给,但并不给信号传送造成问题。这样的供电方式称为幻象供电。以往有的文章称作“幻相”,本人认为不很确切,查过几本字典,Phantom可以解释为幻影,错觉,妄想,影象,幻象等。而与“相位”的相(Phase)毫无关系,译成“幻相”容易产生误导,其实幻象电源是纯直流电源,哪里有什么相位?
有些电容麦克风是由内部电池供电,更多的电容麦克风通过信号线接收来自它们所连接的调音台或前置放大器获得电源供应。幻象供电也有称为Simplex Powering的。通常是11到48伏的直流电,同时供应电容头的极化和放大电路的用电。各种电容麦克风耗用的电流为1到12毫安培。许多现代的电容麦克风可以允许9到54伏的电压,它们内部装有整流器,能够适应很宽的电压范围。
幻象供电要求在麦克风和电源供应端之间的平衡连接,通常使用XLR插头的3根导线,2和3脚供给相同的直流电压,这一电压是相对1脚的地电位而言。一般来说,幻象电源的来源是交流市电,只有在没有交流电的地方如野外才考虑用电池供电。
幻象电源的类型
现有的幻象电源类型共3类,使用的电压为12,24和48伏。
12和24伏供电常见于电池供电的调音台,这类调音台由于电源问题而受到很多显著的限制,许多早期的调音台仅供应12或18伏幻象电源和很少的电流。电池供电12和24伏的调音台如Shure的FP33到现在还在应用。
录音棚内一贯为各路麦克风输入分别提供48伏幻象电源。因为这些调音台都使用市电供电,所以对于幻象电源的供给实际没有什么限制。许多面向录音棚的电容麦克风也设计成48伏电压的。实际上它们也仅在48伏供电时才达到标准的电流。
甚至在调音台能够为各路麦克风提供48伏幻象电源的时候,仍应注意所供的电流。一些调音台没有为每路麦克风提供12毫安的能力,当你连接上一些麦克风之后,幻象电源就不能再维持足够的电流和电压,甚至出现更严重的后果。这类不愉快经常出现在廉价的或电池供电的调音台上。作为预防,你应该清楚每支麦克风要求的电流和调音台能够供应的幻象电源总电流。
另有一种比较少见的T-power(又称A-B power)类幻象供电。与传统的幻象供电供给2,3脚相同电压不同的是T-power系统在2,3脚之间有12伏电位差。有一些系统的2脚电位高于3脚12伏;另一些系统却是3脚电位高于2脚12伏。此外这里所说的直流电压被称作“浮动电压”(floating voltage),因为它们并不用地电位作参考。有一些设备如Nagra录音机和前面提到的Shure调音台可以选择用T-power还是传统的幻象供电。
T-power的发明主要是考虑到电影录音经常需要使用很长的信号线。不久以前T-power在美国和欧洲有2种不同的形式,适应T-power供电的麦克风主要有Sennheiser和Schoeps的产品。总的看来,T-power的使用并不很普遍。
切记:仅T-power供电的麦克风可以用于T-power供电。连接T-power麦克风到普通幻象电源会损坏麦克风,电源或二者俱损。连接用于普通幻象供电的麦克风到T-power电源结果同样糟糕。
由于幻象供电的执行有几种不同的方式,有时会出现奇怪的现象。最基本的,麦克风输入端供给幻象电源可以分为变压器耦合和无变压器耦合两大类。
变压器耦合一般使用中心抽头的绕组,幻象电源通过一个电阻送到抽头上,使绕组两端的2,3脚得到相同的电压。[图1]
图2说明:为了保持2,3脚之间的0电位差,2支电阻的误差不得超过1%
因为没有一个实际的标准规范幻象供电的执行,麦克风厂商又不提供一个产品兼容目录,通常只有通过试用才能知道究竟。
调音台上经常有一个幻象电源的开关,控制一组(例如8个)输入插座。你需要知道如果有其他类型的麦克风(例如动圈麦克风)同时应用时会发生什么情况。一般情况下,动圈麦克风的信号从2,3脚送出,即使幻象电源打开,两个脚的电位相等,完全可以正常使用。
带有内部自己供电的电容麦克风不要接到幻象电源上。电子管电容麦克风也不要接到幻象电源上,它们要求更高的电压和更大的电流,通常配有专用的电源供应。
如果你试图连接一个带式(ribbon)麦克风到幻象供电的插座,马上就会造成大麻烦,那条可怜的音带这时就变成保险丝了。绝对不要把带式麦克风插到幻象供电的插座上!
经常检查和维护你的麦克风电缆和插头是个好主意,否则幻象供电的断续或不稳将造成信号的降级甚至出现噪声。
我们首先来说说音高。
为什么钢琴上的每个琴键声音都不一样呢(废话,都一样怎么弹)?掀开钢琴盖可以看到钢琴的弦是由粗到细,不一样的。由于粗细不同,弦的振动频率也就不同。很显然粗的弦就不如细的振动得快。音高不同的产生,就是由于振动的频率不同。频率越高,音高就越高。
声音频率的单位是赫兹,英文简写为Hz。赫兹 (),是德国物理学家,他发现了电磁波,为了纪念他,人们用它的名字来做为频率的单位。
一赫兹是什么概念呢,呵呵,就是一秒钟振动一次。那么440Hz呢,当然就是每秒振动440次。这个声音就是音乐中的标准A音,是乐器定音的标准。而钢琴中央C的频率则是261.63Hz。
人的耳朵能够听到的范围,是20Hz到20000Hz。这个范围内的声音是人类能够听到的声音。低于这个频率范围的声音叫次声波,这种声音能使人头晕眼花,甚至可以用来制作杀人武器。而高于这个频率范围的声音叫做超声波,这个可能大家都比较熟悉了。如果你要是能听到20000Hz以上频率的声音,嘿,你就可以做蝙蝠侠了。我们的音乐,当然也都在人耳可听到的范围之内。
接下来说说音量。音量的概念很好理解,就是“响不响”的概念嘛。也就是声音的强弱了。音量由声波的振幅决定。什么叫“振幅”呢?这也不是啥黑话,顾名思义就是振动的幅度嘛。呵呵,你可以观察一下吉他的琴弦,轻轻拨动琴弦发出小的声音。再狠狠拨动琴弦发出强的声音,看看琴弦的振动幅度,是不是声音越大,振动的幅度也就越大?哈就是这样。在振动或振荡过程中,振动的物理量偏离中心值的最大值,叫做振幅。
振幅越大,声压越高,声音听起来也就越响。声音的大小有个单位,这就是分贝。英文简写为dB。人耳可不是仪器,对声音强弱的辨别是一种模糊概念。一般来讲,3分贝内的音量变化,一般人是察觉不出来的。当然,耳朵很好的音乐家或者声学工作者还是可以辨别几个分贝的音量变化的。也许你可以在很多设备和软件上看到增加几dB或者减少几dB这样的控制键,就是这个原理。用这个音量差来衡量声音的变化。
最后要说的就是音质了。音质这个东西很有意思。呵呵。你看,同样是标准音A,振动频率都是440Hz,但钢琴和二胡的声音相差有多远!即使都是二胡,一把好的二胡和街上乞丐的二胡,音质相差也是非常大,我们在做电脑音乐的时候,要面对各种各样的音色,同样是A,同样的振动频率,音色则千变万化!这究竟是怎么回事?不是振动频率都一样吗?怎么会声音不一样呢?
呵呵,音质的不同,是由于频谱特性和包络的不同而造成的。这要从波的构成说起。我们多次说到正弦波,正弦波是什么?它是最纯的波,是构成一切波的基础。也就是简谐运动所产生的波。它的波形是正弦函数的曲线波形,正弦函数是初中课本里的知识,大家应该都知道吧!
失真是一个令人害怕讨厌的词语, 大概是由于它的负面意义吧。一直以来,在电声产品上,失真都是一个重要的指针。但对发烧友来说,失真的真正意义在哪?当一个讯号经过传输,或经过放大,理论上来说要保持和原讯号完完全全不变是不可能的,故此,从技术的角度看,人们总希望它的失真度越小越好。可是近年大部份资深发烧友都会同意,在听感上来说,失真度这指标却不能有效地反映器材的好声程度。如方才说过,既然讯号经过传输或放大不能保持和原讯号完完全全一样,其间一定出现一些变化,这变化是什么呢?大体不外乎"加多"和"减少"。"减少"这概念较容易明白,就是原讯号在传输或放大过程中遗失了一些东西。至于"加多"就有较复杂的内容了,简单来说,就是在传输或放大过程中,衍生出一些既源于原讯号又有别于原讯号的东西。由于这些都是原来没有的,故也只能是失真的部份内容。
在听感上,这类衍生物有时竟会有神奇的作用,譬如说,一些新增的谐波,明显起了像味精的作用,喜欢的人会觉得加了声音更音乐化。又如话筒效应(microphonic)又提供了一些发烧友用作调音的一种有效手段。甚至乎相移(Phase Shift),这个一听起来都不像好东西的,也可以巧妙地被利用来美化音色。在录音过程中加进激励效果使低音冲激力更大更结实,就是运用了相移这东西。于是有一派以最后听音为取舍的,大叫失真无伤大雅,因为如果把失真换成"美化物",或"味精",相信人们对之的抗拒会大为减少,而另一派主要是工程师,却大声说:"数字胜于雄辩"(numbers don\'t lie)。这样的争论,旷日持久,究竟谁是谁非? 这里,我们先不用发烧友这概念,因为一般人可能会倾向于认为发烧友是一些走火入魔的怪人,上面的争论会对什么人有最大的影响呢?答案是喜欢音响的人,这也就是英文的Audiophile,音响爱好者了。
至于谁是音响爱好者,这本身已有很大争议。我想这应该涵盖一切喜欢音响技术和听音乐的人,而不应把它局限于拥有价值连城的Hi End器材的一小撮。相信大部份读者发展音响的爱好,往往都是由喜欢听音乐开始,而最先接触或使用的都会是一些普及的器材。我还记得在小三的时候跟?邻家的大孩子一起自己弄矿石收音机,那时候从晶体耳塞传来的音乐,至今难忘,当然晶体耳塞根本不能提供什么低频,可是它的中频瞬变,与及高音的表现,都不是一般晶体管收音机的小扬声器所能比拟。虽然后来才知道AM广播的高频只有7 KHz,连谐波也不会高到10 KHz,但当年的简单矿石收音机却开始了我往后漫长的发烧历程。还记得多年前到香港电台听他们第4台的每月音乐会,在不太大的一个录音间里听钢琴独奏。当时的感受非常美好,音色通透自然。于是心?想,如何在钢琴前放两支胆咪,第三支挂高以收取堂音,在混音之前经胆器材调校…想得很远。但当回到现场的乐音中,我很快明白,要重现当时的效果,要重拾当时聆听者的感受,恐怕人类还要作很大的努力。说回先前的争论,以发烧友为主的一派,大可称之为主观主义者(subjectivist),他们坚持现今对失真的了解和运用还很有限,故失真的测量并不是故事的全部。至于以工程师为主的一派可称为客观主义者(objectivist),他们坚持以科学手段去测量和区分器材的优劣。现实可能确是由矛盾组成,综观各种失真的被发现,被测量,以至人们找出对策,诸如总谐波失真,当改善它之后,原来带来了TIM瞬态互调失真;又譬如CD的jitter,被发现和对付,还只是很近年的事。至于两派谁对,我想两者各有各对,因为他们争论的不是同一样东西。发烧友其实不自觉在听感上找寻自己的喜好,而工程师却力图客观地找出衡量器材的标准。故此争论的答案是客观测量标准并不能决定主观的个人喜好。
有人喜欢无源前级,有人反对,一下子大家都升级到什么音乐感等抽象名词上争论,其实这只是两种个人喜好的争论,是两种不同的主观立场。
说实在一点,他们争论的,其实不是音乐回放的表现,而是两种前级本身的特有音色。究竟讯号经过这两者,有多少"加多",有多少"减少",工程师插到其中,又能否排难解纷,抑或是会使浑水更浑。这一切,由读者自己下答案好了。
★什么是asio
ASIO的全称是Audio Stream Input Output,直接翻译过来就是音频流输入输出接口的意思。通常这是专业声卡或高档音频工作站才会具备的性能。采用ASIO技术可以减少系统对音频流信号的延迟,增强声卡硬件的处理能力。同样一块声卡,假设使用MME驱动[1]时的延迟时间为750毫秒,那么当换成ASIO驱动后延迟量就有可能会降低到40毫秒以下。
理解ASIO的含义
  也许你仍无法认识到解决音频延迟的具体意义,那么,我们姑且换一个角度来看问题:许多朋友都试过用计算机与互联网进行语音通话,就连著名的聊天工具OICQ都有此功能。其实互联网上的语音通讯跟电信部门提供的IP电话是同样机理,只不过由于网络带宽的限制而使得前者的声音延迟现象远比后者严重得多。当话音的延迟在一定的范围内时,人们会觉得尚可接受;但如果延迟量实在太大(比如说每说一句话都要等到5秒以上),那么大家就会觉得这是无法忍受的了。
谁会需要ASIO
  普通声卡在播放音频流的时候是有延迟的,尽管一般用户都不易察觉到它的存在。毕竟,对于播放影碟和双声道的MP3音乐以及玩游戏来说,几百毫秒的声音延迟对应用的影响根本是微乎其微的,完全可以被忽略不计。但是,对于专业的录音师和音乐制作人来说,这几百毫秒延迟所带来的后果就好比我们普通用户要面对响应极慢的互联网IP电话那样,同样是不能容忍。试想,当按下一个琴键时,要经过0.6以上的时间才能够听到声响,恐怕任何演奏者都很难发挥其正常的水平,更无法控制音乐表演的情绪;录音师进行后期制作的过程中,需要给不同的音频信号做相应的实时效果处理,并对分轨录制的多通道音频流进行混音,以得到最终的双声道立体声或是5.1声道的环绕声格式。在对多个声部的音频进行缩混时,如果声音有延迟且延迟时间各不相等,那么多个声道之间的信号同步就会成为大问题,录音师就会因此而无法对混音的结果进行准确判断。为此,他们十分迫切需要一种能够让音频设备实现“零延迟”的技术,这个技术就是Steinberg定义的ASIO。
ASIO的本质
  为了实现“音频设备零延迟”的理想,著名的音乐制作软件Cubase VST的开发者Steinberg公司提出了被称为Audio Stream Input Output的标准规范,其目的是为了让各硬件厂商开发出来的设备能够很好地与Steinberg的音频处理软件Cubase VST相结合,以使其在数字音频处理和软件音源模拟方面发挥出最佳的性能水平。ASIO完全摆脱了Windows操作系统对硬件的集中控制,它能实现在音频处理软件与硬件之间进行多通道传输的同时,将系统对音频流的响应时间降至最短。根据ASIO规范中定义的细节,声卡厂商可以为其硬件产品编写出高效能的ASIO驱动程序,使用声卡硬件对音频流的响应时间降低到十几毫秒以内。要知道,即便是对于那些极其苛刻的专业音乐制作人,这样低的延迟量也是根本无法察觉到的。
ASIO与DirectSound
  ASIO的目的在于最大程度地降低系统播放音频流时的延迟时间。也许有读者会因此联想到DirectSound――不错,ASIO跟DirectSound的确十分相似,二者都是以设法绕过Windows操作系统对硬件设备的控制、直接与硬件端口取得通讯的思路来实现提高响应速度的目的。不过,ASIO的革命性要比DirectSound更彻底一些:如果把DirectSound比喻成用高级语言实现的程序,那么ASIO就是用汇编代码构成的程序――不仅结构更为紧凑,效率也大为提高。更何况,ASIO不仅是驱动上的革命,还需要硬件芯片的支持。在驱动与硬件的紧密结合下,ASIO将延迟降至极低的程度是必然的事情。
  不过,如果你的声卡仅支持ASIO而不支持DirectSound,那么就无法用Windows任务条上的小喇叭来实现音量控制,而运行最常用的一些娱乐软件,诸如超级解霸和WinAmp等的时候,也无法通过播放器界面中的音量推子来控制声音的大小。
  某些声卡可以同时支持MME、DirectSound、ASIO、GSIF[2]等多种标准,并通过软件实现不同兼容方式之间的切换。对于那些需要兼顾专业创作和日常应用的朋友而言,这样的声卡无疑是十分方便的。
图:用软件实现兼容标准的切换
哪些声卡支持ASIO
  并非所有的声卡都能够支持ASIO。如前所述。ASIO不仅定义驱动标准,还必须要求声卡主芯片的硬件支持才能够得以实现。在过去,只有那些价格高贵的专业声卡,在设计中才会考虑到对ASIO的支持。我们日常所用的声卡,包括创新过去的SB Live!系列都属于民用卡的范畴,所以没有哪一款是配备了ASIO驱动的。
  有趣的是,SB Live!的主芯片EMU10K1本身支持ASIO,只是这一性能并未在创新自带的LiveWare! 3.0驱动中体现出来。因此,当你将SB Live!的驱动程序换成采用同样规格设计的E_mu APS录音卡的驱动后,音频处理软件就会报告说找到ASIO!
  另一个比较有意思的例子是采用CMI8738芯片的各种多通道声卡。CMI8738本身也是具备ASIO的潜质,只不过至今还没有合适的驱动将其发挥出来。
  首款公开声称彻底支持ASIO技术的民用声卡是创新最新推出的SoundBlaster Audigy。这款SB Live!的换代产品不仅提供了高达24bit / 96 kHz的声音品质,而且还全面支持ASIO、SB 1394等最新的先进技术。SB Audigy的面市,使得民用声卡跟专业声卡之间的距离又缩小了一层。
如何判断与应用ASIO
  在音频处理软件的菜单栏中找到“Setup Preferences Audio”或是“Setup Audio Hardware”,在Device下拉选单中会列出当前可用的音频设备。如果声卡不支持ASIO,那么下拉选单中就就只会显示出ASIO Multimedia Driver一项,这实际上是MME驱动对ASIO的软模拟;如果声卡使用的是ASIO驱动,那么在此下拉选单中还会有另外一项,例如MAYA ASIO Driver或SB Audigy ASIO。
图:设置ASIO
  将软件的音频输出设置为ASIO设备后,播放多轨音频、使用实时效果器以及使用VSTi软音源时就会得到近乎完美的效果。不过,要想真正达到“零延迟”(指延迟时间在10ms以下),还须对ASIO设备的缓冲区进行设置。
  单击音频属性设置中的Control Panel打开ASIO控制对话框,单击Advance按钮进入高级设置。这里最重要的参数是Buffer Size,也就是音频缓冲区的大小。一般来说,缓冲区设置得大一些,可以增加系统的稳定性,缓解因数据传输或处理过程中的速度差异而导致的爆音现象;而把缓冲区设置得小一写,则会提升系统的响应时间,减少音频延迟。总之,缓冲区的大小设置,需要根据你所用电脑的CPU和内存等硬件的性能而定。
  设置好音频缓冲区后,音频软件会提示说环境设置已改变,要求进行测试以保证将来的工作正常。测试的主要内容是检查数据包是否会有丢失,整个过程大概需要数十秒至1分钟左右。当看到如下图所示的成功信息后,你就可以在音频处理软件中充分享受到“零延迟”所带来的种种乐趣了!
SNR:(signal to noise ratio)信噪比也就是声卡抑制噪音的能力,单位是分贝(dB,decibei);声卡处理的是我们有用的音频信号,而噪音是不希望出现的音频信号,如背景的静电噪音,工作时电流的噪音等等,应该尽可能的减少这些噪音的产生,在正常工作状态,没有出现饱失真和与截止的情况下,有用信号的功率和噪音信号功率的比值就是SNR,SNR的值越高说明声卡的滤波性能越好,声音听起来也就越清澈。
[本帖最后由 民工丙 于
16:33 编辑]
----------------------------------------------? 本人有隐性的心理障碍,正在治疗中……breaksfans:
回复时间: 16:34
★音调,音色,响度
声音的三个特征:音调,音色,响度。音调表示声音的高低,当我们听各种不同频率声音的时候都会有一种高音发声的位置来自较高处,而低音发声的位置来自较低处的感觉,这就是音高 (Pitch) ,或称音调 (Tone);音色是指基本周期内的波形;响度是单位时间内通过垂直于声波的传播方向的单位面积上的平均声能。单位为“W/m2”。
音调与频率有关;响度与振幅有关。
以听觉心理而言,即声音三个特征是:音的大小(Loudness),音高 (Pitch)与音(Timbre)。
以物理特性而言,声音是一种振动,或者说是一种质点如空气分子位移或速度的交替变化。又或是空气密度一再重复地改变其疏密度的振动状态,逐渐扩大於周遭空间的一种波动现象。如果我们用以表示振动状态的基本量度,有振动强度,振动频率与振动波形三种。声音的大小略等於振动的强度,音高略等於频率,音色极近於波形。
一.音调(音高)
声音种类很多,每种声音各有自已的特征。声音的特性中有一种叫做音调。
例如女生的声音比男生高,钢琴右键的声音比左键的声音高。这是因为发声体在单位时间内声波振动次数(频率)不同所造成的。一般而言,我们还会有一个听觉的经验,就是较大物体振动的音调较低。而较小物体振动的音调较高,例如大鼓振动声的音调较低。余振也较长,小鼓的音调较高,余振也较短。
什么是音调呢?
解释音调的最好办法是用音阶。
音阶*的相对频率
音律符号和名称
汉语拼音名称
9/8 10/9 16/15 9/8 10/9 9/8 16/15
*音阶就是一组顺次的纯音,其中第一个纯音跟末一个纯音之间的音程等于1个8音度。
你大概知道什么是音阶吧。自己照音阶唱一唱。唱吧,张开口来唱!Do, re, mi, fa, sol, la, ti, do! 注意,音调越来越高。
音阶是由不同音调的声音组成的。每个声音都有它自己的音调。所以,音调表示声音的高低。音调不是表示声音的大小。
音调是怎么形成的呢?
音调起决于音源的振动频率-------物体在一秒钟内完成周期性振动的次数。单位:赫兹(HZ)。一赫兹就是一秒钟振动一次。
物体振动得越快或振动频率越高,音调越高。物体振动得越慢或振动频率越低,音调越低。长笛的吹奏声属于高声调。大号的吹奏声属于低声调。是因为长笛的振动比大号的振动快。
词是语言的最重要部分。但音调也是重要的。当你说话时你的音调在不断变化。音调的变化增加了词的含义。它们帮助你表达你想说的意思。
音调变化也是音乐的最重要部分。你能想像只有一种音调的音乐吗?你能想像只发出一种音调的吉它或钢琴吗?如果没有音调变化,世界将成为多么单调无味啊!
音调是怎样变化的呢?
要改变音调,就要改变振动的快慢。下面就是改变振动的快慢的因素。
▲物体越绷紧,振动就越快。它的音调就变得越高。
▲物体越绷松,振动就越慢。它的音调就变得越低
▲物体越短,振动就越快。它的音调就变得越高
▲物体越长,振动就越快。它的音调就变得越高
3. 厚度或粗细
▲物体越薄、越细,振动就越快。它的音调就变得越高
▲物体越厚、越粗,振动就越快。它的音调就变得越高
4. 语音音调的变化
语音产生于喉头。喉头有声带。声带能改变形状和变化。
当你不讲话时,声带没有合拢在一起。它们没有发生振动。
当你讲话时,声带闭合,从肺部出来的气流通过声带,使它发生振动。这振动就产生声音。
当你讲话时,声带的紧度跟着发生变化。两条声带还作稍稍靠拢或分离稍远的运动。这些变化引起音调的变化。
一些声音(音波)的频率
声音(音波)
频率(HZ)
人类的肺部机能
人类心音波
老鼠可以听到的低频率
蜜蜂飞行时翅膀的频率
狗可听到的最高频率
一般人能够听到的声音频率
一般人能够发出的声音频率
对一人般人敏感的声音频率
汽笛发出和声音
钢琴上的最低音
钢琴上的最高音
C调(dou)频率
鼓或大提琴
长笛或哨子
现代技术已得到的高频超声波
音量:声音具有能量
分贝:量度声音的单位
音量的范围很广。有些声音象人的低语或鸟的啁啾,都是音量很低的,它们是“轻柔的”声音。其它声音,象喷气飞机的轰呜或炸药爆炸,都是很大的声音。在事实上,有些声音响得使我们不得不捂住耳朵。
在一天的生活中,你都在控制音量的各种变化。你调节无线电收音机或电视机的音量。你变化自己说话的响度。有时,人家对你说:“讲得响一点,我听不见。”有时,人家又要你“说话轻一点”。这不是经常听到的吗?还有这样一句话,也是常听到的:“请把你的无线电音量开小一点,它要震破我的鼓膜了!”
音量的大小是由什么引起的呢?
你已经知道,音高或音调取决于频率。频率是物体在每秒钟内的振动次数。
音量却不同,它取决于声音所具有的能量。声音的能量决定于介质中声波的振幅。如下图一所示:
声音的振幅越大,能量越大,音量越大。严格上讲,谈音量涉及到两个相关而又不相同的概念-----声强和响度。
物理学上定义:单位时间内通过垂直于声波的传播方向的单位面积上的平均声能叫声强。单位为“W/m2”。
能引起人的听觉的声波,除要求频率在20HZ~20000HZ外,还要求声强范围在10-12W/ m2~1 W/m2。可见声强的范围很大。在声学中,常用“声强级”来描述声波在媒介中各点的强弱。规定声强I0=10-12W/ m2为测定声强的标准。若一声波的声强为I,则比值I/I0的对数,叫做声强I的声强级L,即L=lg(I/I0),L的单位为“贝尔”。由于这个单位太大,实际上常用它的1/10,即“分贝”为单位。所以“声强级” L=10lg(I/I0)分贝。用声强级表示声强,不仅量度上方便,由于人对不同频率的声波敏感度不同,因而声强相同、频率不同的声波听起来响度有所不同。即客观上音量相同,主观上人耳感觉音量有差别。但人耳感觉到的声音的响度正是近 地与声强级成正比。
即用“分贝”作为响度的单位。“分贝”数越高,声音越响。
“分贝”值从零起算。零“分贝”的声音是人类听觉的起点。140分贝的声音可以损失我们的耳朵。例如,你可把你的无线电收音机或立体声收音系统开得非常响?长时间地听音量极大的音乐可能减弱你的听力--------而且永久减弱。
一些声音的声强级、声强和感觉到的响度
声强级(dB)
声强(w/m2)
听觉阈(闻阈)
人能听到的最小声音
10―12~10―10
交谈(轻)
住宅(静)
办公室(静)
10―10~10―8
住宅(闹时)
办公室(平均)
10―8~10―6
10―6~10―4
10―4~10―2
耳朵开始感觉到痛感
三、音品(音质,音色)
基音:物体振动时能够产生的最低音
的意义。目前正是根据各种乐器声音的频谱、基音和各次谐音的相对强度,用电声方法进行模拟来制作电乐器。
在钢琴上弹奏某一首歌曲,在吉它、小号或长笛演奏同一首歌曲。它们的音调或声调都是相同的,但每一种乐器的“声音”各不相同。你可以完无困难地把它们分辨出来,每一种乐器都有它本身特有的声音,或特殊的音质。
音质使我们容易辨别各种声音。以说话为例,假如有一个朋友在拐角处叫你。是谁在叫你呢?你从音质上就可以分辨出语音。声音怎么会有特殊的音质呢?
音叉仅以一种频率发生振动。但大多数的发音体不是这样。大多数的发音体都同时发生不同频率的振动。每一种振动频率产生它自己的音调。
试以一根振动的弦为例。整根弦的振动产生一定的音调。同时,这根弦各个部分或各个分段的振动就较快,结果产生了较高的音调。
▲ 由整根弦产生的音调叫基音。它是这根弦能发出的最低音。
▲ 由弦的分段产生的较高的音调叫做倍音。 倍音的音调的高低取决于弦分成多少段振动。振动的段数越多,音调越高。
基音和倍音混和在一起,决定一个人的音质。许多声音都有一种以上的倍音音调。
若干基音、倍音和音量以各种不同的方式的组合产生各种不同音质的声音。不同de声音的声谱图不同。
我们知道在大自然界中是没有正弦波的纯音声波的,在大自然中物体所发出的声音皆为复杂的波形。各有各自,这种复杂的波形除了基本频率的波形之外。还会有一系列的谐振频率,也就是所谓的「 泛音 」(Harmonic)。它与主音调有一定的「倍音」关系,例如某物体振动之基本频率为240Hz。也会发生480Hz(二次谐波)、720Hz(三次谐波)…等频率,每一个物体的倍音组成成份都不相同,这种不同物体发生不同的倍音成份就是音色(Timbre)。
乐器的基音音频范围约在20Hz~4000Hz之间,那麽音频既然只能到4000Hz。那麽音响系统的频率响应为何需到20KHz 才够?那也是因为上述的频率都是乐器的基音,而乐器的声音除了基音之外,也有一系列的的泛音存在。例如钢琴的基音最高为4186Hz,但是泛音却可以高达16KHz 。而且每一种乐器的泛音组成的成分和比例也都不一样。所以每一样乐器的声音也都不一样,这就是乐器音色幻妙无方,变化不可捉摸的地方。
小提琴与小喇叭的发出同一,但是这两件乐器的音色就硬是不一样。这就证明了小提琴与小喇叭的泛音成份不同之故。
★话筒的各项参数指标定义
无论你是选择电容型MIC或是动态型MIC,了解它的技术指标是必须的,下面我就来解释下相关的技术指标,也许能为你挑话筒作个参考!
指向性(拾音模式)
它表示MIC捕获周围的全部声音或部分声音的能力。
主要有以下几种:
无方向拾音
能够捕获来自在开阔空间的全部声音
心形指向(单音指向)
心形拾音只能接受来自麦克正前方的声音,对于侧面的声音很少响应,后面的声音完全不响应。心形拾音MIC对于家庭录音来说是个很好的选择,由于这种MIC对于后面及侧面的声音几乎忽略掉,所以能减少许多不必要的噪音,只能专注与捕获你的声音。这也是为什么用一些好的话筒录音,噪音反而小的缘故!
8字指向(双向拾音)
它能同时响应来自MIC前方和后方的声音,
能够产生很好的立体麦克场。比较适合录制古典音乐
也就是话筒内阻的大小,专业录音室用的是低阻抗的话筒,因为能是信号衰减的现象.一般在200欧左右
是指话筒在同样的条件下对各频率的声音的输出电压,也就是对低,中,高频的拾音效果。厂家一般会有张频率响应的曲线图,理论上这条线是越平坦越好,有时这条线也反映了话筒在不同频率的特性。
所谓的灵敏度即是在定点以一定的声音源量测麦克风在无负载下收音后的输出电压除以输入音压而产生的系数。(上面的话看不懂就算了,当我没说。哈哈! )灵敏度越大,表示输出电压越大,注意音压的参考值有时会有不同,灵敏度常以负数dBm(or dBV)表示,
所以注意-40dB的灵敏度要比-48dB来得高哦。
指的是有效信号与背底噪声(底噪)的比值,有百分比表示,其值越高,则说明因设备本身原因而造成的噪声越
是指当声音的增益发生瞬间突变,也就是当音量骤然或突然变动时,设备所能承受的最大变化范围。这个数值越大,表示动态范围越广,能表现作品的情绪和起伏。
SPL(声压级)
从扬声器的角度来解释这个概念,SPL是指输入扬声器单元1瓦的电功率,在扬声器轴线方向离开1米远的地方测得的声压级大小
★表现声音的定位语:
音色:声音会如光线一样是会有颜色的,不过它并不是用眼睛看到的,而是用耳朵听到的。音色愈暖声愈软,音色愈冷声越硬。音色可以用“美”“高贵”等亲眼来形容。如听小提琴演奏时,你可以说这把小提琴的音色真冷或真暖等说法。
音场感:这项包括音场的形状、前后位置,高度、宽度、深度等项、这些项目能很具体表现出来也即是说音场的临场感。这是聆听者与喇叭位置,空间三者互相关系达到一个比较微妙、恰当的融合点才表现出来的感受。
层次感:这是音场中由前往后一排排乐器的发声清晰程度,以及乐器与乐器之间的间隔清楚程度。这程感觉有如一截园木横截面木头年轮一圈一圈的排列感。
定位感:简单讲就是人声或乐器声发生点清楚、确定位准确。通常说,声音发飘即是指定位感不好。在音场中,靠两侧的乐器定位感通常会比较好,而音场中央的乐器定位感会比较差。这也是环绕声音响效果中加中间声道的原因之一。加中间声道对定位感有所帮助。
透明感:最好的透明感、声音是不会刺耳的是最耐听的,每对人耳对于耐听与不耐听的感受程度都不尽相同的。因此对于透明感的好坏也就有不同的标准。
结像力与形体感:顾名思义,强像力就是将虚无漂渺的音像凝结成实体的能力。换句话讲,也就是让人声或乐器声的形体展现的能力。结像力好的音响器材会让音像更浮突,更具有立体感。
解析力:音乐细微的变化都能表现得清楚,既有低电平时的解析力,亦有高电平时的解析力,综合低电平与高电平的解析力,就是我们所谓的解析力。
整体平衡性:主要是讲高、中、低频段的适当量感分配。合理的高、中低量感就是整体平衡性,听音乐感觉到乐曲柔和但有力度,明亮,欢快而又有层次,明晰、融合而又立体感。临场感强,那么好的音响器材其整体便体现出来了。
松香味:一般用于对弦乐的评价,常见的说法有”松香味十足”、”松香味浓郁”等。实际上,这是一种音高较高(频率较高)、响度较低、有毛刺感但听上去使人愉快的音。
弹性:常用于对低频的评价,较抽象,具有力度、饱满和使人愉快感。
冷、暖:二者都是愉快的,冷的音质清澈、有力度、甚至略有毛刺,暖的音质明亮、圆润、力度不是那么充沛。丰满、干瘪:丰满的声音饱满、宽广、融和、令人愉快且具有一定的响度,而干瘪的声音单薄、分割、干涩、令人难受且响度一般较小。
宽、窄:二者直接与重放节目的频率范围有关。如果重放节目高音乐器和低音乐器都能很好的表现出来,给人以宽广的感觉,就叫做宽。反之,重放节目时基本听不见高音乐器和低音乐器,只有中频,就象在电话里听到的声音,令人难受,这就是窄。
松、紧:一个声音如果比较散、比较圆润、有一定水分且不使人难受就叫松,而声音有力度、但比较干涩灰暗就是紧,使人不大愉快。
肥、瘦:肥指过于丰满,指低频过多且水分不少,亦即有一定的频率失真(低频份量过多)并且混响偏重。瘦的概念与干瘪相当。
★关于复合音,分列音,泛音和基音的问题
绝大多数物体在振动时,振动的不仅是整个物体,它的各个部分也分别在同时振动,这种振动叫复合振动。复合振动所产生的音叫复合音。其中整体振动所产生的音叫基音,各个部分振动所产生的音叫泛音,统称为分音。把分音按照音的高低从低到高排列起来,就叫做分音列。从基音开始,分别叫做一分音、二分音、三分音等等。把分音列去掉基音,就叫做泛音列,二分音就是第一泛音、三分音就是第二泛音等等。
=======================================
打个比方说,基音和泛音在蹦床上面,只有基音在跳,而泛音不跳的时候,泛音也会随基音的跳动那个而有小幅的上下摆动。
而我们所听到的声音是基音与泛音共同的震动引起的,这就叫做复合音。
基音和泛音都叫分音,把他们按照音高次序排列,就是分音列了。要是只排泛音的话,那么排出来的就是泛音列。
顺便说一下,分音列与泛音列在很大成度上是听不出的,只有基音最清楚,分音列是测频仪测算频率后转换成音高的,或者是计算得出的。
如果你想听到,从钢琴的中间一组往左边弹,你会发现弹到往左弹时好像在有一个于先前的音阶不同调的另一个音阶,而且这个音阶的声音会越来越明显,这就是泛音。
这部分内容对于普通的学习器乐或声乐的学生不是很重要,但的确有必要记住,也很不好理解。但这毕竟也是音的现象。
但这部分内容对于和声学或是音响学来说就很重要了,它是音的现象的基础
一、什么是合唱?
1、合唱广义上说,是包含同声的、混声的齐唱、轮唱、领唱、对唱、重唱以及和声的、支声的、复调的、有伴奏的或无伴奏的一种集体歌唱艺术。(周正松,《合唱与指挥》,华南理工大学出版社96年版)
2、但严格来说齐唱、重唱,一般不放在合唱的范畴中。
3、至于几个人为某一首歌曲做的和声,不管单声部好,多声部好,一般也都不包括在合唱的范畴之内。
二、什么是好的合唱?
1、凡是唱歌,必是逃不脱“气、声、字、腔”四个要求,气息、发声、咬字、共鸣哪一块短了都不是好的歌唱。
2、合唱讲求共性,在做到唱歌的基本要求的基础上,众人合一是最高标准,简单说:和谐。
参考资料:劳资天才!!!!!
声道:是一个记录产生一个波形还是两个波形,即一个记录产生的声波个数.
2.1声道:双声道外加一超重低音.
5.1声道:五声道外加一超重低音
音箱所支持的声道数是衡量家庭影院套装的的重要指标之一。一般来说构成家庭影院至少需要4声道,比较常见的是5.1声道,目前最多的可以达到7.1声道结构:
严格的说2.1声道不能算是家庭影院,不过2声道已经可以构成最简单的立体声。声音在录制过程中被分配到两个独立的声道,从而达到了很好的声音定位效果,这种技术在音乐欣赏中显得尤为有用,听众可以清晰地分辨出各种乐器来自的方向,从而使音乐更富想象力,更加接近于临场感受。其中“.1”是指低音音箱,也叫低音炮,用来播放分离的低频声音,在Dolby环绕中用来播放LFE声道。
2声道立体声可以很好的表现听者面前的声场,但是却无法表现侧面和后面的声场,因此人们在听者的后方加上两个音箱,一左一右,形成4声道,构成基本的环绕声场。其中“.1”是指低音音箱,也叫低音炮,用来播放分离的低频声音,在Dolby环绕中用来播放LFE声道。4.1声道已经可以比较好的表现声场,听音者可以感受到三维空间感。四声道环绕规定了4个发音点:前左、前右,后左、后右,听音者则被包围在这中间,四声道系统可以为听众带来来自多个不同方向的声音环绕,可以获得身临各种不同环境的听觉感受,给用户以全新的体验。
5.1声道源于4.1声道,它在4.1声道的基础上又增加了一个中置声道,放在听者的正前方,作用是加强人物对白的效果。其中“.1”仍然是指低音音箱,也叫低音炮,用来播放分离的低频声音,在Dolby环绕中用来播放LFE声道。5.1声道是成本和效果的一个非常好的平衡点,可以出色的建立环绕声场,突出电影的人物对白。5.1声道是最常见的家庭影院音响形式,已广泛运用于各类家庭影院中,一些比较知名的声音录格式,譬如杜比AC-3(Dolby Digital)、DTS等都是5.1声道系统。之后的6.1声道和7.1声道都是建立在5.1声道基础之上,为数众多的声音媒体在录制的时候就采用5.1声道录制,播放时当然要以5.1声道播放。
6.1和7.1声道
6.1声道和7.1声道两者非常接近,它们都是建立在5.1声道基础上,将5.1声道的后左、后右声道放在听音者的两侧,在听音者后方加上1或者2个后环绕。其中“.1”仍然是指低音音箱,也叫低音炮,用来播放分离的低频声音,在Dolby环绕中用来播放LFE声道。和5.1声道相比,6.1和7.1声道可以获得更真实的从头顶或身边飞过的效果,具有更稳定的声像衬托电影氛围及音乐,使无论是影院还是家庭欣赏都具备更和谐的环绕效果。现在已经有越来越多的电影在录制的时候就采用6.1或者7.1声道,因此在未来,使用6.1和7.1声道的家庭影院也会越来越多。
一般来说,一套家庭影院有多少个音箱,一般也就表示这个家庭影院套装最多支持几声道,比如包括低音音箱在内有6个音箱,那么就支持5.1声道。当然,在少数情况下,家庭影院可以没有低音音箱,或者将低音音箱和前置音箱做在一起,并且也有一个声道用多个音箱播放的情况。此外,不同声道之间是兼容的,6.1声道固然可以播放2声道立体声节目,2.1声道也可以播放6.1声道节目,虽然不能实现多声道环绕效果,但不会出现无法播放的情况
----------------------------------------------? 本人有隐性的心理障碍,正在治疗中……breaksfans:
回复时间: 16:36
★监听耳机:
很多网友对于“专业监听”用的耳机感觉很神秘,似乎和平时用的随身听耳机、发烧耳机
完全不同,更有很多言论说监听耳机毫无音染、真实再现、胜过很多发烧耳机云云……,
其实,监听耳机并不神秘,而且很多网友心目中一提到监听耳机,就联系到电视画面上看
到的录音棚、电视台、广播电台用的监听耳机,实际上,监听耳机不仅仅在上述场所使用
,它的定义概念非常的广泛。
从使用用途上看,监听耳机分为录音棚监听、广播监听、扩声监听、专用(特种)监听等
,其中录音棚监听分为同期(现场返送)监听和缩混监听,现场返送一般就是把伴奏音乐
、节拍或音乐旋律送给录音的歌手、演奏者等,就好像唱卡拉OK播放的没有原唱的音乐一
样。目的就是要让每位
歌手、演奏者听清节奏和音乐,协调录音。所以对于这一类耳机的要求是不高的,但是前
提条件是耳机要选用封闭式或半封闭式的,因为录音用的电容话筒灵敏度都很高,一些微
弱的细节都会被拾进去,包括耳机里漏出的声音。当然,大多数上些规模的录音棚用的现
场监听耳机都还是比较
好的,如AKG K240M、K141、SENNHEISER HD250、HD270、BEYERDYNAMIC DT770PRO、DT100
、SONY MDR-7506等,因为好的耳机更容易让歌手投入。
缩混监听则是对耳机声音要求最高的了,它要求能够尽量真实的还原所有声音,尽量少的
音染和接近现场的声音定位,这也是发烧耳机追求的效果,所以此类耳机可以作为发烧耳
机来用。如AKG K240DF、BEYERDYNAMIC DT880PRO(现在型号是DT880)、SENNHEISER
HD250等,其中录音棚拥有量最大的当属AKG
K240DF。不过,反过来,发烧耳机就不是都能够当作监听耳机的,因为大多数发烧耳机的
音染比较严重,或者整个频段的频响曲线不够平直,或者相位特性不好,尽管听感可能会
相当不错,但是对于某些频段或者某些乐器,重放的效果可能会有缺陷,当然,高档发烧
耳机也可以在录音棚里
用的,如HD600,但是这也和录音师的个人喜好有关。很多录音师用习惯了某个型号的耳机
,已经养成了自己的听音习惯,一般是不会轻易更换自己用的耳机型号的。
还有一个很关键的,发烧耳机的制作材料一般使用ABS工程塑料比较多,结构比较复杂,相
对就不太牢固,而专业监听耳机的使用人士一般使用起来恐怕也不会太爱惜,而且使用的
频率是非常高的,使用的环境也会比较复杂,可能是室内、也可能是刮风下雨的室外,所
以要求要结构简单、
坚固耐用。BEYERDYNAMIC的专业监听耳机在电影制片行业使用率就非常的高,就是因为它
的全钢结构非常结实耐用,拍外景的时候不小心坐在屁股底下、掉在地上都不会轻易损坏
,可轻松拆卸清洗的耳罩也非常受录音师的宠爱――你总不喜欢脏兮兮的耳罩靠在你脑袋
上吧,我想发烧友们就很少去拆洗他们的耳罩吧,因为家里用很不容易搞脏的。
专业监听耳机和发烧耳机还有一个区别,因为录音师带着监听耳机干活的时候,不会像发
烧友欣赏音乐那样一张沙发一杯清茶,游哉游哉的,而是非常忙碌的,面前调音台的推子
、周边设备的参数旋钮、录音设备的电平什么的,都要及时的调整,人也是不停的在动,
对于耳机就提出了一个要求,要戴的比较牢靠比较紧一些,不能轻易滑落。所以,监听耳
机有一个参数就叫做average pressure on the ear(平均耳压),即耳机单元对耳廓的压
力值,专业监听耳机的耳压一般都大于发烧耳机。
还有一个小小的区别,我们常见到有的耳机的连接线是电话线那样的弹簧线,这样设计目
的是在使用时不容易被调音台等专业设备上的众多旋钮绊住。不过好像BEYERDYNAMIC做惯
了弹簧线的耳机,对于很多发烧型号的耳机,如DT880、DT831、DT931也都使用了弹簧线。
有的监听耳机设计上很有味道,比如AKG
K270S,你会发现它戴在头上才会响,摘下来就不响了!仔细瞧一瞧,原来耳机上设计了一
个微动开关,带上它耳机单元才接通,摘下来就断路了,这样设计的目的有两个,一来延
长耳机单元的使用寿命,二来在很安静的录音棚里面,摘下耳机之后就省得再去关掉耳机
音量的旋钮,保持录音棚里的安静状态,不至于影响其他监听音箱的工作。
当然,专业监听耳机和发烧耳机还有其他一些的区别,如耳罩的材料选用、隔音效果等等
,这里就不一一赘述了。
再说广播监听。广播监听主要是要求电台在播出节目的时候,节目主持人和嘉宾,以及导
播、制片主任等实时监听用的。说是实时,实际上也是有延迟的,因为很多电台都是采用
直播的形式,为了防止意外和一些不适合公开播出的谈话(如脏话、过激的言辞及突发的
反动言论等),需要延
迟数秒播出,这由专门的广播延时器来操作,这是题外话。这种播出要求监听耳机有极高
的语言清晰度和可懂度,能够过滤言语中影响清晰度和可懂度的杂讯,如低频干扰、电话
杂音等,当然,会有专门为耳机准备的均衡器在运作,但是耳机的素质要求还是比较高的
,现在是用量最大的莫过于AKG的K240M和K240DF,也有K100、SENNHEISER HD250、HD280P
RO,因为这些耳机的声音都比较偏干,语言清晰度比较高。
扩声监听,对耳机的要求则可高可低,普通舞厅的监听耳机,只要能听清楚播放的音乐、
语言内容,调试出比较满意的混响和人声的比例,预监听(PFL)准确即可,像SENNHEISE
R HD433、AKG
K70等低端耳机即可满足要求。DISCO舞厅一般使用单耳或双耳的封闭式监听耳机,要求低
频强劲、声压大、隔音能力强、结实耐用,如SENNHEISER HD25SP、PIONEER
DJ-1000、松下等的一些型号。对于演唱会、高档扩声场合来说,监听耳机的要求就高一些
,但是一般主监听都是专业监听音箱,耳机一般都作为辅助监听用,用高档一些的封闭式
或半封闭式的耳机就可以了,如AKG K240M、K240DF、SENNHEISER HD250、HD265、HD25等
专用监听,可能有的网友会问,啥叫作专用监听?其实,这种监听在我们周围比比皆是,
如寻呼台的寻呼小姐、电信局话务员等,她们戴的都是带话筒的封闭式监听耳机,要求也
是语言可懂度高。还有飞机上的飞行员监听、赛车手的调度监听、坦克乘员的指挥协调监
听、潜艇里的声纳监听
等,都根据不同的需要选用不同的特种耳机
人对于与声源的距离的感觉不是很好。在1m以内感觉较好,当离开数米时,就不准确了,需根据由于周围状况产生的音质变化和从地面、床等处来的反射声作经验性的判断。
但是,人对于声音在水平方向上的方位感觉是非常准确的。对于500Hz附近的声音,特别是在正面上,能够辨别约1°的方向的差别。随着声源的位置从正面偏移到正侧面,方位感觉就变得不准确了,例如在从正面偏移80°的位置上,能感觉的方向偏移是大约10°利用这样的人的耳朵的特性进行声场再现,就是立体声重放。
作为最简单的方法,是使用左右2个传声器,使左边传声器的信号从左边的扬声器发出,使右边传声器的信号从右边的扬声器发出,因此产生声音的移动和展宽,感觉到叫做深度的临场感。
人的听觉器官能辨别声源的方向。这是由于人的两只耳朵有一定的距离,从某点发出的声波传到两耳的路程就不相等,于是两耳听到的声音就有强度差(声级差)、时间差(相位差)和音色差,这些差别作用于中枢神经系统,使该系统对声音的方向做出判断。耳朵的这种特性叫做“双耳效应”。
由于双耳效应,我们坐在音乐厅里欣赏交响乐时,不仅能听出乐曲的旋律、判断出是什么乐器发出的声音,而且即使闭上眼睛,也能听出乐队是按各乐器发出声音的高低自左至右排列的:小提琴的声音来自左侧,大提琴的声音来自右侧,管乐器的声音来自舞台后部中央,打击乐器的声音来自舞台的右后方……。我们聆听到的这种层次分明、具有立体感的声音,就叫做立体声
再说采样率
简单来讲,采样率和比特率就像是坐标轴上的横纵坐标。
横坐标的采样率表示了每秒钟的采样次数。
纵坐标的比特率表示了用数字量来量化模拟量的时候的精度。
采样率类似于动态影像的帧数,比如电影的采样率是24赫兹,PAL制式的采样率是25赫兹,NTSC制式的采样率是30赫兹。当我们把采样到的一个个静止画面再以采样率同样的速度回放时,看到的就是连续的画面。同样的道理,把以44.1kHZ采样率记录的CD以同样的速率播放时,就能听到连续的声音。显然,这个采样率越高,听到的声音和看到的图像就越连贯。当然,人的听觉和视觉器官能分辨的采样率是有限的,基本上高于44.1kHZ采样的声音,绝大部分人已经觉察不到其中的分别了。
而声音的位数就相当于画面的颜色数,表示每个取样的数据量,当然数据量越大,回放的声音越准确,不至于把开水壶的叫声和火车的鸣笛混淆。同样的道理,对于画面来说就是更清晰和准确,不至于把血和西红柿酱混淆。不过受人的器官的机能限制,16位的声音和24位的画面基本已经是普通人类的极限了,更高位数就只能靠仪器才能分辨出来了。比如电话就是3kHZ取样的7位声音,而CD是44.1kHZ取样的16位声音,所以CD就比电话更清楚。
当你理解了以上这两个概念,比特率就很容易理解了。以电话为例,每秒3000次取样,每个取样是7比特,那么电话的比特率是21000。而CD是每秒44100次取样,两个声道,每个取样是13位PCM编码,所以CD的比特率是=1146600,也就是说CD每秒的数据量大约是144KB,而一张CD的容量是74分等于4440秒,就是639360KB=640MB。
位率,指音频经过压缩的数据速率,MP3位率包括如下(单位:Kbit/S)
32、40、48、56、64、80、96、112、128、160、192、224、256及320 Kbit/S,甚至有传闻中的384,不过我没看到过,音质可以接近CD。
----------------------------------------------? 本人有隐性的心理障碍,正在治疗中……breaksfans:
回复时间: 16:39
一 音频编码篇
 通常我们采用脉冲代码调制编码,即PCM编码。PCM通过抽样、量化、编码三个步骤将连续变化的模拟信号转换为数字编码。
1、什么是采样率和采样大小(位/bit)?
  频率对应于时间轴线,振幅对应于电平轴线。波是无限光滑的,弦线可以看成由无数点组成,由于存储空间是相对有限的,数字编码过程中,必须对弦线的点进行采样。采样的过程就是抽取某点的频率值,很显然,在一秒中内抽取的点越多,获取得频率信息更丰富,为了复原波形,一次振动中,必须有2个点的采样,人耳能够感觉到的最高频率为20kHz,因此要满足人耳的听觉要求,则需要至少每秒进行40k次采样,用40kHz表达,这个40kHz就是采样率。我们常见的CD,采样率为44.1kHz。光有频率信息是不够的,我们还必须获得该频率的能量值并量化,用于表示信号强度。量化电平数为2的整数次幂,我们常见的CD位16bit的采样大小,即2的16次方。采样大小相对采样率更难理解,因为要显得抽象点,举个简单例子:假设对一个波进行8次采样,采样点分别对应的能量值分别为A1-A8,但我们只使用2bit的采样大小,结果我们只能保留A1-A8中4个点的值而舍弃另外4个。如果我们进行3bit的采样大小,则刚好记录下8个点的所有信息。采样率和采样大小的值越大,记录的波形更接近原始信号。
2、有损和无损
  根据采样率和采样大小可以得知,相对自然界的信号,音频编码最多只能做到无限接近,至少目前的技术只能这样了,相对自然界的信号,任何数字音频编码方案都是有损的,因为无法完全还原。在计算机应用中,能够达到最高保真水平的就是PCM编码,被广泛用于素材保存及音乐欣赏,CD、DVD以及我们常见的WAV文件中均有应用。因此,PCM约定俗成了无损编码,因为PCM代表了数字音频中最佳的保真水准,并不意味着PCM就能够确保信号绝对保真,PCM也只能做到最大程度的无限接近。我们而习惯性的把MP3列入有损音频编码范畴,是相对PCM编码的。强调编码的相对性的有损和无损,是为了告诉大家,要做到真正的无损是困难的,就像用数字去表达圆周率,不管精度多高,也只是无限接近,而不是真正等于圆周率的值。
3、为什么要使用音频压缩技术
  要算一个PCM音频流的码率是一件很轻松的事情,采样率值×采样大小值×声道数bps。一个采样率为44.1KHz,采样大小为16bit,双声道的PCM编码的WAV文件,它的数据速率则为 44.1K×16×2 =1411.2 Kbps。我们常说128K的MP3,对应的WAV的参数,就是这个1411.2 Kbps,这个参数也被称为数据带宽,它和ADSL中的带宽是一个概念。将码率除以8,就可以得到这个WAV的数据速率,即176.4KB/s。这表示存储一秒钟采样率为44.1KHz,采样大小为16bit,双声道的PCM编码的音频信号,需要176.4KB的空间,1分钟则约为10.34M,这对大部分用户是不可接受的,尤其是喜欢在电脑上听音乐的朋友,要降低磁盘占用,只有2种方法,降低采样指标或者压缩。降低指标是不可取的,因此专家们研发了各种压缩方案。由于用途和针对的目标市场不一样,各种音频压缩编码所达到的音质和压缩比都不一样,在后面的文章中我们都会一一提到。有一点是可以肯定的,他们都压缩过。
4、频率与采样率的关系
  采样率表示了每秒对原始信号采样的次数,我们常见到的音频文件采样率多为44.1KHz,这意味着什么呢?假设我们有2段正弦波信号,分别为20Hz和20KHz,长度均为一秒钟,以对应我们能听到的最低频和最高频,分别对这两段信号进行40KHz的采样,我们可以得到一个什么样的结果呢?结果是:20Hz的信号每次振动被采样了40K/20=2000次,而20K的信号每次振动只有2次采样。显然,在相同的采样率下,记录低频的信息远比高频的详细。这也是为什么有些音响发烧友指责CD有数码声不够真实的原因,CD的44.1KHz采样也无法保证高频信号被较好记录。要较好的记录高频信号,看来需要更高的采样率,于是有些朋友在捕捉CD音轨的时候使用48KHz的采样率,这是不可取的!这其实对音质没有任何好处,对抓轨软件来说,保持和CD提供的44.1KHz一样的采样率才是最佳音质的保证之一,而不是去提高它。较高的采样率只有相对模拟信号的时候才有用,如果被采样的信号是数字的,请不要去尝试提高采样率。
  因为,根据耐奎斯特采样理论,你的采样频率必须是信号最高频率的两倍。例如,音频信号的频率一般达到20Hz,因此其采样频率一般需要40Hz。 而人耳收听的范围只能到23Khz以下,所以CD的采样率才是44.1Khz。22Khz×2=44Khz,考虑到一定的余量采用44.1Khz.
  随着网络的发展,人们对在线收听音乐提出了要求,因此也要求音频文件能够一边读一边播放,而不需要把这个文件全部读出后然后回放,这样就可以做到不用下载就可以实现收听了。也可以做到一边编码一边播放,正是这种特征,可以实现在线的直播,架设自己的数字广播电台成为了现实。
WAVE文件的编解码器
WAV文件格式是一种由微软和IBM联合开发的用于音频数字存储的标准,它采用RIFF文件格式结构,非常接近于AIFF和IFF格式。多媒体应用中使用了多种数据,包括位图、音频数据、视频数据以及外围设备控制信息等。RIFF为存储这些类型的数据提供了一种方法,RIFF文件所包含的数据类型由该文件的扩展名来标识,能以RIFF文件存储的数据包括:
# 音频视频交错格式数据(.AVI)
# 波形格式数据(.WAV)
# 位图格式数据(.RDI)
# MIDI格式数据(.RMI)
# 调色板格式(.PAL)
# 多媒体电影(.RMN)
# 动画光标(.ANI)
# 其它RIFF文件(.BND)
  RIFF是一种含有嵌套数据结构的二进制文件格式,每个数据结构都称为因一个chunk(块)。Chunk在RIFF文件中没有固定的位置,因而偏移量不能用于定位域值。一个块中的数据包括数据结构、数据流或其它组块(称为子块)等,每个RIFF块都具有如下结构:
typedef struct _Chunk
DWORD ChunkId; /*块标志*/
DWORD ChunkS /*块大小*/
BYTE ChunkData[ChunkSize]; /*块内容*/
  ChunkId由4个ASCII字符组成,用以识别块中所包含的数据。字符RIFF用于标识RIFF数据块,间隔空格在右面是不超过4个字符的ID。由于这种文件结构最初是由Microsoft和IBM为PC机所定义,RIFF文件是按照little-endian字节顺序写入的,而采用big-endian字节顺序的文件则用‘RIFX’作为标志。
  ChunkSize(块大小)是存储在ChunkData域中数据的长度,ChunkId与ChunkSize域的大小则不包括在该值内。
  ChunkData(块内容)中所包含的数据是以字(WORD)为单位排列的,如果数据长度是奇数,则在最后添加一个空(NULL)字节。
  子块(Subchunk)与块具有相同的结构。一个子块就是包含在其它块内部的一个块,只有RIFF文件块‘RIFF’和列表块‘List’才能含有子块,所有其它块仅能含有数据。一个RIFF文件就是一个RIFF块,文件中所有其它块和子块均包含在这个块中。
  WAV文件可以存储大量格式的数据,通常采用的音频编码方式是脉冲编码调制(PCM)。由于WAV格式源自Windows/Intel环境,因而采用Little-Endian字节顺序进行存储。
脉冲编码调制
  Claude E. Shannon于1948年发表的“通信的数学理论”奠定了现代通信的基础。同年贝尔实验室的工程人员开发了PCM技术,虽然在当时是革命性的,但今天脉冲编码调制被视为是一种非常单纯的无损耗编码格式,音频在固定间隔内进行采集并量化为频带值,其它采用这种编码方法的应用包括电话和CD。PCM主要有三种方式:标准PCM、差分脉冲编码调制(DPCM)和自适应DPCM。在标准PCM中,频带被量化为线性步长的频带,用于存储绝对量值。在DPCM中存储的是前后电流值之差,因而存储量减少了约25%。自适应DPCM改变了DPCM的量化步长,在给定的信造比(SNR)下可压缩更多的信息。
共同的执行过程
  在对WAV音频文件进行编解码过程中,最一致的地方包括采样点和采样帧的处理和转换。一个采样点的值代表了给定时间内的音频信号,一个采样帧由适当数量的采样点组成并能构成音频信号的多个通道。对于立体声信号一个采样帧有两个采样点,一个采样点对应一个声道。一个采样帧作为单一的单元传送到数/模转换器(DAC),以确保正确的信号能同时发送到各自的通道中。
WAVE音频格式的优缺点
  WAV音频格式的优点包括:简单的编/解码(几乎直接存储来自模/数转换器(ADC)的信号)、普遍的认同/支持以及无损耗存储。WAV格式的主要缺点是需要音频存储空间。对于小的存储限制或小带宽应用而言,这可能是一个重要的问题。WAV格式的另外一个潜在缺陷是在32位WAV文件中的2G限制,这种限制已在为SoundForge开发的W64格式中得到了改善。
二 有损与无损格式篇
1.无损压缩格式FLAC与APE对比
在音频压缩领域,有两种压缩方式,分别是有损压缩和无损压缩!我们常见到的MP3、WMA、OGG被称为有损压缩,有损压缩顾名思义就是降低音频采样频率与比特率,输出的音频文件会比原文件小。另一种音频压缩被称为无损压缩,也就是我们今天所要说的主题内容。无损压缩能够在100%保存原文件的所有数据的前提下,将音频文件的体积压缩的更小,而将压缩后的音频文件还原后,能够实现与源文件相同的大小、相同的码率。目前无损压缩格式有APE、FLAC、WavPack、LPAC、WMALossless、AppleLossless、La、OptimFROG、Shorten,而常见的、主流的无损压缩格式目前只有APE、FLAC。下面就针对这两种无损压缩格式进行一下对比!
APE是Monkey's Audio,一种无损压缩格式。这种格式的压缩比远低于其他音频格式,但能够做到真正无损,同时其开放源码的特性,也获得了不少音乐发烧友的青睐。在现有不少无损压缩方案中,APE是一种有着突出性能的格式,令人满意的压缩比以及飞快的压缩速度,在国内应用比较广泛,成为了不少朋友私下交流发烧音乐的选择之一。
FLAC是Free Lossless Audio Codec的简称,是一种非常成熟的无损压缩格式,名气不在APE之下!该格式的源码完全开放,而且兼容几乎所有的操作系统平台。它的编码算法相当成熟,已经通过了严格的测试,当在编码损坏时依然能正常播放。另外,该格式是最先得到广泛硬件支持的无损格式,世界知名数码产品如:Rio公司的硬盘随身听Karma,建伍的车载音响MusicKeg以及PhatBox公司的数码播放机都能支持FLAC格式。
前面已经说明,无损压缩是在保证不损失源文件所有码率的前提下,将音频文件压缩的更小,也就是说这两种音频格式都能保证源文件码率的无损。但两种压缩格式毕竟为两种压缩算法,下面列举一下两种压缩格式的异同点:
一、压缩比决定无损压缩文件所占存储空间
FLAC与AEP的压缩比基本相同,FLAC的压缩比为58.70%,而APE的压缩比则要更高一些,为55.50%,都能压缩到接近源文件一半大小。
二、编码速度考验用户的耐心,速度快者优
非常值得赞扬的是,FLAC与APE的编码速度都相差无几,这是因为两者的压缩技术是开源的,开发者可以借鉴两者在编码上的不同优势进行开发,不过目前编码速度最快的是WavPack和Shorten两种无损压缩格式,但这两种格式的非开源性限制了其普及。
三、平台的支持决定普及度
音频压缩不但需要硬件的支持,也需要的软件的支持,因此能够被更广泛的平台支持,也就意味着被更多用户使用。FLAC与APE在这方面做的都非常出色,能够兼容所有系统平台,现在无论您是Windows用户还是众多版本的Linux用户,哪怕您是Mac OS的忠实FANS,都无需担心无法使用FLAC或APE。
四、两者的开源特性,完全免费的技术
两者的开源特性,意味着任何组织或个人都可以免费使用这两种压缩技术,任何组织或个人都可以修改和发布基于这两种技术的新产品,这给众多MP3厂商降低成本提供了有力保障,且消费者也能够以相对低廉的价格购买到只有世界级MP3(例如:iPod支持ALAC)才支持的无损压缩音频、CD级的音质表现!
一、自我纠错能力,谁更人性化?
很多消费者都经历过MP3的爆音问题,然后归咎于MP3质量有问题,其实,很大一部分爆音是因为音频压缩过程中,编码的微小损坏,造成在解码时,处理出来的数据与音频不一致,导致爆音现象。无损格式压缩的不好也会导致编码损坏,而在处理这种问题时,FLAC的会以静音方式代替有损部分,而APE的处理则与常见的有损压缩格式处理的方式相同,以爆音方式代替有损部分。这一点FLAC设计的更人性化!
二、优化的编码结构,决定了解码的速度!
由于编码方式的不同,将影响两种无损压缩格式的解码速度,通常FLAC的解码速度比APE快30%,这是因为,FLAC只需执行整数运算,而无需执行占用系统更高频率和更大数据处理量的浮点运算。基于这一点,一般硬件均可完美实现实时解码。
三、方便的资源获取,意味着能够得到更广泛的应用与支持
无论FLAC还是APE,在资源获取上,两者都能通过网络搜索轻松获得!
通过以上的对比,相信很多用户对FLAC和APE的认识更加深了一些,单从技术角度讲,FLAC要明显比APE优秀,原因在于,FLAC是第一个开源的且被世界公认的无损压缩格式,有来自世界各地的顶尖级开发高手对FLAC进行免费的开发与技术完善,同时,FLAC有广泛的硬件平台的支持,几乎所有采用便携式设计的高端解码芯片都能够支持FLAC格式的音乐,FLAC第三个优势在于:优秀的编码使得硬件在解码时只需采用简单的整数运算即可,这将大大降低所占用的硬件资源!不过两种公开的技术具有极强的互补性,任何一方都不可能全面超越另一方!
2.主流音频格式浅析之一 有损压缩篇
?谁说MP3播放器好就行了?
  随着MP3播放器的普及,越来越多的MP3走进我的视线,在选择一款自己喜欢的MP3播放器的同时,不知道各位玩家有没有想过,我们每天听的都是些怎样的音乐呢?
  我们都知道MP3播放器的音质相当重要,没有好的音质表现,外观再漂亮的MP3都称不上完美;可如果只有好的工具,显然还是不够的,音源方面也是不容忽视的,那么我们对每天听的那些音乐又有多少了解?它们都有那些格式?孰优孰劣?
  我想可能有玩家会说,MP3播放器,播放的不就是MP3么?如果这样想,那您就大错特错了――是的,MP3确实是MP3播放器支持的最基本格式,可除了MP3,我们还有更多可以选择的数字音频格式:
  数字音频格式,最早指的是CD;而CD经过压缩之后,才产生了林林总总的数码随身听适用音频格式。这里所说的压缩,是指把PCM编码的或WAV格式的音频流经过特殊的压缩处理,转换成其他格式,从而达到缩小文件体积、节省空间的效果,而这种压缩大致上又可以分为两类:有损压缩的和无损压缩。
  有损压缩是指经过压缩后产生的新文件所保留的声音信号相对于原来的PCM/WAV格式的信号而言有所削减;无损压缩是指经过压缩后产生的新文件所保留的声音信号相对于原来的PCM/WAV格式的信号而言完全相同,没有削减。当然,我们这里所说的无损压缩,和自然、真实的声音相比还是有损的――作为数字音频格式,只能做到无限接近于无损,想要完全做到无损显然是不可能的。所以一般来说,都以PCM作为最高的保真水平。
MP3和WMA 有谁不支持么?
  先来说说有损压缩格式吧。
  我们目前能得到的比较流行的有损压缩格式主要有MP3、WMA、OGG、MP3pro、AAC、VQF、ASF等。
  MP3格式。自不待言,这是最为我们广大玩家熟知的音频格式,也是最为流行的音频格式,我们在网络上能找到的音频文件大都是MP3格式的。MP3全称MPEG Audio Laye-3,是由德国夫朗和费研究院(Faunhofe IIS)和法国汤姆逊(Thomson)公司于1993年推出的杰作。
  早期的MP3编码技术并不完善,很长的一段时间以来,大多数人都使用128Kbps的CBR(固定编码率)来对MP3文件进行编码,直到近年VBR(可变编码率)和ABR(平均编码率)压缩方式的出现,MP3文件的音质才取得了长足进步,目前MP3格式编码比特率最高可达320Kbps,其音质绝非128Kbps可比。
  鉴于MP3格式大家都很熟悉,笔者这里就不再赘述。
  WMA格式。相信绝大多数玩家手中的MP3播放器都支持这种格式,WMA和MP3同样是MP3播放器所支持的最基本格式。WMA全称Windows Media Audio,看名字就知道是微软的杰作,相对于MP3来说,WMA最大的特点就是有极强的可保护性,从某种程度上我们也可以说,WMA就是针对MP3没有版权保护的缺点而推出的,因此WMA广受唱片公司欢迎。
  从文件体积和音质上来看,文件比特率小于128Kbps时,WMA格式文件体积比MP3格式小,音质也要优于后者;文件比特率大于128Kbps时,MP3格式文件的音质则要更胜一筹。
鉴于MP3格式文件编码比特率的提高,320Kbps的MP3文件音质要优于WMA格式;而网络上的音源也要远多于后者,对于追求音质的玩家来说,笔者认为MP3格式是更好的选择。
MP3pro和OGG 不能只看到流行
  上文介绍的是两种最常见的音频格式。当然,除了MP3和WMA,我们还有其它选择:
  MP3pro格式。上文笔者说过,MP3在很长一段时间以来编码技术并不完善,仅能达到128Kbps的编码比特率,而音质更佳、文件体积更小、又有版权保护的WMA格式的问世,对其造成了很大的威胁,并大有淘汰MP3格式文件的趋势。面对这样的严峻形式,德国夫朗和费研究院(Faunhofe IIS)和法国汤姆逊(Thomson)公司又携手发布了一种新的音频格式――MP3pro。
  MP3pro是对MP3格式的改良,其编码算法要比MP3复杂得多。MP3pro分两层编码,简单的说,它是在MP3的基础上再与SB频段复制技术进行混合编码。这种格式在低比特率的时候压缩率非常高,同比特率的MP3pro文件体积要比MP3和WMA都小得多,而音质却是三者之最!不仅如此,MP3pro格式文件扩展名同MP3一样,都是.mp3,也就是说它还兼容MP3格式文件。
  小令点评:从技术上讲,MP3pro是一种非常优秀的编码方式,同时凌驾于MP3和WMA之上;但遗憾的是它高昂的专利费限制了它的流行。当然,Thomson的玩家就不在此列了,因为Thomson的播放器可以很好的支持MP3pro格式。
  OGG格式。OGG全称OGG Vobis,是一种免费的开源音频格式。它最出众之处就是支持多声道,而不像MP3只能支持双声道。多声道音乐的优点是非常明显的,它可以带给玩家更强烈的现场感,欣赏电影和交响乐时尤其有优势。
  除了多声道,OGG格式相较MP3格式的另一大优势是在文件体积相对较小的情况下实现更好的音质。Q0(64Kbps码率)品质的OGG格式文件就能达到128Kbps码率MP3格式文件的音质,可以节省约一半的存储空间;而Q10(500Kbps)品质的OGG格式文件的音质与无损压缩的CD级WAV格

我要回帖

更多关于 钢琴音阶音效 88音 的文章

 

随机推荐