我们能听到大街上汽车的鸣笛声,声音的传播路径是声源→_→_→_→耳朵?

昨日撒下勤奋种,今朝一搏必成功。鲤鱼一跃便成龙,大鹏展翅震长空。前程似锦圆美梦,锦衣凯旋沐春风。寒窗不负苦心人,金榜有你祝高中。中考顺利,愿你成功!下面是小编给大家带来的中考物理声现象考点总结,欢迎大家阅读参考,我们一起来看看吧!

1. 声音的发生:由物体的震动产生。震动停止,发生也停止。

2. 声音的传播:声音靠截止传播。真空不能传声。通常我们听到的声音是靠空气传来的,

3. 声速:在空气中传播速度是340m/s 声音在固体传播比液体快,而在液体传播又比气体块。

4. 利用回声可以测距离。

5. 乐音的三个特征:音调、响度、音色。1)音调:是指声音的高低,它与发声体的频率有关。2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关。

6. 减弱噪声的途径:1)在声源处减弱。2)在传播过程中减弱。3)在人耳处减弱。

7. 可听声:频率在20Hz~20000Hz之间的声波;超声波:频率高于20000Hz的声波;次声波:频率低于20Hz的声波。

8. 超声波特点:方向性好、穿透能力强、声能较集中。具体应用:声纳、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。

9. 次声波特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。

中考物理声现象重难点知识梳理

1.产生声音和听到声音

物体振动可以产生声音,但由于受人的听觉、声音的响度等因素影响,有些物体振动发出的声音人们听不到;人听到声音必须满足三个条件:(1)振动发声;(2)有介质传播声音;(3)声波能够引起人耳鼓膜振动。

重要提醒:人的听觉还受到声音的频率的限制,人耳只能听到20~20000Hz范围内的声波。

“声现象”实验三种典型研究方法

声音是由物体的振动产生的,有些声源的振动效果显著,可以直接观察,而有些声源的振动效果较弱,不易直接观察。在实验中可以通过一些转换,对声源的微弱振动进行放大,进而探究声音产生的原因。比如:在发声的纸盆上放小纸屑,纸屑跳动;将敲击后的音叉放入水中,水花四溅;在桌面上放小豆粒(小玻璃球、小纸屑、一杯水),敲击桌面,观察其跳动等。

例1 为了探究声音的响度与振幅的关系,小明设计了如图所示的几个实验.你认为能够完成这个探究目的的是( )

解析 A是探究真空能不能传声;选项B探究音调与频率的关系;选项C探究发声体是否在振动;选项D探究响度和振幅的关系,故选D

控制变量法要注意以下几点:

①猜想与所研究量有关的因素有几个,就要设计几个实验;

②研究什么因素对实验的影响,什么因素就是变量,而其他量一律控制不变;

③控制方法一般是用相同的器材和相同的实验方案,改变所要研究的量

猜想一:琴弦发出声音的音调高低,可能与琴弦的横截面积有关

猜想二:琴弦发出声音的音调高低,可能与琴弦的长短有关

猜想三:琴弦发出声音的音调高低,可能与琴弦的材料有关

为了验证上述猜想是否正确,他和同学们找到了表所列4种规格的琴弦,进行实验。

(1)为了验证猜想一,应选编号____、____的两种规格的琴弦进行实验.

(2)在验证猜想三时,小明发现粗心的同学没有把表中的数据填全,表中①的位置所缺数据是_____

(3)小明在这个探究实验中,采用的研究方法是_____

解析 因琴弦发出声音的音调高低可能与琴弦的横截面积、长短和材料等多个因素有关,所以应该采用控制变量法进行分析。

即:(1)为了验证琴弦发出声音的音调高低,可能与琴弦的长短有关,应该控制材料和横截面积相同,即应选编号A、C的两种规格的琴弦进行实验.

(2)在验证琴弦发出声音的音调高低,可能与琴弦的材料有关时,应该让琴弦的长度和横截面积相同,所以表格中长度和横截面积数据应该与B组相同,即应该是55.

(3)在这个探究实验中,采用的研究方法是控制变量法.

1. 掌握声学基础知识

(1)产生:声音是由于物体的振动产生的.

(2)传播:声音靠介质传播,声音在不同介质中传播速度不同,一般在固体中的传播速度最大,在气体中最小;声速还与温度有关,在15℃的空气中传播速度约为340m/s;真空不能传声.

(3)乐音的三个特征:音调、响度和音色.

(4)减弱噪声的方法:在声源处减弱;在传播过程中减弱;在人耳处减弱.

①利用声传递信息:声呐、B超、回声测距等;

②利用声传递能量:超声波清洗、超声波击碎结石等.

2. 关注生活中的声学知识

生活中遇到的声现象很多,应善于将这些现象与所学的知识联系起来.比如:

先看到闪电后听到雷声,是由于声速比光速小;

在摩托车上加有消音器的目的是在声源处减弱噪声;

“闻其声而知其人”是根据不同人的音色不同.

3. 了解科学研究方法

(1)科学推理,在研究“声音的传播”实验中,虽然很难将玻璃罩内抽成真空,但可以根据声音的变化和罩内空气的关系推理得出“真空不能传声”的结论.

(2)把微小变化放大,也是物理学中的一种常用研究方法. 在观察发声物体振动时,采用在鼓面(或扬声器)上,放上小纸片,或将音叉放入水中等,都是将微小的振动进行放大,有利于观察实验现象.

(3)控制变量,在很多的探究实验中经常用到,例如:在探究音调和频率的实验中,要控制振幅不变.

中考物理知识点归纳——声现象

1. 声音的发生:由物体的振动而产生。振动停止,发声也停止。

一切发声的物体都在振动。用手按住发音的音叉,发音也停止,该现象说明振动停止发声也停止。振动的物体叫声源。人说话,唱歌靠声带的振动发声,婉转的鸟鸣靠鸣膜的振动发声,清脆的蟋蟀叫声靠翅膀摩擦的振动发声,其振动频率一定在20-20000次/秒之间。

2.声音的传播:声音靠介质传播。真空不能传声。通常我们听到的声音是靠空气传来的。

在空气中,声音以看不见的声波来传播,声波到达人耳,引起鼓膜振动,人就听到声音。气体、液体、固体都能发声,空气能传播声音。

3.声速:在空气中传播速度是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。

4.回声:由于声音在传播过程中遇到障碍物被反射回来而形成的。

如果回声到达人耳比原声晚0.1s以上人耳能把回声跟原声区分开来,此时障碍物到听者的距离至少为17m。利用:利用回声可以测定海底深度、冰山距离、敌方潜水艇的远近测量中要先知道声音在海水中的传播速度,测量方法是:测出发出声音到受到反射回来的声音讯号的时间t,查出声音在介质中的传播速度v,则发声点距物体S=vt/2。

乐音的三个特征:音调、响度、音色。

乐音是物体做规则振动时发出的声音。

(1)音调:人感觉到的声音的高低。

音调跟发声体振动频率有关系,频率越高音调越高;频率越低音调越低。物体在1s振动的次数叫频率,物体振动越快 频率越高。频率单位次/秒又记作Hz 。

可听声:频率在20Hz~20000Hz之间的声波;超声波:频率高于20000Hz的声波;次声波:频率低于20Hz的声波。

①超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。

②次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。

(2)响度:人耳感受到的声音的大小。

响度跟发生体的振幅和距发声距离的远近有关。物体在振动时,偏离原来位置的最大距离叫振幅。振幅越大响度越大。增大响度的主要方法是:减小声音的发散。

(3)音色:由物体本身决定。

人们根据音色能够辨别乐器或区分人。

区分乐音三要素:闻声知人——依据不同人的音色来判定;

高音歌唱家——指音调。

可以利用声来传播信息和传递能量。

1、当代社会的四大污染:噪声污染、水污染、大气污染、固体废弃物污染。

2、物理学角度看,噪声是指发声体做无规则的杂乱无章的振动发出的声音;环境保护的角度看,噪声是指妨碍人们正常休息、学习和工作的声音,以及对人们要听的声音起干扰作用的声音。

3、人们用分贝(dB)来划分声音等级:

为保护听力应控制噪声不超过90dB;

为保证工作学习,应控制噪声不超过70dB;

为保证休息和睡眠应控制噪声不超过50dB。

(2)在传播过程中减弱;

中考物理声现象考点总结相关文章:

声音传播的路径是声源、耳廓、外耳道、鼓膜、听小骨、耳蜗、听神经、大脑,声传播是通过介质来传播的,由于物体的振动,才能产生声音,声音是物质振动产生的波动,需要靠介质传播才能听到。
声音的传播需要物质,物理学中把这样的物质叫做介质,这个介质可以是空气、水、固体。当然在真空中,声音不能传播。声音在不同的介质中传播的速度也是不同的。
声音的传播速度跟介质的反抗平衡力有关,反抗平衡力就是当物质的某个分子偏离其平衡位置时,其周围的分子就要把它挤回到平衡位置上,而反抗平衡力越大,声音就传播的越快。

第二章声波的基本性质及其传播规律

在日常生活中存在各种各样的声音。例如,人们的交谈声、汽车喇叭声、机器运转声、演奏乐器的乐声等等。在所有各种声音中,凡是有人感到不需要的声音,对这些人来说,就是噪声。简单地讲,噪声就是指不需要的声音。为了对噪声进行测量、分析、研究和控制,需要了解声音的基本特性。本章介绍声波的基本性质及其传播规律。

2. 1 声波的产生及描述方法

各种各样的声音都起始于物体的振动。凡能产生声音的振动物体统称为声源。从物体的形态来分,声源可分成固体声源、液体声源和气体声源等。例如,锣鼓的敲击声、大海的波涛声和汽车的排气声都是常见的声源。如果你用手指轻轻触及被敲击的鼓面,就能感觉到鼓膜的振动。所谓声源的振动就是物体(或质点)在其平衡位置附近进行往复运动。当声源振动时,就会引起声源周围空气分子的振动。这些振动的分子又会使其周围的空气分子产生振动。这样,声源产生的振动就以声波的形式向外传播。声波不仅可以在空气中传播,也可以在液体和固体中传播。但是,声波不能在真空中传播。因为在真空中不存在能够产生振动的媒质。根据传播媒质的不同,可以将声分成空气声、水声和固体(结构)声等类型。在噪声控制工程中主要涉及空气媒质中的空气声。

在空气中,声波是一种纵波,这时媒质质点的振动方向是与声波的传播方向相一致。与之对应,将质点振动方向与声波传播方向相互垂直的波称为横波。在固体和液体中既可能存在纵波,也可能存在横波。

需要注意,声波是通过相邻质点间的动量传递来传播能量的。而不是由物质的迁移来传播能量的。例如,若向水池中投掷小石块,就会引起水面的起伏变化,一圈一圈地向外传播,但是水质点(或水中的飘浮物)只是在原位置处上下运动,并不向外移动。

2. 1. 2 描述声波的基本物理量

当声源振动时,其邻近的空气分子受到交替的压缩和扩张,形成疏密相间的状态,空气分子时疏时密,依次向外传播(图2-1)。

图2-1 空气中的声波

大;当某一当某一部分空气变密时,这部分空气的压强P变得比平衡状态下的大气压强(静态压强)P

部分的空气变疏时,这部分空气的压强P变得比静态大气压强P

小。这样,在声波传播过程中会使空间各处

),称为声压。的空气压强产生起伏变化。通常用p来表示压强的起伏变化量,即与静态压强的差p =(P-P

声压的单位是帕(斯卡),Pa。

如果声源的振动是按一定的时间间隔重复进行的,也就是说振动是具有周期性的,那么就会在声源周围媒质中产生周期的疏密变化。在同一时刻,从某一个最稠密(或最稀疏)的地点到相邻的另一个最稠密(或最稀疏)的地点之间的距离称为声波的波长,记为λ,单位为米,m。振动重复的最短时间间隔称为周期,记为T,单位为秒,s。周期的倒数,即单位时间内的振动次数,称为频率,记为f、单位赫兹,Hz,1赫兹 =

如前所述,媒质中的振动递次由声源向外传播。这种传播是需要时间的,即传播的速度是有限的,这种振动状态在媒质中的传播速度称为声速,记为c ,单位为米每秒,m / s 。

其中,t 是空气的摄氏温度(0 C)。可见,声速c随温度会有一些变化,但是一般情况下,这个变化

我要回帖

更多关于 火车鸣笛的声音 的文章

 

随机推荐